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CHAPTER 1

The Integers

1.1. Numbers, Sequences, and Sums
1.1.1. a. The set of integers greater than 3 is well-ordered. Every subset of this set is also a subset of the set

of positive integers, and hence must have a least element.

b. The set of even positive integers is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

c. The set of positive rational numbers is not well-ordered. This set does not have a least element.
If a/b were the least positive rational number then a/(b + a) would be a smaller positive rational
number, which is a contradiction.

d. The set of positive rational numbers of the form a/2 is well-ordered. Consider a subset of numbers
of this form. The set of numerators of the numbers in this subset is a subset of the set of positive
integers, so it must have a least element b. Then b/2 is the least element of the subset.

e. The set of nonnegative rational numbers is not well-ordered. The set of positive rational numbers
is a subset with no least element, as shown in part c.

1.1.2. Let S be the set of all positive integers of the form a − bk. S is not empty since a − b(−1) = a + b is a
positive integer. Then the well-ordering principle implies that S has a least element, which is the num-
ber we’re looking for.

1.1.3. Suppose that x and y are rational numbers. Then x = a/b and y = c/d, where a, b, c, and d are integers
with b 6= 0 and d 6= 0. Then xy = (a/b) · (c/d) = ac/bd and x + y = a/b + c/d = (ad + bc)/bd where bd 6=
0. Since both x + y and xy are ratios of integers, they are both rational.

1.1.4. a. Suppose that x is rational and y is irrational. Then there exist integers a and b such that x = a
b where

a and b are integers with b 6= 0. Suppose that x+ y is rational. Then there exist integers c and d with
d 6= 0 such that x + y = c

d . This implies that y = (x + y)− x = (a/b)− (c/d) = (ad− bc)/bd, which
means that y is rational, a contradiction. Hence x + y is irrational.

b. This is false. A counterexample is given by
√

2 + (−√2) = 0.

c. This is false. A counterexample is given by 0 · √2 = 0.

d. This is false. A counterexample is given by
√

2 · √2 = 2.

1.1.5. Suppose that
√

3 were rational. Then there would exist positive integers a and b with
√

3 = a/b. Con-
sequently, the set S = {k√3 | k and k

√
3 are positive integers} is nonempty since a = b

√
3. Therefore, by

the well-ordering property, S has a smallest element, say s = t
√

3. We have s
√

3− s = s
√

3− t
√

3 = (s−
t)
√

3. Since s
√

3 = 3t and s are both integers, s
√

3− s = (s− t)
√

3 must also be an integer. Furthermore,
it is positive, since s

√
3− s = s(

√
3− 1) and

√
3 > 1. It is less than s since s = t

√
3, s

√
3 = 3t, and

√
3 <

3. This contradicts the choice of s as the smallest positive integer in S. It follows that
√

3 is irrational.

1.1.6. Let S be a set of negative integers. Then the set T = {−s : s ∈ S} is a set of positive integers. By the
well-ordering principle, T has a least element t0. We prove that −t0 is a greatest element of S. First note
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that since t0 ∈ S, then t0 = −s0 for some s0 ∈ S. Then −t0 = s0 ∈ S. Second, if s ∈ S, then −s ∈ T , so
t0 ≤ −s. Multiplying by −1 yields s ≤ −t0. Since the choice of s was arbitrary, we see that −t0 is greater
than or equal to every element of S.

1.1.7. a. Since 0 ≤ 1/4 < 1, we have [1/4] = 0.

b. Since −1 ≤ −3/4 < 0, we have [−3/4] = −1.

c. Since 3 ≤ 22/7 < 4, we have [22/7] = 3.

d. Since −2 ≤ −2 < −1, we have [−2] = −2.

e. We compute [1/2 + [1/2]] = [1/2 + 0] = [1/2] = 0.

f. We compute [−3 + [−1/2]] = [−3− 1] = [−4] = −4.

1.1.8. a. Since −1 ≤ −1/4 < 0, we have [−1/4] = −1.

b. Since −4 ≤ −22/7 < −3, we have [−22/7] = −4.

c. Since 1 ≤ 5/4 < 2, we have [5/4] = 1.

d. We compute [[1/2]] = [0] = 0.

e. We compute [[3/2] + [−3/2]] = [1 + (−2)] = [−1] = −1.

f. We compute [3− [1/2]] = [3− 0] = [3] = 3.

1.1.9. a. Since [8/5] = 1, we have {8/5} = 8/5− [8/5] = 8/5− 1 = 3/5.

b. Since [1/7] = 0, we have {1/7} = 1/7− [1/7] = 1/7− 0 = 1/7.

c. Since [−11/4] = −3, we have {−11/4} = −11/4− [−11/4] = −11/4− (−3) = 1/4.

d. Since [7] = 7, we have {7} = 7− [7] = 7− 7 = 0.

1.1.10. a. Since [−8/5] = −2, we have {−8/5} = −8/5− [−8/5] = −8/5− (−2) = 2/5.

b. Since [22/7] = 3, we have {22/7} = 22/7− [22/7] = 22/7− 3 = 1/7.

c. Since [−1] = −1, we have {−1} = −1− [−1] = −1− 1 = 0.

d. Since [−1/3] = −1, we have {−1/3} = −1/3− [−1/3] = −1/3− (−1) = 2/3.

1.1.11. If x is an integer, then [x] + [−x] = x − x = 0. Otherwise, x = z + r, where z is an integer and r is a
real number with 0 < r < 1. In this case, [x] + [−x] = [z + r] + [−z − r] = z + (−z − 1) = −1.

1.1.12. Let x = [x] + r where 0 ≤ r < 1. We consider two cases. First suppose that r < 1
2 . Then x + 1

2 =
[x] + (r + 1

2 ) < [x] + 1 since r + 1
2 < 1. It follows that [x + 1

2 ] = [x]. Also 2x = 2[x] + 2r < 2[x] + 1
since 2r < 1. Hence [2x] = 2[x]. It follows that [x] + [x + 1

2 ] = [2x]. Next suppose that 1
2 ≤ r < 1. Then

[x] + 1 ≤ x + (r + 1
2 ) < [x] + 2, so that [x + 1

2 ] = [x] + 1. Also 2[x] + 1 ≤ 2[x] + 2r = 2([x] + r) = 2x <

2[x] + 2 so that [2x] = 2[x] + 1. It follows that [x] + [x + 1
2 ] = [x] + [x] + 1 = 2[x] + 1 = [2x].

1.1.13. We have [x] ≤ x and [y] ≤ y. Adding these two inequalities gives [x] + [y] ≤ x + y. Hence [x + y] ≥
[[x] + [y]] = [x] + [y].
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1.1.14. Let x = a+r and y = b+s, where a and b are integers and r and s are real numbers such that 0 ≤ r, s <
1. By Exercise 14, [2x] + [2y] = [x] + [x + 1

2 ] + [y] + [y + 1
2 ]. We now need to show that [x + 1

2 ] + [y + 1
2 ] ≥

[x + y]. Suppose 0 ≤ r, s < 1
2 . Then [x + 1

2 ] + [y + 1
2 ] = a + b + [r + 1

2 ] + [s + 1
2 ] = a + b, and [x + y] =

a+b+[r+s] = a+b, as desired. Suppose that 1
2 ≤ r, s < 1. Then [x+ 1

2 ]+[y+ 1
2 ] = a+b+[r+ 1

2 ]+[s+ 1
2 ] =

a + b + 2, and [x + y] = a + b + [r + s] = a + b + 1, as desired. Suppose that 0 ≤ r < 1
2 ≤ s < 1. Then

[x + 1
2 ] + [y + 1

2 ] = a + b + 1, and [x + y] ≤ a + b + 1.

1.1.15. Let x = a + r and y = b + s, where a and b are integers and r and s are real numbers such that 0 ≤
r, s < 1. Then [xy] = [ab + as + br + sr] = ab + [as + br + sr], whereas [x][y] = ab. Thus we have [xy] ≥
[x][y]. If x and y are both negative, then [xy] ≤ [x][y]. If one of x and y is positive and the other negative,
then the inequality could go either direction. For examples take x = −1.5, y = 5 and x = −1, y = 5.5. In
the first case we have [−1.5 · 5] = [−7.5] = −8 > [−1.5][5] = −2 · 5 = −10. In the second case we have
[−1 · 5.5] = [−5.5] = −6 < [−1][5.5] = −1 · 5 = −5.

1.1.16. If x is an integer then −[−x] = −(−x) = x, which certainly is the least integer greater than or equal
to x. Let x = a + r, where a is an integer and 0 < r < 1. Then −[−x] = −[−a − r] = −(−a + [−r]) =
a− [−r] = a + 1, as desired.

1.1.17. Let x = [x] + r. Since 0 ≤ r < 1, x + 1
2 = [x] + r + 1

2 . If r < 1
2 , then [x] is the integer nearest to x and

[x+ 1
2 ] = [x] since [x] ≤ x+ 1

2 = [x]+r+ 1
2 < [x]+1. If r ≥ 1

2 , then [x]+1 is the integer nearest to x (choos-
ing this integer if x is midway between [x] and [x+1]) and [x+ 1

2 ] = [x]+1 since [x]+1 ≤ x+r+ 1
2 < [x]+2.

1.1.18. Let y = x + n. Then [y] = [x] + n, since n is an integer. Therefore the problem is equivalent to proving
that [y/m] = [[y]/m] which was done in Example 1.34.

1.1.19. Let x = k + ε where k is an integer and 0 ≤ ε < 1. Further, let k = a2 + b, where a is the largest integer
such that a2 ≤ k. Then a2 ≤ k = a2 + b ≤ x = a2 + b + ε < (a + 1)2. Then [

√
x] = a and [

√
[x]] = [

√
k] =

a also, proving the theorem.

1.1.20. Let x = k + ε where k is an integer and 0 ≤ ε < 1. Choose w from 0, 1, 2, . . . , m − 1 such that w/m ≤
ε < (w + 1)/m. Then w ≤ mε < w + 1. Then [mx] = [mk + mε] = mk + [mε] = mk + w. On the
other hand, the same inequality gives us (w + j)/m ≤ ε + j/m < (w + 1 + j)/m, for any integer j =
0, 1, 2, . . . , m− 1. Note that this implies [ε + j/m] = [(w + j)/m] which is either 0 or 1 for j in this range.
Indeed, it equals 1 precisely when w+j ≥ m, which happens for exactly w values of j in this range. Now
we compute

∑m−1
j=0 [x + j/m] =

∑m−1
j=0 [k + ε + j/m] =

∑m−1
j=0 k + [ε + j/m] = mk +

∑m−1
j=0 [(w + j)/m] =

mk +
∑m−1

j=m−w 1 = mk + w which is the same as the value above.

1.1.21. a. Since the difference between any two consecutive terms of this sequence is 8, we may compute the
nth term by adding 8 to the first term n− 1 times. That is, an = 3 + (n− 1)8 = 8n− 5.

b. For each n, we have an−an−1 = 2n−1, so we may compute the nth term of this sequence by adding
all the powers of 2, up to the (n− 1)th, to the first term. Hence an = 5 + 2 + 22 + 23 + · · ·+ 2n−1 =
5 + 2n − 2 = 2n + 3.

c. The nth term of this sequence appears to be zero, unless n is a perfect square, in which case the term
is 1. If n is not a perfect square, then [

√
n] <

√
n, where [x] represents the greatest integer function.

If n is a perfect square, then [
√

n] =
√

n. Therefore, [[
√

n]/
√

n] equals 1 if n is a perfect square and 0
otherwise, as desired.

d. This is a Fibonacci-like sequence, with an = an−1 + an−2, for n ≥ 3, and a1 = 1, and a2 = 3.

1.1.22. a. Each term given is 3 times the preceding term, so we conjecture that the nth term is the first term
multiplied by 3, n− 1 times. So an = 2 · 3n−1.
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b. In this sequence, an = 0 if n is a multiple of 3, and equals 1 otherwise. Let [x] represent the greatest
integer function. Since [n/3] < n/3 when n is not a multiple of 3 and [n/3] = n/3 when n is a mul-
tiple of 3, we have that an = 1− [[n/3]/(n/3)] .

c. If we look at the difference of successive terms, we have the sequence 1, 1, 2, 2, 3, 3, . . . . So if n is
odd, say n = 2k +1, then an is obtained by adding 1+1+2+2+3+3+ · · ·+k +k = 2tk to the first
term, which is 1. (Here tk stands for the kth triangular number.) So if n is odd, then an = 1 + 2tk
where k = (n− 1)/2. If n is even, say n = 2k, then an = a2k+1 − k = 1− k + 2tk.

d. This is a Fibonacci-like sequence, with an = an−1 + 2an−2, for n ≥ 3, and a1 = 3, and a2 = 5.

1.1.23. Three possible answers are an = 2n−1, an = (n2 − n + 2)/2, and an = an−1 + 2an−2.

1.1.24. Three possible answers are an = an−1an−2, an = an−1 + 2n− 3, and an = the number of letters in the
nth word of the sentence “If our answer is correct we will join the Antidisestablishmentarianism Society
and boldly state that ‘If our answer is correct we will join the Antidisestablishmentarianism Society and
boldly state....’ ”

1.1.25. This set is exactly the sequence an = n− 100, and hence is countable.

1.1.26. The function f(n) = 5n is a one-to-one correspondence between this set and the set of integers, which
is known to be countable.

1.1.27. One way to show this is to imitate the proof that the set of rational numbers is countable, replacing
a/b with a + b

√
2. Another way is to consider the function f(a + b

√
2) = 2a3b which is a one-to-one map

of this set into the rational numbers, which is known to be countable.

1.1.28. Let A and B be two countable sets. If one or both of the sets are finite, say A is finite, then the listing
a1, a2, . . . , an, b1, b2, . . ., where any bi which is also in A is deleted from the list, demonstrates the count-
ability of A ∪ B. If both sets are infinite, then each can be represented as a sequence: A = {a1, a2, . . .},
and B = {b1, b2, . . .}. Consider the listing a1, b1, a2, b2, a3, b3, . . . and form a new sequence ci as follows.
Let c1 = a1. Given that cn is determined, let cn+1 be the next element in the listing which is different
from each ci with i = 1, 2, . . . , n. Then this sequence is exactly the elements of A ∪B, which is therefore
countable.

1.1.29. Suppose {Ai} is a countable collection of countable sets. Then each Ai can be represented by a se-
quence, as follows:

A1 = a11 a12 a13 . . .
A2 = a21 a22 a23 . . .
A3 = a31 a32 a33 . . .

...
Consider the listing a11, a12, a21, a13, a22, a31, . . . , in which we first list the elements with subscripts

adding to 2, then the elements with subscripts adding to 3 and so on. Further, we order the elements
with subscripts adding to k in order of the first subscript. Form a new sequence ci as follows. Let c1 =
a1. Given that cn is determined, let cn+1 be the next element in the listing which is different from each

ci with i = 1, 2, . . . , n. Then this sequence is exactly the elements of
∞⋃

i=1

Ai, which is therefore countable.

1.1.30. a. Note that
√

2 ≈ 1.4 = 7/5, so we might guess that
√

2 − 7/5 ≈ 0. If we multiply through by 5 we
expect that 5

√
2 − 7 should be small, and its value is approximately 0.071 which is much less than

1/8 = 0.125. So we may take a = 5 ≤ 8 and b = 7.

b. As in part a., note that 3
√

2 = 1.2599 . . . ≈ 1.25 = 5/4, so we investigate 4 3
√

2 − 5 = 0.039 . . . ≤ 1/8.
So we may take a = 4 ≤ 8 and b = 5.
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c. Since we know that π ≈ 22/7 we investigate |7π − 22| = 0.0088 . . . ≤ 1/8. So we may take a = 7 ≤
8 and b = 22.

d. Since e ≈ 2.75 = 11/4 we investigate |4e − 11| = 0.126 . . ., which is too large. A closer approxima-
tion to e is 2.718. We consider the decimal expansions of the multiples of 1/7 and find that 5/7 =
.714 . . ., so e ≈ 19/7. Therefore we investigate |7e − 19| = 0.027 ≤ 1/8. So we may take a = 7 ≤ 8
and b = 19.

1.1.31. a. Note that
√

3 = 1.73 ≈ 7/4, so we might guess that
√

3 − 7/4 ≈ 0. If we multiply through by 4 we
find that |4√3− 7| = 0.07 . . . < 1/10. So we may take a = 4 ≤ 10 and b = 7.

b. It is helpful to keep the decimal expansions of the multiples of 1/7 in mind in these exercises. Here
3
√

3 = 1.442 . . . and 3/7 = 0.428 . . . so that we have 3
√

3 ≈ 10/7. Then as in part a., we investigate
|7 3
√

3− 10| = 0.095 . . . < 1/10. So we may take a = 7 ≤ 10 and b = 10.

c. Since π2 = 9.869 . . . and 6/7 = 0.857 . . ., we have that π2 ≈ 69/7, so we compute |7π2 − 69| =
0.087 . . . < 1/10. So we may take a = 7 ≤ 10 and b = 69.

d. Since e3 = 20.0855 . . . we may take a = 1 and b = 20 to get |1e3 − 20| = 0.855 . . . < 1/10.

1.1.32. For j = 0, 1, 2, . . . , n + 1, consider the n + 2 numbers {jα}, which all lie in the interval 0 ≤ {jα} <
1. We can partition this interval into the n + 1 subintervals (k − 1)/(n + 1) ≤ x < k/(n + 1) for k =
1, . . . , n + 1. Since we have n + 2 numbers and only n + 1 intervals, by the pigeonhole principle, some
interval must contain at least two of the numbers. So there exist integers r and s such that 0 ≤ r < s ≤
n + 1 and |{rα} − {sα}| ≤ 1/(n + 1). Let a = s− r and b = [sα]− [rα]. Since 0 ≤ r < s ≤ n + 1, we have
1 ≤ a ≤ n. Also, |aα − b| = |(s − r)α − ([sα] − [rα])| = |(sα − [sα]) − (rα − [rα]a)| = |{sα} − {rα}| <
1/(n + 1). Therefore, a and b have the desired properties.

1.1.33. The number α must lie in some interval of the form r/k ≤ α < (r + 1)/k. If we divide this interval
into equal halves, then α must lie in one of the halves, so either r/k ≤ α < (2r + 1)/2k or (2r + 1)/2k ≤
α < (r + 1)/k. In the first case we have |α − r/k| < 1/2k, so we take u = r. In the second case we have
|α− (r + 1)/k| < 1/2k, so we take u = r + 1.

1.1.34. Suppose that there are only finitely many positive integers q1, q2, . . . , qn with corresponding integers
p1, p2, . . . , pn such that |α − pi/qi| < 1/q2

i . Since α is irrational, |α − pi/qi| is positive for every i, and so
is |qiα − pi| so we may choose an integer N so large that |qiα − pi| > 1/N for all i. By Dirichlet’s Ap-
proximation Theorem, there exist integers r and s with 1 ≤ s ≤ N such that |sα − r| < 1/N < 1/s, so
that |α − r/s| < 1/s2, and s is not one of the qi. Therefore, we have another solution to the inequality.
So no finite list of solutions can be complete, and we conclude that there must be an infinite number of
solutions.

1.1.35. First we have |√2− 1/1| = 0.414 . . . < 1/12. Second, Exercise 30, part a., gives us |√2− 7/5| < 1/50 <

1/52. Third, observing that 3/7 = 0.428 . . . leads us to try |√2 − 10/7| = 0.014 . . . < 1/72 = 0.0204 . . . .

Fourth, observing that 5/12 = 0.4166 . . . leads us to try |√2−17/12| = 0.00245 . . . < 1/122 = 0.00694 . . . .

1.1.36. First we have | 3
√

5− 1/1| = 0.7099 . . . < 1/12. Second, | 3
√

5− 5/3| = 0.04 . . . < 1/32. Third, since 3
√

5 =
1.7099 . . ., we try | 3

√
5 − 17/10| = 0.0099 . . . < 1/102. Likewise, we get a fourth rational number with

| 3
√

5 − 171/100| = 0.000024 . . . < 1/1002. Fifth, consideration of multiples of 1/7 leads to | 3
√

5 − 12/7| =
0.0043 . . . < 1/72.

1.1.37. We may assume that b and q are positive. Note that if q > b, we have |p/q − a/b| = |pb − aq|/qb ≥
1/qb > 1/q2. Therefore, solutions to the inequality must have 1 ≤ q ≤ b. For a given q, there can be
only finitely many p such that the distance between the rational numbers a/b and p/q is less than 1/q2

(indeed there is at most one.) Therefore there are only finitely many p/q satisfying the inequality.
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1.1.38. a. Since n2 is an integer for all n, so is [n2], so the first ten terms of the spectrum sequence are 2, 4, 6,
8, 10, 12, 14, 16, 18, 20.

b. The sequence for n
√

2, rounded, is 1.414, 2.828, 4.242, 5.656, 7.071, 8.485, 9.899, 11.314, 12.728,
14.142. When we apply the floor function to these numbers we get 1, 2, 4, 5, 7, 8, 9, 11, 12, 14 for
the spectrum sequence.

c. The sequence for n(2 +
√

2), rounded, is 3.414, 6.828, 10.24, 13.66, 17.07, 20.48, 23.90, 27.31, 30.73,
34.14. When we apply the floor function to these numbers we get 3, 6, 10, 13, 17, 20, 23, 27, 30, 34,
for the spectrum sequence.

d. The sequence for ne, rounded is 2.718, 5.436, 8.155, 10.87, 13.59, 16.31, 19.03, 21.75, 24.46, 27.18.
When we apply the floor function to these numbers we get 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, for the
spectrum sequence.

e. The sequence for n(1 +
√

5)/2, rounded, is 1.618, 3.236, 4.854, 6.472, 8.090, 9.708, 11.33, 12.94, 14.56,
16.18. When we apply the floor function to these numbers we get 1, 3, 4, 6, 8, 9, 11, 12, 14, 16 for the
spectrum sequence.

1.1.39. a. Since n3 is an integer for all n, so is [n3], so the first ten terms of the spectrum sequence are 3, 6, 9,
12, 15, 18, 21, 24, 27, 30.

b. The sequence for n
√

3, rounded, is 1.732, 3.464, 5.196, 6.928, 8.660, 10.39, 12.12, 13.86, 15.59, 17.32.
When we apply the floor function to these numbers we get 1, 3, 5, 6, 8, 10, 12, 13, 15, 17 for the spec-
trum sequence.

c. The sequence for n(3 +
√

3)/2, rounded, is 2.366, 4.732, 7.098, 9.464, 11.83, 14.20, 16.56, 18.93, 21.29,
23.66. When we apply the floor function to these numbers we get 2, 4, 7, 9, 11, 14, 16, 18, 21, 23 for
the spectrum sequence.

d. The sequence for nπ, rounded is 3.142, 6.283, 9.425, 12.57, 15.71, 18.85, 21.99, 25.13, 28.27, 31.42.
When we apply the floor function to these numbers we get 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, for the
spectrum sequence.

1.1.40. Since α 6= β, their decimal expansions must be different. If they differ in digits that are to the left of
the decimal point, then [α] 6= [β], so certainly the spectrum sequences are different. Otherwise, suppose
that they differ in the kth position to the right of the decimal. Then [10kα] 6= [10kβ], and so the spectrum
sequences will again differ.

1.1.41. Assume that 1/α + 1/β = 1. Note first that for all integers n and m, mα 6= nβ, for otherwise, we
solve the equations mα = nβ and 1/α + 1/β = 1 and get rational solutions for α and β, a contradiction.
Therefore the sequences mα and nβ are disjoint.

For an integer k, define N(k) to be the number of elements of the sequences mα and nβ which are
less than k. Now mα < k if and only if m < k/α, so there are exactly [k/α] members of the sequence
mα less than k. Likewise, there are exactly [k/β] members of the sequence nβ less than k. So we have
N(k) = [k/α] + [k/β]. By definition of the greatest integer function, we have k/α− 1 < [k/α] < k/α and
k/β − 1 < [k/β] < k/β, where the inequalities are strict because the numbers are irrational. If we add
these inequalities we get k/α+k/β−2 < N(k) < k/α+k/β which simplifies to k−2 < N(k) < k. Since
N(k) is an integer, we conclude that N(k) = k − 1. This shows that there is exactly one member of the
union of the sequences mα and nβ in each interval of the form k − 1 ≤ x < k, and therefore, when we
apply the floor function to each member, exactly one will take on the value k.

Conversely, suppose that α and β are irrational numbers such that 1/α + 1/β 6= 1. If 1/α + 1/γ = 1
then we know from the first part of the theorem that the spectrum sequences for α and γ partition the
positive integers. By Exercise 40., we know that the spectrum sequences for β and γ are different, so the
sequences for α and β can not partition the positive integers.
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1.1.42. The first two Ulam numbers are 1 and 2. Since 3 = 1 + 2, it is the third Ulam number and since 4 =
1 + 3, it is the fourth Ulam number. Note that 5 is not an Ulam number since 5 = 1 + 4 = 2 + 3. The fifth
Ulam number is 6 since 6 = 4 + 2 and no other two Ulam numbers have 6 as their sum. We have 7 =
4 + 3 = 6 + 1, so 7 is not an Ulam number. The sixth Ulam number is 8 = 6 + 2. Note that 9 = 8 + 1 =
6+3 and 10 = 8+2 = 4+6 so neither 9 nor 10 is an Ulam number. The seventh Ulam number is 11 since
11 = 8 + 3 is the unique way to write 11 as the sum of two distinct Ulam numbers. Next note that 12 =
8 + 4 = 1 + 11 so that 12 is not an Ulam number. Note that 13 = 11 + 2 is the unique way to write 13 as
the eighth Ulam number. We see that 14 = 13+1 = 11+3 and 15 = 2+13 = 4+11, so that neither 14 nor
15 are Ulam numbers. We note that 16 = 3 + 13 is the unique way to write 16 as the sum of two Ulam
numbers, so that the ninth Ulam number is 16. Note that 17 = 1 + 16 = 4 + 13 so that 17 is not an Ulam
number. Note that 18 = 2 + 16 is the unique way to write 18 as the sum of two Ulam numbers so that 18
is the tenth Ulam number. In summary, the first ten Ulam numbers are: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18.

1.1.43. Assume that there are only finitely many Ulam numbers. Let the two largest Ulam numbers be un−1

and un. Then the integer un +un−1 is an Ulam number larger than un. It is the unique sum of two Ulam
numbers since ui + uj < un + un−1 if j < n or j = n and i < n− 1.

1.1.44. Suppose that e is rational so that e = a/b where a and b are integers and b 6= 0. Let k ≥ b be an inte-
ger and set c = k!(e − 1 − 1/1! − 1/2! − 1/3! − · · · − 1/k!). Since every denominator in the expression
divides evenly into k!, we see that c is an integer. Since e = 1 + 1/1! + 1/2! + · · · , we have 0 < c =
k!(1/(k + 1)! + 1/(k + 2)! + · · · ) = 1/(k + 1) + 1/(k + 1)(k + 2) + · · · < 1/(k + 1) + 1/(k + 1)2 + · · · .
This last geometric series is equal to 1/k, so we have that 0 < c < 1/k, which is impossible since c is an
integer. Therefore e must be irrational.

1.2. Sums and Products

1.2.1. a. We have
5∑

j=1

j2 = 12 + 22 + 32 + 42 + 52 = 55.

b. We have
5∑

j=1

(−3) = (−3) + (−3) + (−3) + (−3) + (−3) = −15.

c. We have
5∑

j=1

1/(j + 1) = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 = 29/20.

1.2.2. a. We have
4∑

j=0

3 = 3 + 3 + 3 + 3 + 3 = 15.

b. We have
4∑

j=0

(j − 3) = (−3) + (−2) + (−1) + 0 + 1 = −5.

c. We have
4∑

j=0

(j + 1)/(j + 2) = 1/2 + 2/3 + 3/4 + 4/5 + 5/6 = 71/20.

1.2.3. a. We use the formula from Example 1.15 as follows. We evaluate the sum
∑

j=082j

= 29 − 1 = 511 as in

Example 1.17. Then we have
∑

j=182j

=
∑

j=082j

−20 = 510.

b. We could proceed as in part (a), or we may do the following:
8∑

j=1

5(−3)j =
7∑

j=0

5(−3)j+1

=
7∑

j=0

−15(−3)j . We may apply the formula in Example 1.15 to this last sum, with a = −15, n =

7 and r = −3, to get the sum equal to
−15(−3)8 − (−15)

−3− 1
= 24600.
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c. We manipulate the sum as in part b., so we can apply the formula from Example 1.15.
8∑

j=1

3(−1/2)j =

7∑

j=0

3(−1/2)j+1 =
7∑

j=0

(−3/2)(−1/2)j =
(−3/2)(−1/2)8 − (−3/2)

−1/2− 1
= −255

256
.

1.2.4. a. We have
10∑

j=0

8 · 3j =
8 · 311 − 8

3− 1
= 708584, using the formula from Example 1.15 with a = 8, n = 10

and r = 3.

b. We have
10∑

j=0

(−2)j+1 =
10∑

j=0

(−2)(−2)j =
(−2) · (−2)11 − (−2)

(−2)− 1
= −1366, using the formula from Ex-

ample 1.15 with a = −2, n = 10 and r = −2.

c. We have
10∑

j=0

(1/3)j =
(1/3)11 − 1
(1/3)− 1

=
88573
59049

, using the formula from Example 1.15 with a = 1, n =

10 and r = (1/3).

1.2.5. The sum
∑n

k=1[
√

k] counts 1 for every value of k with
√

k ≥ 1. There are n such values of k in the
range k = 1, 2, 3, . . . , n. It counts another 1 for every value of k with

√
k ≥ 2. There are n− 3 such values

in the range. The sum counts another 1 for each value of k with
√

k ≥ 3. There are n− 8 such values in
the range. In general, for m = 1, 2, 3, . . . , [

√
n] the sum counts a 1 for each value of k with

√
k ≥ m, and

there are n− (m2 − 1) values in the range. Therefore
∑n

k=1[
√

k] =
∑[

√
n]

m=1 n− (m2 − 1) = [
√

n](n + 1)−∑[
√

n]
m=1 m2 = [

√
n](n + 1)− ([

√
n]([

√
n] + 1)(2[

√
n] + 1))/6.

1.2.6. We see that tn =
∑n

j=1 j, and tn−1 =
∑n−1

j=1 j =
∑n−1

j=1 (n− j). Now, tn−1 + tn =
∑n−1

j=1 (n− j + j)+n =
n(n− 1) + n = n2.

1.2.7. We see that tn =
∑n

j=1 j =
∑n

j=1(n− j + 1). Thus, 2tn =
∑n

j=1 j +
∑n

j=1(n− j + 1) =
∑n

j=1(n + 1) =
n(n + 1).

1.2.8. It is clear that p1 = 1. Suppose we know pk−1. To compute pk we consider k nested pentagons as in
the figure. Note that pk − pk−1 counts the number of dots on three sides of the outer pentagon. Each
side consists of k dots, but two of the dots belong to two sides. Therefore pk − pk−1 = 3k − 2, which is
the formula desired. Then pn = 3n− 2 + pn−1 = 3n− 2 + 3(n− 1)− 2 + pn−2 = 3n− 2 + 3(n− 1)− 2 +
3(n− 2)− 2 + pn−3 = · · · = 3n− 2 + 3(n− 1)− 2 + · · ·+ 3(1)− 2 =

∑n
k=1(3k − 2).

1.2.9. From Exercise 8, we have pn =
∑n

k=1(3k−2) = 3
∑n

k=1 k−2
∑n

k=1 1 = 3n(n+1)/2−2n = (3n2−n)/2.
On the other hand, tn−1 + n2 = (n− 1)n/2 + n2 = (3n2 − n)/2, which is the same as above.

1.2.10. a. Consider a regular hexagon which we border successively by hexagons with 3, 4, 5, . . . on each side.
Define the hexagonal number hk to be the number of dots contained in the k nested hexagons.

b. First note that h1 = 1. To get a recursive relationship we consider hk − hk−1, which counts the dots
added to the (k− 1)st hexagon to obtain the kth hexagon. To do this, we must add 4 sides of k dots
each, but 3 of the dots belong to two sides. Therefore hk − hk−1 = 4k − 3. A closed formula is then
given by adding these differences together: hk =

∑k
i=1(4i − 3) = 4tk − 3k = 4k(k + 1)/2 − 3k =

2k2 − k.

1.2.11. a. Consider a regular heptagon which we border successively by heptagons with 3, 4, 5, . . . on each
side. Define the heptagonal numbers s1, s2, s3, . . . , sk, . . . to be the number of dots contained in the k
nested heptagons.
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b. First note that s1 = 1. To get a recursive relationship we consider sk − sk−1, which counts the dots
added to the (k − 1)st heptagon to obtain the kth heptagon. To do this, we must add 5 sides of k
dots each, but 4 of the dots belong to two sides. Therefore sk − sk−1 = 5k − 4. A closed formula is
then given by adding these differences together: sk =

∑k
i=1(5i−4) = 5tk−4k = 5k(k +1)/2−4k =

(5k2 − 3k)/2.

1.2.12. First consider the difference Tk − Tk−1. This counts the number of dots on one face of the kth tetra-
hedron. But this is simply the kth nested triangle used to define the triangular numbers. Therefore,
Tk − Tk−1 = tk. Hence, since T1 = t1 = 1, it follows that Tn =

∑n
k=1 tk.

1.2.13. We continue with the formula from Exercise 12. Tn =
∑n

k=1 tk =
∑n

k=1 k(k + 1)/2. Exploiting the
same technique as in Example 1.19, we consider (k + 1)3 − k3 = 3k2 + 3k + 1 = 3(k2 + k) + 1 and solve
for k2 + k to get k2 + k = (k + 1)3 − k3/3− (1/3). Then Tn = (1/2)

∑n
k=1 k(k + 1) = (1/6)

∑n
k=1((k +

1)3 − k3) − (1/6)
∑n

k=1 1. The first sum is telescoping and the second sum is trivial, so we have Tn =
(1/6)((n + 1)3 − 13)− (1/6) = (n3 + 3n2 + 2n)/6.

1.2.14. Using the fact n! = n · (n− 1)!, we find that 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040,
8! = 40320, 9! = 362880, and 10! = 3628800.

1.2.15. Each of these four quantities are products of 100 integers. The largest product is 100100, since it is the
product of 100 factors of 100. The second largest is 100! which is the product of the integers 1, 2, . . . , 100,
and each of these terms is less or equal to 100. The third largest is (50!)2 which is the product of
12, 22, . . . , 502, and each of these factors j2 is less than j(50 + j), whose product is 100!. The smallest
is 2100 which is the product of 100 2’s.

1.2.16. a.
n∏

i=1

kai = kn
n∏

i=1

ai.

b.
n∏

i=1

iai = (a1)(2a2) · · · (nan) = (1 · 2 · · ·n)(a1a2 · · · an) = n!
n∏

i=1

ai.

c.
n∏

i=1

ak
i =

(
n∏

i=1

ai

)k

.

1.2.17.
n∑

k=1

(
1

k(k + 1)

)
=

n∑

k=1

(
1
k
− 1

k + 1

)
. Let aj = 1/(j + 1). Notice that this is a telescoping sum, and

using the notation in the text preceding Example 1.15, we have
n∑

k=1

(
1

k(k + 1)

)
=

n∑

j=1

aj−1 − aj) =

−(an − a0) = 1− 1/(n + 1) = n/(n + 1).

1.2.18.
n∑

k=2

1
k2 − 1

=
1
2

n∑

k=2

(
1

k − 1
− 1

k + 1

)
=

1
2

n∑

k=2

((
1

k − 1
− 1

k

)
+

(
1
k
− 1

k + 1

))
=

1
2

n∑

k=2

(
1

k − 1
− 1

k
) +

1
2

n∑

k=2

(
1
k
− 1

k + 1
) =

1
2
(1− 1

n
) +

1
2
(
1
2
− 1

n + 1
) =

3
4
− 2n + 1

2n(n + 1)
.

1.2.19. We sum both sides of the identity (k+1)3−k3 = 3k2+3k+1 from k = 1 to k = n.
∑n

k=1((k+1)3−k3) =
(n + 1)3 − 1, since the sum is telescoping.

∑n
k=1(3k2 + 3k + 1) = 3(

∑n
k=1 k2) +

3(
∑n

k=1 k) +
∑n

k=1 1 = 3(
∑n

k=1 k2) + 3n(n + 1)/2 + n. As these two expressions are equal, solving for∑n
k=1 k2, we find that

∑n
k=1 k2 = (n/6)(2n + 1)(n + 1).

1.2.20. We sum both sides of the identity (k + 1)4 − k4 = 4k3 + 6k2 + 4k + 1 from k = 1 to k = n. Using
Exercise 19 we find that

∑n
k=1 k3 = n2(n + 1)2/4.

1.2.21. a. 10! = (7!)(8 · 9 · 10) = (7!)(720) = (7!)(6!).
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b. 10! = (7!)(6!) = (7!)(5!) · 6 = (7!)(5!)(3!).

c. 16! = (14!)(15 · 16) = (14!)(240) = (14!)(5!)(2!).

d. 9! = (7!)(8 · 9) = (7!)(6 · 6 · 2) = (7!)(3!)(3!)(2!)

1.2.22. Since c = a1!a2! · · · an! and b = (a1!a2! · · · an!)−1, it follows that c! = c·(c−1)! = c·b! = a1!a2! · · · an!·b!.

1.2.23. Assume that x ≤ y. Then z! = x! + y! ≤ y! + y! = 2(y!). Since z > y we have z! ≥ (y + 1)y!. This
implies that y + 1 ≤ 2. Hence the only solution with x, y, and z positive integers is x = y = 1 and z = 2.

1.2.24. a.
n∏

j=2

(1− 1
j
) = (1− 1/2)(1− 1/3) · · · (1− 1/n) =

1
2

2
3

3
4
· · · n− 1

n
=

1
n

.

b.
n∏

j=2

(1− 1
j2

) =
n∏

j=2

(1− 1/j)
n∏

j=2

(1 + 1/j) =
(

1
n

)(
3
2

4
3

5
4
· · · n + 1

n

)
=

n + 1
2n

.

1.3. Mathematical Induction
1.3.1. For n = 1 we have 1 < 21 = 2. This is the basis case. Now assume n < 2n. We then have n + 1 <

2n + 1 < 2n + 2n = 2n+1. This completes the inductive step and the proof by mathematical induction.

1.3.2. We have 2 = 2, 2 + 4 = 6, 2 + 4 + 6 = 12, 2 + 4 + 6 + 8 = 20, and 2 + 4 + 6 + 8 + 10 = 30.
We conjecture that

∑n
j=1 2j = n(n + 1) since this formula holds for small values of n. To prove this

by mathematical induction we have
∑1

j=1 2j = 2 = 2 · (1 + 1) so the result is true for 1. Now as-
sume that the formula holds for n. Then

∑n+1
j=1 2j = (

∑n
j=1 2j) + 2(n + 1) = n(n + 1) + 2(n + 1) =

(n + 1)(n + 2). This completes the proof.

1.3.3. For the basis step we have
1∑

k=1

1
k2

= 1 ≤ 2− 1
1

= 1. For the inductive step, we assume that
n∑

k=1

1
k2
≤

2− 1
n

. Then,
n+1∑

k=1

1
k2

=
n∑

k=1

1
k2

+
1

(n + 1)2
≤ 2 +

1
(n + 1)2

by the induction hypothesis. This is less than

2− 1
n + 1

+
1

(n + 1)2
= 2− 1

n + 1
(1− 1

n + 1
) ≤ 2− 1

n + 1
, as desired.

1.3.4. For the basis step, we have
1∑

k=1

1
k(k + 1)

=
1
2

. For the inductive step, we assume that
n∑

k+1

1
k(k + 1)

=

n

n + 1
. Then,

n+1∑

k=1

1
k(k + 1)

=
n∑

k=1

1
k(k + 1)

+
1

(n + 1)(n + 2)
=

n

n + 1
+

1
(n + 1)(n + 2)

=
n + 1
n + 2

, as desired.

1.3.5. We see that A =
(

1 1
0 1

)
,A2 =

(
1 2
0 1

)
,A3 = A2A =

(
1 3
0 1

)
and so on. We conjecture that

An =
(

1 n
0 1

)
. To prove this by mathematical induction we first note that the basis step follows since

A =
(

1 1
0 1

)
. Next, we assume that An =

(
1 n
0 1

)
. Then An+1 = AnA =

(
1 n
0 1

) (
1 1
0 1

)
=

(
1 n + 1
0 1

)
.

1.3.6. The basis step holds since 1 = 1 · (1 + 1)/2. For the inductive step assume that
∑n

j=1 j = n(n + 1)/2.
It follows that

n+1∑

j=1

j =
n∑

j=1

j + (n + 1) =
n(n + 1)

2
+ (n + 1) = (n + 1)(

n

2
+ 1) =

(n + 1)(n + 2)
2

.
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This finishes the inductive proof.

1.3.7. For the basis step, we have
∑1

j=1 j2 = 1 = 1(1+1)(2 · 1+1)/6. For the inductive step, we assume that∑n
j=1 j2 = n(n + 1)(2n + 1)/6. Then,

∑n+1
j=1 j2 =

∑n
j=1 j2 + (n + 1)2 = n(n + 1)(2n + 1)/6 + (n + 1)2 =

(n + 1) (n(2n + 1)/6 + n + 1) = (n + 1)(2n2 + 7n + 6)/6 = (n + 1)(n + 2)[2(n + 1) + 1]/6, as desired.

1.3.8. For the basis step, we have
∑1

j=1 j3 = 1, and (1(1+1)/2)2 = 1 also. For the inductive step, we assume
that

∑n
j=1 j3 = (n(n+1)/2)2. Then,

∑n+1
j=1 j3 =

∑n
j=1 j3 +(n+1)3 = (n(n+1)/2)2 +n3 +3n2 +3n+1 =

((n + 1)(n + 2)/2)2, as desired.

1.3.9. For the basis step, we have
∑1

j=1 j(j + 1) = 2 = 1(2)(3)/3. Assume it is true for n. Then
∑n+1

j=1 j(j +
1) = n(n + 1)(n + 2)/3 + (n + 1)(n + 2) = (n + 1)(n + 2)(n/3 + 1) = (n + 1)(n + 2)(n + 3)/3.

1.3.10. For the basis step, we have
∑1

j=1(−1)j−1j2 = 1 = (−1)1−11(1 + 1)/2. For the inductive step, we as-
sume that

∑n
j=1(−1)j−1j2 = (−1)n−1n(n + 1)/2. Then,

∑n+1
j=1 (−1)j−1j2 =

∑n
j=1(−1)j−1j2+

(−1)n(n + 1)2 = (−1)n−1n(n + 1)/2 + (−1)n(n + 1)2 = (−1)n 1
2 (n + 1)[2(n + 1) − n] =

(−1)(n+1)−1(n + 1)(n + 2)/2, as desired.

1.3.11. We have
n∏

j=1

2j = 2
Pn

j=1 j = 2n(n+1)/2 since
n∑

j=1

j =
n(n + 1)

2
.

1.3.12. We use mathematical induction. For n = 1 we have
∑1

j=1 j · j! = 1 · 1! = 1 = (1 + 1)! − 1 = 1. Now
assume that

∑n
j=1 j · j! = (n + 1)!− 1. Then

∑n+1
j=1 j · j! = (n + 1)!− 1 + (n + 1) · (n + 1)! = (n + 1)!(1 +

n + 1)− 1 = (n + 2)!− 1. This completes the proof.

1.3.13. We will prove this using mathematical induction. We see that 12 = 4 · 3. Now assume that postage of
n cents can be formed, with n = 4a + 5b, where a and b are nonnegative integers. To form n + 1 cents
postage, if a > 0 we can replace a 4-cent stamp with a 5-cent stamp; that is, n + 1 = 4(a− 1) + 5(b + 1).
If no 4-cent stamps are present, then all 5-cent stamps were used. It follows that there must be at least
three 5-cent stamps and these can be replaced by four 4-cent stamps; that is, n + 1 = 4(a + 4) + 5(b− 3).

1.3.14. We prove this using mathematical induction. We see that 54 = 4 · 10 + 2 · 7. Now assume that postage
of n cents can be formed, with n = 10a + 7b, where a and b are positive integers. To form n + 1 cents
postage, if a > 1 we can replace 2 ten-cent stamps with 3 seven-cent stamps, that is, n + 1 = 10(a− 2) +
7(b+3). If a < 2, then notice that b ≥ 7. We can replace 7 seven-cent stamps with 5 ten-cent stamps, that
is, n + 1 = 10(a + 5) + 7(b− 7).

1.3.15. We use mathematical induction. The inequality is true for n = 0 since H20 = H1 = 1 ≥ 1 = 1 +
0/2. Now assume that the inequality is true for n, that is, H2n ≥ 1 + n/2. Then H2n+1 =

∑2n

j=1 1/j +
∑2n+1

j=2n+1 1/j ≥ H2n +
∑2n+1

j=2n+1 1/2n+1 ≥ 1 + n/2 + 2n · 1/2n+1 = 1 + n/2 + 1/2 = 1 + (n + 1)/2. This
completes the inductive proof.

1.3.16. For the basis step, we have H20 = H1 = 1 ≤ 1 + 0 = 1. For the inductive step, we assume that H2n ≤
1 + n. Then,

H2n+1 = H2n +
2n+1∑

j=2n+1

1
j

< 1 + n + 2n 1
2n

= 1 + (n + 1),

as desired.

1.3.17. For the basis step, we have (2 · 1)! = 2 < 22·1(1!)2 = 4. For the inductive step, we assume that (2n)! <
22n(n!)2. Then [2(n + 1)]! = (2n)!(2n + 1)(2n + 2) < 22n(n!)2(2n + 1)(2n + 2) < 22n(n!)2(2n + 2)2 =
22(n+1)[(n + 1)!]2, as desired.



12 1. THE INTEGERS

1.3.18. We will use the second principle of mathematical induction to prove this. For the basis step, we have
x − y is a factor of x1 − y1. For the inductive step, we assume that x − y is a factor of xn − yn and
xn−1 − yn−1. Then, xn+1 − yn+1 = (xn − yn)(x + y) + xy(xn−1 − yn−1). Since x − y is a factor of both
(xn − yn)(x + y) and xy(xn−1 − yn−1), it is a factor of xn+1 − yn+1.

1.3.19. Let A be such a set. Define B as B = {x− k + 1 | x ∈ A and x ≥ k}. Since x ≥ k,B is a set of positive
integers. Since k ∈ A and k ≥ k, k − k + 1 = 1 is in B. Since n + 1 is in A whenever n is, n + 1 − k + 1
is in B whenever n − k + 1 is. Thus B satisfies the hypothesis for mathematical induction, i.e. B is the
set of positive integers. Mapping B back to A in the natural manner, we find that A contains the set of
integers greater than or equal to k.

1.3.20. The basis step holds since 24 = 16 < 4! = 24. Now assume that 2n < n!. Then 2n+1 = 2 · 2n < 2 · n! <
(n + 1) · n! = (n + 1)!.

1.3.21. For the basis step, we have 42 = 16 < 24 = 4!. For the inductive step, we assume that n2 < n!. Then,
(n + 1)2 = n2 + 2n + 1 < n! + 2n + 1 < n! + 3n < n! + n! = 2n! < (n + 1)n! = (n + 1)!, as desired.

1.3.22. The basis step is clear when n = 0. For the inductive step, we assume that 1 + hn ≤ (1 + h)n. Then,
(1 + h)n+1 = (1 + h)n(1 + h) ≥ (1 + hn)(1 + h) = 1 + nh + h + nh2 ≥ 1 + h(n + 1) since nh2 is positive.
This last inequality proves the induction hypothesis.

1.3.23. We use the second principle of mathematical induction. For the basis step, if the puzzle has only one
piece, then it is assembled with exactly 0 moves. For the induction step, assume that all puzzles with
k ≤ n pieces require k − 1 moves to assemble. Suppose it takes m moves to assemble a puzzle with
n + 1 pieces. Then the m move consists of joining two blocks of size a and b, respectively, with a + b =
n + 1. But by the induction hypothesis, it requires exactly a − 1 and b − 1 moves to assemble each of
these blocks. Thus, m = (a− 1) + (b− 1) + 1 = a + b + 1 = n + 1. This completes the induction.

1.3.24. The n = 2 case does not follow from the n = 1 case, since, when n = 2, the set of horses labelled 1
to n − 1 (which is just the set containing horse 1) does not have any common elements with the set of
horses labelled from 2 to n (which is just the set containing horse 2.)

1.3.25. Suppose that f(n) is defined recursively by specifying the value of f(1) and a rule for finding f(n+1)
from f(n). We will prove by mathematical induction that such a function is well-defined. First, note that
f(1) is well-defined since this value is explicitly stated. Now assume that f(n) is well-defined. Then
f(n + 1) also is well-defined since a rule is given for determining this value from f(n).

1.3.26. The function is f(n) = 2n. For the basis step, we have f(1) = 2 = 21. For the inductive step, we as-
sume that f(n) = 2n. Then, f(n + 1) = 2f(n) = 2 · 2n = 2n+1, as desired.

1.3.27. We have g(1) = 2, g(2) = 2g(1) = 4, g(3) = 2g(2) = 24 = 16, and g(4) = 2g(3) = 216 = 65536.

1.3.28. The basis step is given. For the inductive step, we assume that the value of f at the first n positive
integers are uniquely determined. Then f(n + 1) is uniquely determined from the rule. Therefore, by
mathematical induction, f(n) is determined for every positive integer n.

1.3.29. We use the second principle of mathematical induction. The basis step consists of verifying the for-
mula for n = 1 and n = 2. For n = 1 we have f(1) = 1 = 21 + (−1)1 and for n = 2 we have f(2) =
5 = 22 + (−1)2. Now assume that f(k) = 2k + (−1)k for all positive integers k with k < n where n > 2.
By the induction hypothesis it follows that f(n) = f(n− 1) + 2f(n− 2) = (2n−1 + (−1)n−1) + 2(2n−2 +
(−1)n−2) = (2n−1 + 2n−1) + (−1)n−2(−1 + 2) = 2n + (−1)n. This finishes the proof.

1.3.30. Since 25 = 32 > 25 = 52, the basis step holds. Assume that 2n > n2. Note that for n > 4, 2n2 =
n2 + n2 > n2 + 3n = n2 + 2n + n > n2 + 2n + 1 = (n + 1)2. Then we have (n + 1)2 < 2n2 < 2 · 2n = 2n+1,
which completes the induction.
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1.3.31. We use the second principle of mathematical induction. We see that a0 = 1 ≤ 30 = 1, a1 = 3 ≤ 3i =
3, and a2 = 9 ≤ 32 = 9. These are the basis cases. Now assume that ak ≤ 3k for all integers k with 0 ≤
k < n. It follows that an = an−1 + an−2 + an−3 ≤ 3n−1 + 3n−2 + 3n−3 = 3n−3(1 + 3 + 9) = 13 · 3n−3 <
27 · 3n−3 = 3n. The induction argument is complete.

1.3.32. a. For the basis step notice that for 1 ring only, 1 = 21 − 1 moves are needed. For the inductive step
we assume that it takes 2n − 1 steps to transfer n rings. To make the inductive step, first transfer n
of n + 1 rings to the third peg. This takes 2n − 1 steps. Now transfer the bottom ring to the second
peg. This is one step. Then transfer the n rings on the third peg to the second peg. This is 2n − 1
more steps. Altogether, this takes 2n − 1 + 1 + 2n − 1 = 2n+1 − 1 steps.

b. The world will last, according to this legend, 264 − 1 = 18, 446, 744, 073, 709, 551, 615 seconds =
3.07445 · 1017 minutes = 5.12409 · 1015 hours = 2.13503 · 1014 days = 5.84942 · 1011 years, that is
more than 580 billion years.

1.3.33. Let Pn be the statement for n. Then P2 is true, since we have (a1+a2)/2)2−a1a2 = (a1−a2/2)2 ≥ 0. As-
sume Pn is true. Then by P2, for 2n positive real numbers a1, . . . , a2n we have a1 + · · ·+a2n ≥ 2(

√
a1a2 +√

a3a4 + · · · +√
a2n−1a2n). Apply Pn to this last expression to get a1 + · · · + a2n ≥ 2n(a1a2 · · · a2n)1/2n

which establishes Pn for n = 2k for all k. Again, assume Pn is true. Let g = (a1a2 · · · an−1)1/(n−1). Ap-
plying Pn, we have a1 + a2 + · · · + an−1 + g ≥ n(a1a2 · · · an−1g)1/n = n(gn−1g)1/n = ng. Therefore,
a1 + a2 + · · · + an−1 ≥ (n − 1)g which establishes Pn−1. Thus P2k is true and Pn implies Pn−1. This
establishes Pn for all n.

1.3.34. There are four 2 × 2 chess boards with one square missing. Each can be covered with exactly one
L-shaped piece. This is the basis step. Now assume that any 2n × 2n chess board can be covered with L-
shaped pieces. Consider a 2n+1 × 2n+1 chess board with one square missing. Split this into four 2n × 2n

chess boards three of which contain every square and the fourth has one square missing. By the induc-
tive hypothesis we can cover the fourth 2n × 2n chess board because it is missing one square. Now use
one L-shaped piece to cover the three squares in the other three chess boards that touch at the center of
the larger 2n+1 × 2n+1 chess board. What is left to cover is all the rest of the squares in each of the three
2n× 2n chess boards. The inductive hypothesis says that we can cover all the remaining squares in each
of these chess boards. This completes the proof.

1.3.35. Note that since 0 < p < q we have 0 < p/q < 1. The proposition is trivially true if p = 1. We proceed
by strong induction on p. Let p and q be given and assume the proposition is true for all rational num-
bers between 0 and 1 with numerators less than p. To apply the algorithm, we find the unit fraction 1/s
such that 1/(s − 1) > p/q > 1/s. When we subtract, the remaining fraction is p/q − 1/s = (ps − q)/qs.
On the other hand, if we multiply the first inequality by q(s−1) we have q > p(s−1) which leads to p >
ps − q, which shows that the numerator of p/q is strictly greater than the numerator of the remainder
(ps− q)/qs after one step of the algorithm. By the induction hypothesis, this remainder is expressible as
a sum of unit fractions, 1/u1 + · · ·+ 1/uk. Therefore p/q = 1/s + 1/u1 + · · ·+ 1/uk which completes the
induction step.

1.3.36. a. Since 1/2 < 2/3, we subtract to get 2/3 = 1/2 + 1/6.

b. Since 1/2 < 5/8, we subtract to get 5/8 = 1/2 + 1/8.

c. Since 1/2 < 11/17 we subtract to get 11/17 = 1/2 + 5/34. The largest unit fraction less than 5/34 is
1/7 so we subtract to get 11/17 = 1/2 + 1/7 + 1/238.

d. The largest unit fraction less than 44/101 is 1/3 so we subtract and get 44/101 = 1/3 + 31/303. The
largest unit fraction less than 31/303 is 1/10, so we subtract to get 44/101 = 1/3 + 1/10 + 7/3030.
The largest unit fraction less than 7/3030 is 1/433, so we subtract to get 44/101 = 1/3 + 1/10 +
1/433+1/1311990. (Note that this is the result of the “greedy algorithm.” Other representations are
possible, such as 44/101 = 1/3 + 1/10 + 1/440 + 1/26664.)
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1.4. The Fibonacci Numbers
1.4.1. a. We have f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. Hence f3 = f2 + f1 = 1 + 1 = 2, f4 =

f3 + f2 = 2+1 = 3, f5 = 3+2 = 5, f6 = 5+3 = 8, f7 = 8+5 = 13, f8 = 13+8 = 21, f9 = 21+13 =
34, and f10 = 34 + 21 = 55.

b. We continue beyond part (a) finding that f11 = f10 + f9 = 55 + 34 = 89, f12 = 89 + 55 = 144, and
f13 = 144 + 89 = 233.

c. We continue beyond part (b) finding that f14 = f13 + f12 = 233 + 144 = 377, and f15 = 377 + 233 =
610.

d. We continue beyond part (c) finding that f16 = 610 + 377 = 987, f17 = 987 + 610 = 1597, and f18 =
1597 + 987 = 2584.

e. We continue beyond part (d) finding that f19 = 2584 + 1597 = 4181, f20 = 4181 + 2584 = 6765.

f. We continue beyond part (e) finding that f21 = 6765 + 4181 = 10946, f22 = 10946 + 6765 = 17711,
f23 = 17711 + 10946 = 28657, f24 = 28657 + 17711 = 46368, and f25 = 46368 + 28657 = 75025.

1.4.2. a. We continue from Exercise 1 part (a), finding that f11 = 55 + 34 = 89 and f12 = 89 + 55 = 144.

b. We continue from Exercise 1 part (c), finding that f16 = 610 + 377 = 987.

c. We computed f24 = 46368 in Exercise 1 part (f).

d. We continue from Exercise 1 part (f), finding that f26 = 75025 + 46368 = 121393, f27 = 121393 +
75025 = 196418, f28 = 196418 + 121393 = 317811, f29 = 317811 + 196418 = 514229, and f30 =
514229 + 317811 = 832040.

e. We continue from part (d), finding f31 = 832040+514229 = 1346269, and f32 = 1346269+832040 =
2178309.

f. We continue from part (e), finding f33 = 2178309 + 1346269 = 3524578, f34 = 3524578 + 2178309 =
5702887, f35 = 5702887 + 3524578 = 9227465 and f36 = 9227465 + 5702887 = 14930352.

1.4.3. Note that from the Fibonacci identity, whenever n is a positive integer, fn+2 − fn = fn+1. Then we
have 2fn+2− fn = fn+2 +(fn+2− fn) = fn+2 + fn+1 = fn+3. If we add fn to both sides of this equation,
we have the desired identity.

1.4.4. Assuming n is a positive integer, we have compute 2fn+1 + fn = fn+1 + (fn+1 + fn) = fn+1 + fn+2 =
fn+3. If we subtract fn from both sides of this equation, we have the desired identity.

1.4.5. For n = 1 we have f2·1 = 1 = 12 +2 ·1 ·0 = f2
1 +2f0f1, and for n = 2, we have f2·2 = 3 = 12 +2 ·1 ·1 =

f2
2 +2f1f2. So the basis step holds for strong induction. Assume, then that f2n−4 = f2

n−2+2fn−3fn−2 and
f2n−2 = f2

n−1 +2fn−2fn−1. Now compute f2n = f2n−1 +f2n−2 = 2f2n−2 +f2n−3 = 3f2n−2−f2n−4. Now
we may substitute in our induction hypotheses to set this last expression equal to 3f2

n−1 + 6fn−2fn−1 −
f2

n−2 − 2fn−3fn−2 = 3f2
n−1 + 6(fn − fn−1)fn−1 − (fn − fn−1)2 − 2(fn−1 − fn−2)(fn − fn−1) = −2f2

n−1 +
6fnfn−1 − f2

n + 2fn(fn − fn−1)− 2fn−1(fn − fn−1) = f2
n + 2fn−1fn which completes the induction step.

1.4.6. For n a positive integer greater than 1, we have fn+2 = fn+1 + fn = (fn + fn−1) + fn = (fn + (fn −
fn−2)) + fn = 3fn − fn−2. Adding fn−2 to both sides yields the desired identity.

1.4.7. Note that f1 = 1 = f2, f1 + f3 = 3 = f4, and f1 + f3 + f5 = 8 = f6 so we conjecture that f1 + f3 +
f5 + · · · + f2n−1 = f2n. We prove this by induction. The basis step is checked above. Assume that our
formula is true for n, and consider f1 + f3 + f5 + · · · + f2n−1 + f2n+1 = f2n + f2n+1 = f2n+2, which is
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the induction step. Therefore the formula is correct.

1.4.8. Note that f2 = 1 = f3 − 1, f2 + f4 = 4 = f5 − 1, and f2 + f4 + f6 = 12 = f7 − 1, so we conjecture that
f2 +f4 +f6 + · · ·+f2n = f2n+1−1. We prove this by induction. The basis step is checked above. Assume
that our formula is true for n, and consider f2 +f4 +f6 + · · ·+f2n +f2n+2 = f2n+1−1+f2n+2 = f2n+3−
1, which is the induction step. Therefore the formula is correct. Another solution is to subtract the for-
mula in Exercise 7 from the formula in Example 1.27, as follows:

∑n
i=1 f2i =

∑2n
i=1 fi −

∑n
i=1 f2i−1 =

(f2n+2 − 1)− f2n = f2n+1 − 1.

1.4.9. First suppose n = 2k is even. Then fn− fn−1 + · · ·+ (−1)n+1f1 = (f2k + f2k−1 + · · ·+ f1)− 2(f2k−1 +
f2k−3 + · · ·+ f1) = (f2k+2 − 1)− 2(f2k) by the formulas in Example 1.23 and Exercise 3. This last equals
(f2k+2 − f2k)− f2k − 1 = f2k+1 − f2k − 1 = f2k−1 − 1 = fn−1 − 1. Now suppose n = 2k + 1 is odd. Then
fn−fn−1 + · · ·+(−1)n+1 = f2k+1− (f2k−f2k−1 + · · ·− (−1)n+1f1) = f2k+1− (f2k−1−1) by the formula
just proved for the even case. This last equals (f2k+1 − f2k−1) + 1 = f2k + 1 = fn−1 + 1. We can unite
the formulas for the odd and even cases by writing the formula as fn−1 − (−1)n.

1.4.10. For n = 1 we have f3 = 2 = f2
2 +f2

1 = 12 +12. And when n = 2 we have f5 = 5 = 22 +12 = f2
3 +f2

2 , so
the basis steps hold for mathematical induction. Now assume, for the strong form of induction, that the
identity holds for all values of n up to n = k. Then f2k−3 = f2

k−1 + f2
k−2 and f2k−1 = f2

k + f2
k−1. Now we

calculate f2k+1 = f2k +f2k−1 = f2k−1 +f2k−2 +f2k−1 = 2f2k−1 +(f2k−1−f2k−3) = 3f2k−1−f2k−3. Now
substituting in the induction hypothesis, makes this last expression equal to 3(f2

k +f2
k−1)−f2

k−1−f2
k−2 =

3f2
k + 2f2

k−2 − (fk − fk−1)2 = 2f2
k + f2

k−1 + 2fkfk−1 = 2f2
k + (fk+1 − fk)2 + 2fk(fk+1 − fk) = f2

k+1 + f2
k ,

which completes the induction step.

1.4.11. We can construct an induction proof similar to the ones in Exercises 5 and 10, or we may proceed as
follows. From Exercise 5, we have f2n = f2

n + 2fn−1fn = fn(fn + fn−1 + fn−1) = (fn+1 − fn−1)(fn+1 +
fn−1) = f2

n+1 − f2
n−1, which is the desired identity.

1.4.12. Let Sn = fn +fn−1 +fn−2 +2fn−3 + · · ·+2n−4f2 +2n−3f1. We proceed by induction. If n = 3 we have
S3 = f3+f2+f1 = 2+1+1 = 4 = 23−1, and when n = 4 we have S4 = f4+f3+f2+2f1 = 3+2+1+2·1 =
8 = 24−1, so the basis steps hold. Now assume the identity holds for all values less or equal to n and
consider Sn+1 = fn+1 +fn +fn−1 +2fn−2 +4fn−3 + · · ·+2n−4f3 +2n−3f2 +2n−2f1. We use the Fibonacci
identity to expand every term except the last two to get Sn+1 = (fn + fn−1) + (fn−1 + fn−2) + (fn−2 +
fn−3)+2(fn−3 +fn−4)+4(fn−4 +fn−5)+ · · ·+2n−4(f2 +f1)+2n−3f2 +2n−2f1. Next we regroup, taking
the first term from each set of parentheses, plus the second last term together in one group, the last term
from each set of parentheses together in another group, and leaving the last term by itself to get Sn+1 =
(fn + fn−1 + fn−2 + 2fn−3 + 4fn−4 + · · ·+ 2n−4f2 + 2n−3f2) + (fn−1 + fn−2 + fn−3 + 2fn−4 + 4fn−5 +
· · · + 2n−4f1) + 2n−2f1. The first group is seen to be equal to Sn when we realize that the last f2 = f1.
The second group is equal to Sn−1, so we have Sn+1 = Sn + Sn−1 + 2n−1 = 2n−2 + 2n−2 + 2n−1 = 2n by
the induction hypothesis. Therefore, by mathematical induction, the proposition is proved.

1.4.13. We proceed by mathematical induction. For the basis step,
∑1

j=1 f2
j = f2

1 = f1f2. To make the in-
ductive step we assume that

∑n
j=1 f2

j = fnfn+1. Then
∑n+1

j=1 f2
j =

∑n
j=1 f2

j + f2
n+1 = fnfn+1 + f2

n+1 =
fn+1fn+2.

1.4.14. We use mathematical induction. We will use the recursive definition fn = fn−1 + fn−2, with f0 =
0 and f1 = 1. For n = 1 we have f2f0 − f2

1 = 1 · 0 − 12 = −1 = (−1)1. Hence the basis step holds.
Now assume that fn+1fn−1 − f2

n = (−1)n. Then fn+2fn − f2
n+1 = (fn+1 + fn)fn − fn+1(fn + fn−1) =

f2
n − fn+1fn−1 = −(−1)n = (−1)n+1. This completes the proof.

1.4.15. From Exercise 13, we have fn+1fn − fn−1fn−2 = (f2
1 + · · · + f2

n) − (f2
1 + · · · f2

n−2) = f2
n + f2

n−1. The
identity in Exercise 10 shows that this is equal to f2n−1 when n is a positive integer, and in particular
when n is greater than 2.

1.4.16. Since f1f2 = 1 · 1 = 12 = f2
2 , the basis step holds. By the induction hypothesis we have f1f2 + · · · +

f2n−1f2n +f2nf2n+1 +f2n+1f2(n+1) = f2
2n +f2nf2n+1 +f2n+1f2(n+1) = f2n(f2n +f2n+1)+f2n+1f2(n+1) =
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f2nf2(n+1) + f2n+1f2(n+1) = (f2n + f2n+1)f2(n+1) = f2
2(n+1).

1.4.17. For fixed m, we proceed by induction on n. The basis step is fm+1 = fmf2 +fm−1f1 = fm ·1+fm−1 ·1
which is true. Assume the identity holds for 1, 2, . . . , k. Then fm+k = fmfk+1 + fm−1fk and fm+k−1 =
fmfk + fm−1fk−1. Adding these equations gives us fm+k + fm+k−1 = fm(fk+1 + fk) + fm−1(fk + fk−1).
Applying the recursive definition yields fm+k+1 = fmfk+2 + fm−1fk+1, which is precisely the identity.

1.4.18. We’re given that L1 = 1 and L2 = 3. Adding each consecutive pair to generate the next Lucas number
yields the sequence 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . .

1.4.19. A few trial cases lead us to conjecture that
∑n

i=1 Li = Ln+2 − 3. We prove that this formula is correct
by induction. The basis step is L1 = 1 and L3 − 3 = 4 − 3 = 1, which checks. Assume that the formula
holds for n and compute

∑n+1
i=1 Li =

∑n
i=1 Li + Ln+1 = Ln+2 − 3 + Ln+1 by the induction hypothesis.

This last equals (Ln+2 + Ln+1)− 3 = Ln+3 − 3, which completes the induction step.

1.4.20. A few trial cases lead us to conjecture that
∑n

i=1 L2i−1 = L2n − 2. We prove that this formula is
correct by induction. The basis step is L1 = 1 = L2 − 2. Assume that the formula holds for n and
compute

∑n+1
i=1 L2i−1 =

∑n
i=1 L2i−1 + L2n+1 = L2n − 2 + L2n+1 = L2n+2 − 2, which completes the in-

duction step.

1.4.21. A few trial cases lead us to conjecture that
∑n

i=1 L2i = L2n+1 − 1. We prove that this formula is cor-
rect by induction. The basis step is L2 = 3 = L3 − 1. Assume that the formula holds for n and compute∑n+1

i=1 L2i =
∑n

i=1 L2i + L2n+2 = L2n+1 − 1 + L2n+2 = L2n+3 − 1, which completes the induction step.

1.4.22. We proceed by induction. The basis step is when n = 2, and we have L2
2 − L3L1 = 32 − 4 · 1 =

5 = 5(−1)2. Now assume the identity holds for n. Then for n + 1 we have L2
n+1 − Ln+2Ln = (Ln +

Ln−1)Ln+1−(Ln+1+Ln)Ln = LnLn+1+Ln−1Ln+1−Ln+1Ln−L2
n = −(L2

n−Ln−1Ln+1) = −(5(−1)n) =
5(−1)n+1, where we apply the induction hypothesis at the penultimate step.

1.4.23. We proceed by induction. The basis step is L2
1 = 1 = L1L2−2 = 1·3−2. Assume the formula holds for

n and consider
∑n+1

i=1 L2
i =

∑n
i=1 L2

i + L2
n+1 = LnLn+1 − 2 + L2

n+1 = Ln+1(Ln + Ln+1 − 2 = Ln+1Ln+2−
2, which completes the induction step.

1.4.24. For n = 2, we have L2 = 3 = 1+2 = f1 + f3. For n = 3, we have L3 = 4 = 1+3 = f2 + f4. This serves
as the basis step. Now assume that the statement is true for k = 2, 3, 4, . . . , n. Then Ln+1 = Ln +Ln−1 =
(fn+1 + fn−1) + (fn + fn−2) = (fn+1 + fn) + (fn−1 + fn−2) = fn+2 + fn, which completes the induction.

1.4.25. For the basis step, we check that L1f1 = 1 · 1 = 1 = f2 and L2f2 = 3 · 1 = 3 = f4. Assume the identity
is true for all positive integers up to n. Then we have fn+1Ln+1 = (fn+2 − fn)(fn+2 − fn) from Exercise
16. This equals f2

n+2− f2
n = (fn+1 + fn)2− (fn−1 + fn−2)2 = f2

n+1 + 2fn+1fn + f2
n − f2

n−1− 2fn−1fn−2−
f2

n−2 = (f2
n+1 − f2

n−1) + (f2
n − f2

n−2) + 2(fn+1fn − fn−1fn−2) = (fn+1 − fn−1)(fn+1 + fn−1) + (fn −
fn−2)(fn + fn−2) + 2(f2n−1), where the last parenthetical expression is obtained from Exercise 8. This
equals fnLn + fn−1Ln−1 + 2f2n−1. Applying the induction hypothesis yields f2n + f2n−2 + 2f2n−1 =
(f2n + f2n−1) + (f2n−1 + f2n−2) = f2n+1 + f2n = f2n+2, which completes the induction.

1.4.26. For the basis step, we check that when n = 1, 5f2 = 5 · 1 = 1 + 4 = L1 + L3 and when n = 2, 5f3 =
10 = 3 + 7 = L2 + L4. Now assume the identity holds for integers less than n, and compute 5fn+1 =
5fn + 5fn−1 = (Ln−1 + Ln+1) + (Ln−2 + Ln) = (Ln−1 + Ln−2) + (Ln+1 + Ln) = Ln + Ln+1, which com-
pletes the induction step.

1.4.27. We prove this by induction on n. Fix m a positive integer. If n = 2, then for the basis step we need to
show that Lm+2 = fm+1L2 + fmL1 = 3fm+1 + fm, for which we will use induction on m. For m = 1 we
have L3 = 4 = 3 · f2 + f1 and for m = 2 we have L4 = 7 = 3 · f3 + f2, so the basis step for m holds.
Now assume that the basis step for n holds for all values of m less than and equal to m. Then Lm+3 =
Lm+2 + Lm+1 = 3fm+1 + fm + 3fm + fm−1 = 3fm+2 + fm+1, which completes the induction step on
m and proves the basis step for n. To prove the induction step on n, we compute Lm+n+1 = Lm+n +
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Lm+n−1 = (fm+1Ln + fmLn−1) + (fm+1Ln−1 + fmLn−2) = fm+1(Ln + Ln−1) + fm(Ln−1 + Ln−2) =
fm+1Ln+1 + fmLn, which completes the induction on n and proves the identity.

1.4.28. First check that α2 = α + 1 and β2 = β + 1. We proceed by induction. The basis steps are α + β =
(1 +

√
5)/2 + (1 − √5)/2 = 1 = L1 and α2 + β2 = (1 + α) + (1 + β) = 2 + L1 = 3 = L2. Assume the

identity is true for all positive integers up to n. Then Ln+1 = Ln + Ln−1 = αn + βn + αn−1 + βn−1 =
αn−1(α + 1) + βn−1(β + 1) = αn−1(α2) + βn−1(β2) = αn+1 + βn+1, which completes the induction.

1.4.29. We find that 50 = 34 + 13 + 3 = f9 + f7 + f4, 85 = 55 + 21 + 8 + 1 = f10 + f8 + f6 + f2, 110 = 89 + 21 =
f11 + f8 and 200 = 144 + 55 + 1 = f12 + f10 + f2. In each case, we used the “greedy” algorithm, always
subtracting the largest possible Fibonacci number from the remainder.

1.4.30. Suppose there is a positive integer that has no Zeckendorf representation. Then by the well-ordering
property, there is a smallest such integer, n. Let fk be the largest Fibonacci number less than or equal to
n. Note that if n = fk, then n has a Zeckendorf representation, contrary to our assumption. Then n− fk

is a positive integer less than n, so it has a Zeckendorf representation n− fk =
∑m

i=1 fai . Since n has no
Zeckendorf representation, it must be that one of the fai

’s is equal to or consecutive to fk. That is, one
of fk−1, fk, or fk+1 appears in the summation for n − fk. Then n =

∑m
i=1 fai + fk ≥ fk−1 + fk = fk+1.

But this contradicts the choice of fk as the largest Fibonacci number less than n. This establishes exis-
tence. To establish uniqueness of the Zeckendorf representation, suppose that there is a positive integer
that has two distinct representations. Then the well-ordering property gives us a smallest such integer,
n. Suppose n =

∑m
i=1 fai =

∑l
j=1 fbl

are two distinct representations for n. Then no fai = fbj , else
we could cancel this term from each side and have a smaller integer with two distinct representations.
Without loss of generality, assume that fa1 > fa2 > · · · > fam and fb1 > fb2 > · · · > fbl

and that fa1 >

fb1 . If b1 is even, we compute n =
∑l

i=1 fbi ≤ fb1 + fb1−2 + fb1−4 + · · · + f2 = fb1+1 − 1 by Exercise 4.
But this last is less than or equal to fa1 − 1 < n, a contradiction. If b1 is odd, we compute, now using
Exercise 3, n =

∑l
i=1 fbi ≤ fb1 + fb1−2 + fb1−4 + · · · + f3 = fb1+1 − f1 ≤ fa1 − 1 < n, which is also a

contradiction. This proves uniqueness.

1.4.31. We proceed by mathematical induction. The basis steps (n = 2 and 3) are easily seen to hold. For the
inductive step, we assume that fn ≤ αn−1 and fn−1 ≤ αn−2. Now, fn+1 = fn + fn−1 ≤ αn−1 + αn−2 =
αn, since α satisfies αn = αn−1 + αn−2.

1.4.32. We proceed by the second principle of mathematical induction on n. For the basis step, we observe
that

(
0
0

)
= f0+1 = 1. For the inductive step, we assume that

(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+ · · · = fn+1, and that(

n−1
0

)
+

(
n−2

1

)
+

(
n−3

2

)
+ · · · = fn. Now,

(
n+1

0

)
+

(
n
1

)
+

(
n−1

2

)
+ · · · =

(
n
0

)
+ [

(
n−1

1

)
+

(
n−1

0

)
] + [

(
n−2

2

)
+(

n−2
1

)
] + · · · = (

n
0

)
+

(
n−1

1

)(
n−2

2

)
+ · · ·+ (

n−1
0

)
+

(
n−2

1

)
+ · · · = fn+1 + fn = fn+2.

1.4.33. Using Theorem 1.3 and the notation therein, we have α2 = α + 1 and β2 = β + 1, since they are
roots of x2 − x − 1 = 0. Then we have f2n = (α2n − β2n)/

√
5 = (1/

√
5)((α + 1)n − (β + 1)n) =

(1/
√

5)
(∑n

j=0

(
n
j

)
αj − ∑n

j=0

(
n
j

)
βj

)
= (1/

√
5)

∑n
j=0

(
n
j

)
(αj − βj) =

∑n
j=1

(
n
j

)
fj since the first term is

zero in the penultimate sum.

1.4.34. We prove this using mathematical induction. For n = 1 we have

F1 =
(

1 1
1 0

)
=

(
f2 f1

f1 f0

)

where f0 = 0. Now assume that this formula is true for n. Then

Fn+1 = FnF =
(

fn+1 fn

fn fn−1

)(
1 1
1 0

)
=

(
fn+1 + fn fn+1

fn + fn−1 fn

)
=

(
fn+2 fn+1

fn+1 fn

)
.

1.4.35. On one hand, det(Fn) = det(F)n = (−1)n. On the other hand,

det
(

fn+1 fn

fn fn−1

)
= fn+1fn−1 − f2

n.
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1.4.36. We proceed by induction. Clearly the basis step holds. For the inductive step, we assume that gn =
afn−2 + bfn−1. Then, gn+1 = gn + gn−1 = afn−2 + bfn−1 + afn−3 + bfn−2 = afn−1 + bfn.

1.4.37. We use the relationship fn = fn+2 − fn+1 to extend the definition to include negative indices. Thus,
f0 = 0, f−1 = 1, f−2 = −1, f−3 = 2, f−4 = −3, f−5 = 5, f−6 = −8, f−7 = 13, f−8 = −21, f−9 = 34, f−10 =
−55.

1.4.38. We conjecture that f−n = (−1)n+1fn. The basis step is given in Exercise 55. Assume the conjecture is
true for n. Then f−(n+1) = f−(n−1)−f−n = (−1)nfn−1− (−1)n+1fn = (−1)n(fn−1 +fn) = (−1)n+2fn+1,
which completes the induction step.

1.4.39. The square has area 64 square units, while the rectangle has area 65 square units. This corresponds to
the identity in Exercise 7, which tells us that f7f5 − f2

6 = 1. Notice that the slope of the hypotenuse of
the triangular piece is 3/8, while the slope of the top of the trapezoidal piece is 2/5. We have 2/5−3/8 =
1/40. Thus, the “diagonal” of the rectangle is really a very skinny parallelogram of area 1, hidden visu-
ally by the fact that the two slopes are nearly equal.

1.4.40. First check that α2 = α + 1 and β2 = β + 1 as in the solution to Exercise 18. We compute a1 =
(1/
√

5)(α − β) = (1/
√

5)
(
(1 +

√
5/2− (1−√5/2

)
= (1/

√
5)

(
2
√

5/2
)

= 1 and a2 = (1/
√

5)(α2 − β2) =
(1/
√

5)(α+1−β−1) = (1/
√

5)(α−β) = 1. Finally, we check that an−1 +an−2 = (1/
√

5)(αn−1−βn−1)+
(1/
√

5)(αn−2 − βn−2) = (1/
√

5)(αn−1 + αn−2 − βn−1 − βn−2) = (1/
√

5)(αn−2(α + 1)− βn−2(β + 1)) =
(1/
√

5)(αn−2α2 − βn−2β2) = (1/
√

5)(αn − βn) = an. Since these an satisfy the defining relationships of
the Fibonacci numbers, we can conclude that an = fn for n = 1, 2, . . . .

1.4.41. We solve the equation r2 − r − 1 = 0 to discover the roots r1 = (1 +
√

5)/2 and r2 = (1 − √
5)/2.

Then according to the theory in the paragraph above, fn = C1r
n
1 + C2r

n
2 . For n = 0 we have 0 =

C1r
0
1 + C2r

0
2 = C1 + C2. For n = 1 we have 1 = C1r1 + C2r2 = C1(1 +

√
5)/2 + C2(1 −

√
5)/2. Solving

these two equations simultaneously yields C1 = 1/
√

5 and C2 = −1/
√

5. So the explicit formula is fn =
(1/
√

5)rn
1 − (1/

√
5)rn

2 = (rn
1 − rn

2 )/
√

5.

1.4.42. First note that G(x) − xG(x) − x2G(x) =
∑∞

k=0 fkxk −∑∞
k=0 fkxk+1 −∑∞

k=0 fkxk+2 =
∑∞

k=0 fkxk −∑∞
k=1 fk−1x

k−∑∞
k=2 fk−2x

k = f0x
0 + f1x− f0x+

∑∞
k=2(fk− fk−1− fk−2)xk = 0+ x− 0+

∑∞
k=2 0xk =

x. Solving this for G(x) yields G(x) = x/(1 − x − x2). Let α and β be defined as in Exercise 30.
Then the denominator of G(x) factors as −(x + β)(x + α). Expand G(x) into partial fractions to get
G(x) = (1/

√
5) (β/(x + β)− α/(x + α)) . Since 1/α = −β we can write the above as G(x) = (1/

√
5)

(1/(1− xα)− 1/(1− xβ)) . But these last two fractions represent the sums of geometric series, so we
have G(x) = (1/

√
5)

(
(1 + αx + (αx)2 + · · · )− (1 + βx + (βx)2 + · · · )) = (1/

√
5)(0 + (α − β)x + (α2 −

β2)x2 + · · · ). Thus the coefficient on the nth power of x is given by (1/
√

5)(αn − βn) = fn, for all n ≥ 0.

1.4.43. We seek to solve the recurrence relation Ln = Ln−1 +Ln−1 subject to the initial conditions L1 = 1 and
L2 = 3. We solve the equation r2 − r − 1 = 0 to discover the roots α = (1 +

√
5)/2 and β = (1−√5)/2.

Then according to the theory in the paragraph above Exercise 31, Ln = C1α
n +C2β

n. For n = 1 we have
L1 = 1 = C1α + C2β. For n = 2 we have 3 = C1α

2 + C2β
2. Solving these two equations simultaneously

yields C1 = 1 and C2 = 1. So the explicit formula is Ln = αn + βn.

1.4.44. Let H(x) =
∑∞

k=0 Lkxk be the generating function for the Lucas numbers. Note that we define L0 = 2
so that L0+L1 = 3 = L2. Consider H(x)−xH(x)−x2H(x) =

∑∞
k=0 Lkxk−∑∞

k=0 Lkxk+1−∑∞
k=0 Lkxk+2

=
∑∞

k=0 Lkxk −∑∞
k=1 Lk−1x

k −∑∞
k=2 Lk−2x

k = L0x
0 + L1x−L0x +

∑∞
k=2(Lk −Lk−1−Lk−2)xk = 2 +

x−2x+
∑∞

k=2 0xk = 2−x. We solve for H(x) and find its partial fraction expansion H(x) = (2−x)/(1−
x − x2) = (1/(2

√
5))

(
(5 +

√
5)/(x + α)− (5−√5)/(x + β)

)
, where α and β are defined as in Exercise

30. We multiply the top and bottom of the first fraction by β and use the fact that αβ = 1, and similarly
treat the second fraction to get the above equal to 1/(1− αx) + 1/(1− βx). But these are the representa-
tions for the sums of geometric series, so we have H(x) = (1+αx+(αx)2+ · · · )+(1+βx+(βx)2+ · · · ) =
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2 + (α + β)x + (α2 + β2)x2 + · · · . Therefore, Ln = αn + βn the coefficient on the nth power of x.

1.4.45. First check that α2 = α + 1 and β2 = β + 1. We proceed by induction. The basis steps are (1/
√

5)(α−
β) = (1/

√
5)(
√

5) = 1 = f1 and (1/
√

5)(α2 − β2) = (1/
√

5)((1 + α) − (1 + β)) = (1/
√

5)(α − β) = 1 =
f2. Assume the identity is true for all positive integers up to n. Then fn+1 = fn + fn−1 = (1/

√
5)(αn −

βn) + (1/
√

5)(αn−1 − βn−1) = (1/
√

5)(αn−1(α + 1) − βn−1(β + 1)) = (1/
√

5)(αn−1(α2) − βn−1(β2)) =
(1/
√

5)(αn+1 − βn+1), which completes the induction.

1.5. Divisibility
1.5.1. We find that 3 | 99 since 99 = 3 · 33, 5 | 145 since 145 = 5 · 29, 7 | 343 since 343 = 7 · 49, and 888 | 0

since 0 = 888 · 0.

1.5.2. We see that 1001 is divisible by 7, 11, and 13.

1.5.3. a. Yes, 0 = 7 · 0.

b. Yes, 707 = 7 · 101.

c. By the division algorithm, we have 1717 = 245 · 7 + 2. Since the remainder is nonzero, we know
that 7 - 1717.

d. By the division algorithm, we have 123321 = 17617 ·7+2. Since the remainder is nonzero, we know
that 7 - 123321.

e. By the division algorithm, we have −285714 = −40817 · 7 + 5. Since the remainder is nonzero, we
know that 7 - −285714.

f. By the division algorithm, we have −430597 = −61514 · 7 + 1. Since the remainder is nonzero, we
know that 7 - −430597.

1.5.4. a. Yes, 0 = 22 · 0.

b. By the division algorithm, we have 444 = 20 · 22 + 4. Since the remainder is nonzero, we know that
22 - 444.

c. Yes, 1716 = 22 · 78.

d. Yes, 192544 = 22 · 8752.

e. Yes, −32516 = 22 · −1478.

f. By the division algorithm, we have −195518 = −8888 · 22 + 18. Since the remainder is nonzero, we
know that 22 - −195518.

1.5.5. a. We have 100 = 5 · 17 + 15, so the quotient is 5 and the remainder is 15.

b. We have 289 = 17 · 17, so the quotient is 17 and the remainder is 0.

c. We have −44 = −3 · 17 + 7, so the quotient is −3 and the remainder is 7.

d. We have −100 = −6 · 17 + 2, so the quotient is −6 and the remainder is 2.

1.5.6. Suppose that a | b and b | a. Then there are integers k and l such that b = ka and a = lb. This implies
that b = klb, so that kl = 1. Hence either k = l = 1 or k = l = −1. It follows that either a = b or a = −b.
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1.5.7. By hypothesis we know b = ra and d = sc, for some r and s. Thus bd = rs(ac) and ac | bd.

1.5.8. We have 6 | 2 · 3, but 6 divides neither 2 nor 3.

1.5.9. If a | b, then b = na and bc = n(ca), i.e. ac | bc. Now, suppose ac | bc. Thus bc = nac and, as c 6= 0, b =
na, i.e., a | b.

1.5.10. Suppose a | b. Then b = na, and b − a = na − a = (n − 1)a. Since a and b are positive (n − 1)a is
positive and a ≤ b.

1.5.11. By definition, a | b if and only if b = na for some integer n. Then raising both sides of this equation to
the kth power yields bk = nkak whence ak | bk.

1.5.12. Suppose that x and y are even. Then x = 2k and y = 2l where k and l are integers. Hence x + y =
2k +2l = 2(k + l) so that x+y is also even. Suppose that x and y are odd. Then x = 2k +1 and y = 2l+1
where k and l are integers. Hence x + y = (2k + 1) + (2l + 1) = 2k + 2l + 2 = 2(k + l + 1), so that x + y is
even. Suppose that x is even and y is odd. Then x = 2k and y = 2l +1 where k and l are integers. Hence
x + y = 2k + (2l + 1) = 2(k + l) + 1. It follows x + y is odd.

1.5.13. Let a and b be odd, and c even. Then ab = (2x + 1)(2y + 1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1,
so ab is odd. On the other hand, for any integer n, we have cn = (2z)n = 2(zn) which is even.

1.5.14. By the division algorithm, there exist integers s, t such that a = bs + t, 0 < t < b since b - a. If t is odd,
then we are done. If t is even, then b− t is odd, |t− b| < b, and a = b(s + 1) + (t− b).

1.5.15. By the division algorithm, a = bq + r, with 0 ≤ r < b. Thus −a = −bq − r = −(q + 1)b + b− r. If 0 ≤
b− r < b then we are done. Otherwise b− r = b, or r = 0 and −a = −qb + 0.

1.5.16. We have a = qb + r = (tc + s)b + r = tcb + bs + r.

1.5.17. a. The division algorithm covers the case when b is positive. If b is negative, then we may apply the
division algorithm to a and |b| to get a quotient q and remainder r such that a = q|b| + r and 0 ≤
r < |b|. But since b is negative, we have a = q(−b) + r = (−q)b + r, as desired.

b. We have 17 = −7(−2) + 3. Here r = 3.

1.5.18. This is called the least remainder algorithm. Suppose that a and b are positive integers. By the divi-
sion algorithm there are integers s and t with a = bs + t and 0 ≤ t < b. If 0 ≤ t ≤ b

2 set r = t, e = 1, and
q = s, so that a = bq + er with 0 ≤ r ≤ b

2 . If b
2 < t < b set r = b− t, e = −1, and q = s+1 so that bq + er =

b(s + 1) + (t − b) = bs + t = a and 0 < r = t − b < b
2 . Hence there are integers q, e and r such that a =

bq + er where e = ±1 and 0 ≤ r ≤ b
2 .

1.5.19. By the division algorithm, let m = qn + r, with 0 ≤ r < n − 1 and q = [m/n]. Then [(m + 1)/n] =
[(qn + r + 1)/n] = [q + (r + 1)/n] = q + [(r + 1)/n] as in Example 1.31. If r = 0, 1, 2, . . . , n − 2, then
m 6= kn − 1 for any integer k and 1/n ≤ (r + 1)/n < 1 and so [(r + 1)/n] = 0. In this case, we have
[(m + 1)/n] = q + 0 = [m/n]. On the other hand, if r = n − 1, then m = qn + n − 1 = n(q + 1) − 1 =
nk − 1, and [(r + 1)/n] = 1. In this case, we have [(m + 1)/n] = q + 1 = [m/n] + 1.

1.5.20. Suppose n = 2k. Then n − 2[n/2] = 2k − 2[2k/2] = 0. On the other hand, suppose n − 2[n/2] = 0.
Then n/2 = [n/2] and n/2 is an integer. In other words, n is even.

1.5.21. The positive integers divisible by the positive integer d are those integers of the form kd where k is a
positive integer. The number of these that are less than x is the number of positive integers k with kd ≤
x, or equivalently with k ≤ x/d . There are [x/d] such integers.
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1.5.22. There are [1000/5] = 200 positive integers not exceeding 1000 that are divisible by 5, [1000/25] =
40 such integers that are divisible by 25, [1000/125] = 8 such integers that are divisible by 125, and
[1000/625] = 1 such integer that is divisible by 625.

1.5.23. There are [1000/7] − [100/7] = 142 − 14 = 128 integers between 100 and 1000 that are divisible by 7.
There are [1000/49]− [100/49] = 20− 2 = 18 integers between 100 and 1000 that are divisible by 49.

1.5.24. The number of integers not exceeding 1000 that are not divisible by either 3 or 5 equals 1000 −
([1000/3] + [1000/5]) + [1000/15] = 533.

1.5.25. Using the Principle of Inclusion-Exclusion, the answer is 1000 − ([1000/3] + [1000/5] + [1000/7]) +
([1000/15] + [1000/21] + [1000/35])− ([1000/105) = 1000− (333 + 200 + 142) + (66 + 47 + 28)− 9 = 462.

1.5.26. For an integer to be divisible by 3, but not by 4, an integer must be divisible by 3, but not by 12. There
are [1000/3] = 333 positive integers not exceeding 1000 that are divisible by 3. Of these [1000/12] = 82
are divisible by 12 (since anything that is divisible by 12 is automatically divisible by 3). Hence there are
333− 83 = 250 possible integers not exceeding 1000 that are divisible by 3, but not by 4.

1.5.27. Let w be the weight of a letter in ounces. Note that the function −[−x] rounds x up to the least integer
less than or equal to x. (That is, it’s the equivalent of the ceiling function.) The cost of mailing a letter
weighing w ounces is, then, 33 cents plus 22 cents for each ounce or part thereof more than 1, so we need
to round w − 1 up to the next integer. So the cost is c(w) = 33− [1− w]23 cents. Suppose that 33− [1−
w]22 = 145. then −[1 − w]22 = 145 − 33 = 112 which is not a multiple of 22, so no letter can cost $1.45.
Suppose that 33− [1−w]22 = 231. then−[1−w]22 = 231−33 = 198 = 9 ·22. Then [1−w] = −9, so−9 ≤
1−w < −8, or 9 < w ≤ 10. So a letter weight at least 9 ounces but less than 10 ounces would cost $2.31.

1.5.28. Note that a3 − a = a(a2 − 1) = (a − 1)a(a + 1). By the division algorithm a = 3k, a = 3k + 1, or a =
3k + 2, where k is an integer. If a = 3k, 3 divides a, if a = 3k + 1 then a− 1 = 3k, so that 3 divides a− 1,
and if a = 3k+2, then a+1 = 3k+3 = 3(k+1), so that 3 divides a+1. Hence 3 divides (a−1)a(a+1) =
a3 − a for every nonnegative integer a. (Note: This can also be proved using mathematical induction.)

1.5.29. Multiplying two integers of this form gives us (4n + 1)(4m + 1) = 16mn + 4m + 4n + 1 = 4(4mn +
m + n) + 1. Similarly, (4n + 3)(4m + 3) = 16mn + 12m + 12n + 9 = 4(4mn + 3m + 3n + 2) + 1.

1.5.30. Suppose that n is odd. Then n = 2t + 1 where t is an integer. It follows that n2 = (2t + 1)2 = 4t2 +
4t + 1 = 4t(t + 1) + 1. Now if t is even, then t = 2u where u is an integer. Hence n2 = 8u(2u + 1) + 1 =
8k + 1, where k = u(2u + 1) is an integer. If t is odd, then t = 2u + 1 where u is an integer. Hence n2 =
(8u + 4)(2u + 2) + 1 = 8(2u + 1)(u + 1) + 1 = 8k + 1, where k = (2u + 1)(u + 1).

1.5.31. Every odd integer may be written in the form 4k + 1 or 4k + 3. Observe that (4k + 1)4 = 162k4 +
4(4k)3 + 6(4k)2 + 4(4k) + 1 = 16(16k4 + 16k3 + 6k2 + k) + 1. Proceeding further, (4k + 3)4 = (4k)4 +
12(4k)3 + 54(4k)2 + 108(4k) + 34 = 16(16k4 + 48k3 + 54k2 + 27k + 5) + 1.

1.5.32. The product of the integers 6k + 5 and 6l + 5 is (6k + 5)(6l + 5) = 36kl + 30(k + l) + 25 = 6[6kl + 5(k +
l) + 4] + 1 = 6N + 1 where N = 6kl + 5(k + l) + 4. Hence this product is of the form 6N + 1.

1.5.33. Of any consecutive three integers, one is a multiple of three. Also, at least one is even. Therefore, the
product is a multiple of 2 · 3 = 6.

1.5.34. The basis step is completed by noting that 15−1 = 0 is divisible by 5. For the inductive hypothesis, as-
sume that n5−n is divisible by 5. This implies that there is an integer k such that n5−n = 5k. It follows
that (n+1)5− (n+1) = (n5 +5n4 +10n3 +10n2 +5n+1)− (n+1) = (n5−n)+5(n4 +2n3 +2n2 +n) =
5k + 5l = 5(k + l). Hence (n + 1)5 − (n + 1) is also divisible by 5.

1.5.35. For the basis step note that 03 + 13 + 23 = 9 is a multiple of 9. Suppose that n3 + (n + 1)3 + (n + 2)3 =
9k for some integer k. Then (n + 1)3 + (n + 2)3 + (n + 3)3 = n3 + (n + 1)3 + (n + 2)3 + (n + 3)3 − n3 =
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9k + n3 + 9n2 + 27n + 27− n3 = 9k + 9n2 + 27n + 27 = 9(k + n2 + 3n + 3) which is a multiple of 9.

1.5.36. We prove this by mathematical induction. We will prove that f3n−2 is odd, f3n−1 is odd, and f3n is
even whenever n is a positive integer. For n = 1 we see that f3·1−2 = f1 = 1 is odd, f3·1−1 = f2 = 1
is odd, and f3·1 = f3 = 2 is even. Now assume that f3n−2 is odd, f3n−1 is odd, and f3n is even where
n is a positive integer. Then f3(n+1)−2 = f3n+1 = f3n + f3n−1 is odd since f3n is even and f3n−1 is
odd, f3(n+1)−1 = f3n+2 = f3n+1 + f3n is odd since f3n+1 is odd and f3n is even, and f3(n+1) = f3n+3 =
f3n+2 + f3n+1 is even since f3n+2 and f3n+1 are odd. This completes the proof.

1.5.37. We proceed by mathematical induction. The basis step is clear. Assume that only f4n’s are divisible
by 3 for fi, i ≤ 4k. Then, as f4k+1 = f4k + f4k−1, 3 | f4k and 3 | f4k+1 gives us the contradiction 3 | f4k−1.
Thus 3 - f4k+1. Continuing on, if 3 | f4k and 3 | f4k+2, then 3 | f4k+1, which contradicts the statement
just proved. If 3 | f4k and 3 | f4k+3, then since f4k+3 = 2f4k+1 + f4k, we again have a contradiction. But,
as f4k+4 = 3f4k+1 + 2f4k, and 3 | f4k and 3 | 3 · f4k+1, we see that 3 | f4k+4.

1.5.38. We proceed by induction. The basis step is clear. Suppose fn is divisible by 4. By Exercise 34,
fn+1, fn+2, fn+4, fn+5 are all odd. Suppose fn+3 is divisible by 4. Now, fn+3 = 2fn+1 + fn. Since fn and
fn+3 are divisible by 4, so must by 2fn+1. This is a contradiction. On the other hand, fn+6 = 8fn+1 + fn.
Since both terms are multiples of 4, so is fn+6.

1.5.39. First note that for n > 5, 5fn−4 +3fn−5 = 2fn−4 +3(fn−4 +fn−5) = 2fn−4 +3fn−3 = 2(fn−4 +fn−3)+
fn−3 = 2fn−2 + fn−3 = fn−2 + fn−2 + fn−3 = fn−2 + fn−1 = fn, which proves the first identity. Now
note that f5 = 5 is divisible by 5. Suppose that f5n is divisible by 5. From the identity above f5n+5 =
5f5n+5−4 + 3f5n+5−5 = 5f5n+1 + 3f5n, which is divisible by 5 since 5f5n+1 is a multiple of 5 and, by the
induction hypothesis, so is f5n. This completes the induction.

1.5.40. We use mathematical induction on the integer m. For m = 1 we have fn+1 = fn−1f1+fnf2 = fn−1+fn

which is true from the definition of the Fibonacci numbers. For m = 2 we have fn+2 = fn−1f2 + fnf3 =
fn−1 +2fn = fn−1 +fn +fn = fn+1 +fn which is true from the definition of the Fibonacci numbers. This
finishes the basis step of the proof. Now assume that fn+m = fmfn+1 + fm−1fn holds for all integers m
with m < k. We will show that it must also hold for m = k. We have fn+k−2 = fk−2fn+1 + fk−3fn and
fn+k−1 = fk−1fn+1 +fk−2fn. Adding these two equations gives fn+k−2−fn+k−1 = fn+1(fk−2 +fk−1)+
fn(fk−3 + fk−2). Hence fn+k = fn+1fk + fnfk−1. Hence the identity is also true for m = k. We now
show that fm | fn if m | n. Since m | n we have n = km. We prove this using mathematical induction
on k. For k = 1 we have n = m so fm | fn since fm = fn. Now assume fmk is divisible by fm. Note that
fm(k+1) = fmk+m = fmk−1fm + fmkfm+1. The first product is divisible by fm since fm is a factor in this
term and the second product is divisible by fm by the inductive hypothesis. Hence fm | fm(k+1). This
finishes the inductive proof.

1.5.41. Iterating the transformation T starting with 39 we find that T (39) = 59; T (59) = 89; T (89) = 134;
T (134) = 67; T (67) = 101; T (101) = 152; T (152) = 76; T (76) = 38; T (38) = 19; T (19) = 29; T (29) = 44;
T (44) = 22; T (22) = 11; T (11) = 17; T (17) = 26; T (26) = 13; T (13) = 20; T (20) = 10; T (10) = 5; T (5) =
8; T (8) = 4; T (4) = 2; T (2) = 1.

1.5.42. If 3n is odd, then so is n. So, T (n) = (3n + 1)/2 = 22k/2 = 22k−1. Because T (n) is a power of 2, the
exponent will decrease down to one with repeated applications of T .

1.5.43. We prove this using the second principle of mathematical induction. Since T (2) = 1, the Collatz con-
jecture is true for n = 2. Now assume that the conjecture holds for all integers less that n. By assumption
there is an integer k such that k iterations of the transformation T , starting at n, produces an integer m
less than n. By the inductive hypothesis there is an integer l such that iterating T l times starting at m
produces the integer 1. Hence iterating T k + l times starting with n leads to 1. This finishes the proof.

1.5.44. Suppose n = 2k for some k. Then T (n) = k < 2k = n. Suppose that n = 4k + 1 for some k.
Then T (T (n)) = T (6k + 2) = 3k + 1 < 4k + 1 = n. Now suppose that n = 8k + 3, where k is an
even number. T (T (T (T (n)))) = 9k/2 + 1 < 8k + 3 = n. This leaves 17 numbers to be considered,



1.5. DIVISIBILITY 23

7, 11, 15, 23, 27, 31, 39, 43, 47, 55, 59, 63, 71, 75, 79, 87, 91, 95. These can be methodically tested. The worst
of them is 27, which requires over 70 applications of T to reach 1.

1.5.45. We first show that (2 +
√

3)n + (2 − √
3)n is an even integer. By the binomial theorem it follows

that (2 +
√

3)n + (2 − √
3)n =

∑n
j=0

(
n
j

)
2j
√

3
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3 · 2n−2+(

n
4

)
32 · 2n−4 + · · · ) = 2l where l is an integer. Next, note that (2 −√3)n < 1. We see that [(2 +

√
3)2] =

(2 +
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3)n + (2−√3)n − 1. It follows that [(2 +
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CHAPTER 2

Integer Representations and Operations

2.1. Representations of Integers
2.1.1. We have 1999 = 7 ·285+4, 285 = 7 ·40+5, and 40 = 7 ·5+5, and 5 = 7 ·0+5. The sequence of remain-

ders gives the base 7 digits. Hence (1999)10 = (5554)7. We have (6105)7 = 6·73+1·72+0·7+5 = (2112)10.

2.1.2. We have 89156 = 8 · 11144 + 4, 11144 = 8 · 1393 + 0, 1393 = 8 · 174 + 1, 174 = 8 · 21 + 6, 21 = 8 · 2 + 5,
and 2 = 8 · 0 + 2. The sequence of remainders gives us (89156)10 = (256104)8. We have (706113)8 =
7 · 85 + 6 · 83 + 82 + 8 + 3 = (232523)10.

2.1.3. We have (10101111)2 = (175)10, and (999)10 = (1111100111)2.

2.1.4. We have (101001000)2 = 23 + 26 + 28 = (328)10.

2.1.5. We group together blocks of four binary digits starting from the right. We have (0101)2 = (5)16,
(1111)2 = (F )16, (1000)2 = (8)16. Hence (100011110101)2 = (8F5)16. Likewise, (1110)2 = (E)16,
(0100)2 = (4)16, and (0111)2 = (7)16. Therefore, (11101001110)2 = (74E)16.

2.1.6. Each hexadecimal digit corresponds to a block of four binary digits. Translating each hexadecimal
digit into the corresponding block of four binary digits gives (ABCDEF )16 =
(101010111100110111101111)2, (DEFACED)16 = (1101111011111010110011101101)2, and (9A0B)16 =
(1001101000001011)2.

2.1.7. This is because we are using the blocks of three digits as one “digit,” which has 1000 possible values.

2.1.8. The proof of Theorem 1.10 goes through exactly, with the inequality 0 ≤ ai ≤ b − 1 replaced by 0 ≤
ai <| b | at each step.

2.1.9. We find that (101001)−2 = 1(−2)5 + 0(−2)4 + 1 · (−2)3 + 0(−2)2 + 0(−2)1 + 1(−2)0 = −39 and
(12012)−3 = 1(−3)4 + 2(−3)3 + 0(−3)2 + 1(−3)1 + 2(−3)0 = 26.

2.1.10. −7 = (−2) · 4 + 1, 4 = (−2) · (−2) + 0,−2 = (−2) · 1 + 0, 1 = (−2) · 0 + 1, so (−7)10 = (1001)−2. −17 =
(−2) · 9 + 1, 9 = (−2) · −4 + 1,−4 = (−2) · 2 + 0, 2 = (−2) · −1 + 0,−1 = (−2) · 1 + 1, 1 = (−2) · 0 + 1, so
(−17)10 = (110011)−2. 61 = (−2) · −30 + 1,−30 = (−2) · 15 + 0, 15 = (−2) · −7 + 1− 7 = (−2) · 4 + 1, 4 =
(−2) · 2 + 0, 2 = (−2) · 1 + 1, 1 = (−2) · 0 + 1, so (61)10 = (1001101)−2.

2.1.11. If m is any integer weight less than 2k, then by Theorem 1.10, m has a base two expansion m =
ak−12k−1+ak−22k−2+· · ·+a121+a020, where each ai is 0 or 1. The 2i weight is used if and only if ai = 1.

2.1.12. To show existence, mimic the proof of Theorem 2.1 using Exercise 18 of Section 1.5. To show unique-
ness, assume that a given number has two representations and look at the difference of these represen-
tations. Observe that a number is equal to 0 if and only if ej is 0 for all j. The result follows.

2.1.13. Let w be the weight to be measured. By Exercise 10, w has a unique balanced ternary expansion. Place
the object in pan 1. If ei = 1 then place a weight of 3i into pan 2. If ei = −1 then place a weight of 3i in
pan 1. If ei = 0 then do not use the weight of 3i. Now the pans will be balanced.

25
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2.1.14. Each base 9 digit corresponds to two base 3 digits and vice versa. The correspondence is (0)9 =
(00)3, (1)9 = (01)3, (2)9 = (02)3, (3)9 = (10)3, (4)9 = (11)3, (5)9 = (12)3, (6)9 = (20)3, (7)9 = (21)3, (8)9 =
(22)3. To convert a base 9 expansion to a base 3 expansion we simply replace each base 9 digit with the
corresponding two base 3 digits. To convert a base 3 expansion to a base 9 expansion, we start at the
right of the expansion and replace blocks of two base 3 digits to the corresponding base 9 digit, putting
an initial 0 in the last block from the left if it consists only of 1 digit.

2.1.15. To convert a number from base r to base rn, take the number in blocks of size n. To go the other way,
convert each digit of a base rn number to base r, and concatenate the results.

2.1.16. If n = (akak−1 . . . a1a0)b, then n = akbk + ak−1b
k−1 + · · · + a1 + a0. Now it follows directly that n =

(akbk−j + ak−1b
k−j−1 + · · ·+ aj)bj + aj−1b

j−1 + · · ·+ a0.

2.1.17. Multiplying n by bm gives bmn = bm(akbk + ak−1b
k−1 + · · · + a1b + a0) = (akbk+m + ak−1b

k+m−1 +
· · · + a1b

m+1 + a0b
m + 0 · bm−1 + · · · + 0) = (akak−1 . . . a1a000 . . . 00)b, where we have placed m zeroes

at the end of the base b expansion of n.

2.1.18. a. 22 = (10110)2, and since 22 > 0, the one’s complement representation is 22 is 010110.

b. 31 = (11111)2, and since 31 > 0, the one’s complement representation of 31 is 011111.

c. 7 = (00111)2, and since −7 < 0, the one’s complement of −7 is a 1 followed by the complement of
the binary representation of 7, to wit, 111000.

d. 19 = (10011)2, and since −19 < 0, the one’s complement of −19 is a 1 followed by the complement
of the binary representation of 19, to wit, 101100.

2.1.19. a. The lead digit is a one, so the number is negative. Its absolute value has a binary representation of
the complement of 1001, i.e. 0110. Thus 11001 is the one’s complement representation of −6.

b. 01101 is the one’s complement representation of 13.

c. 10001 is the one’s complement representation of −14.

d. 11111 is a one’s complement representation of 0. Note that 00000 also represents 0.

2.1.20. Take the complement of each and every digit.

2.1.21. If m is positive, then an−1 = 0 and an−2an−3 . . . a0 is the binary expansion of m. Hence, m =∑n−2
i=0 ai2i as desired. If m is negative, then the one’s complement expansion for m has its leading bit

equal to 1. If we view the bit string an−2an−3 . . . a0 as a a binary number, then it represents (2n−1 − 1)−
(−m), since finding the one’s complement is equivalent to subtracting the binary number from 111 · · · 1.
That is (2n−1 − 1)− (−m) =

∑n−2
i=0 ai2i. Solving for m gives us the desired identity.

2.1.22. a. 22 = (10110)2. Since 22 is positive, we append a leading 0 to this expansion to obtain 010110 as the
two’s complement representation of 22.

b. 31 = (11111)2. Since 31 is positive, we append a leading 0 to this expansion to obtain 011111 as the
two’s complement representation of 31.

c. Since −7 is negative, we consider the binary expansion of 25 − 7 = 25 = (11001)2, and then append
a leading 1 to obtain 111001 as the two’s complement representation of −7.

d. Since −19 is negative, we consider the binary expansion of 25 − 19 = 13 = (01101)2, and then ap-
pend a leading 1 to obtain 101101 as the two’s complement representation of −19.
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2.1.23. a. Since the first digit is a 1, we know that the integer is negative and that (1001)2 = 9 is the binary
expansion of 24 − |x|. So |x| = 16− 9 = 7, and thus x = −7.

b. Since the first digit is a 0, we know that the integer is positive and hence x = (1101)2 = 13.

c. Since the first digit is a 1, we know that the integer is negative and that (0001)2 = 1 is the binary
expansion of 24 − |x|. So |x| = 16− 1 = 15, and thus x = −15.

d. Since the first digit is a 1, we know that the integer is negative and that (1111)2 = 15 is the binary
expansion of 24 − |x|. So |x| = 16− 15 = 1, and thus x = −1.

2.1.24. If m is positive, then an−1 = 0 and
∑n−2

i=0 ai2i is the binary expansion of m. Hence m = −an−12n−1 +∑n−2
i=0 ai2i. If m is negative, then an−1 = 1 and

∑n−2
i=0 ai2i is the binary expansion of 2n−1 + m. Hence,

m = −an−12n−1 +
∑n−2

i=0 ai2i.

2.1.25. If each of the digits in the two’s complement representation for m is complemented and then 1 is
added to the resulting binary number, the result is the two’s complement representation for −m. To see
this note that m + (−m) + (−1) = (binary expansion of m) + (2n−1+binary expansion for 2n−1 −m) +
(−1) = 2n−1+2n−1−1 = 2n−1 = (111 . . . 1)2. Therefore the two’s complement representation of−m−1
is the complement of m.

2.1.26. If m is positive, the representations are identical. If m is negative, then we compare the solutions to
Exercises 25 and 20 to see that we need only add 1 to the one’s complement representation of m to ob-
tain the two’s complement.

2.1.27. Since 4 bits are required for every decimal digit, 4n bits are required to store the number in this man-
ner.

2.1.28. We see that 3! is the largest factorial less than 14. We have 14 = 2 · 3! + 2. Next, we find that 2 =
1 · 2! + 0. It follows that 14 = 2 · 3! + 1 · 2! + 0 · 1! = (210)!. We see that 4! is the largest factorial less
than 56. We have 56 = 2 · 4! + 8. Next, we find that 8 = 1 · 3! + 2, and 2 = 1 · 2! + 0. It follows that 56 =
2 · 4! + 1 · 3! + 1 · 2! + 0 · 1! = (2110)!. We see that 5! is the largest factorial less than 384. We have 384 =
3 · 5! + 24. Next we see that 384 = 1 · 4!. Hence 384 = 3 · 5! + 1 · 4! + 0 · 3! + 0 · 2! + 0 · 1! = (31000)!.

2.1.29. We first show that every positive integer has a Cantor expansion. To find a Cantor expansion of the
positive integer n, let m be the unique positive integer such that m! ≤ n < (n + 1)!. By the division
algorithm there is an integer am such that n = m! · am + rm where 0 ≤ am ≤ m and 0 ≤ rm < m!. We
iterate, finding that rm = (m − 1)! · am−1 + rm−1 where 0 ≤ am−1 ≤ m − 1 and 0 ≤ rm−1 < (m − 1)!.
We iterate m − 2 more times, where we have ri = (i − 1)! · ai−1 + ri−1 where 0 ≤ ai−1 ≤ i − 1 and 0 ≤
ri−1 < (i − 1)! for i = m + 1,m, m − 1, . . . , 2 with rm+1 = n. At the last stage we have r2 = 1! · a1 + 0
where r2 = 0 or 1 and r2 = a1.

Now that we have shown that every integer has a Cantor expansion, we must show that this expan-
sion is unique. So suppose that n has two different Cantor expansions n = amm! + am−1(m− 1)! + · · ·+
a22! + a11! = bmm! + bm−1(m− 1)! + · · ·+ b22! + b11!, where aj and bj are integers, and 0 ≤ aj ≤ j and
0 ≤ bj ≤ j for j = 1, 2, . . . , m. Suppose that k is the largest integer such that ak 6= bk, and without loss
of generality, assume ak > bk, which implies that ak ≥ bk + 1. Then akk! + ak−1(k − 1)! + · · · + a11! =
bkk! + bk−1(k− 1)! + · · ·+ b11!. Using the identity

∑k
j=1 j · j! = (k + 1)!− 1, proved in Exercise 16 of Sec-

tion 1.3, we see that bkk!+ bk−1(k− 1)!+ · · ·+ b11! ≤ bkk!+ (k− 1) · (k− 1)!+ · · ·+1 · 1! ≤ bkk!+k!− 1 =
(bk + 1)k!− 1 < akk!. This is a contradiction, so the expansion is unique.

2.1.30. If the first player takes 2 matches then they must be from the same stack. The second player may then
win by taking the other two. If player one only takes one match, then player 2 can take one match from
the other stack, which is a winning position as discussed in the description of nim.

2.1.31. Call a position good if the number of ones in each column is even, and bad otherwise. Since a player
can only affect one row, he or she must affect some column sums. Thus any move from a good position
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produces a bad position. To find a move from a bad position to a good one, construct a binary number
by putting a 1 in the place of each column with odd sum, and a 0 in the place of each column with even
sum. Subtracting this number of matches from the largest pile will produce a good position.

2.1.32. Let (w, x, y, z) represent the number wxyz, where w, x, y, z are single digits. Let a, b, c, d be the digits
of a fixed point n of T (a number such that T (n) = n). We first show that all four digits of n are differ-
ent. Suppose, to the contrary, that b = c. Then (a, b, b, d)− (d, b, b, a) = (a− 1− d, 9, 9, 10 + d− a). Since
n is a fixed point, we can now see that it must have two 9s, and as b = c, in fact it must have three 9s.
So a = b = c = 9. From this, since d 6= 10 + d − a = d + 1, we know that d = 8 − d, and d = 4. But
(9, 9, 9, 4) − (4, 9, 9, 9) = (4, 9, 9, 5), so there is not a fixed point with b = c. Therefore, b 6= c. Suppose,
now, that a > b > c = d. Then (a, b, c, c)− (c, c, b, a) = (a− c, b−1− c, c+9− b, 10+ c−a). As, b− c−1 <
a− c, a− c > b− c−1 < b, and c+9− b ≥ 10+ c−a, we know that a and b are a− c and c+9− b, perhaps
not respectively. If a = a− c, then c = 0. But then b = 9− b, which is impossible. If a = c+9− b, then b =
a− c and a = c + 9− a− c, from which it follows that 9 is even. So we conclude that c 6= d. Suppose that
a = b > c > d. Then (a, a, c, d)− (d, c, a, a) = (a− d, a− c− 1, c− a + 9, 10 + d− a). From the inequalities
a ≥ a− d ≥ a− c > a− c− 1 and c− a + 9 ≥ d + 1− a + 9 = 10 + d− a we may conclude that c and d are
a− c− 1 and 10 + d− a, perhaps not respectively. If c = a− c− 1, then we see that a must be odd. But in
this case d = 10 + d− a also, which tells us that a must be even. If, on the other hand, c = 10 + d− a and
d = a− c− 1, then c = 10 + a− c− 1− a = 9− c, which is impossible. We conclude here that a 6= b. Sup-
pose that a = b > c = d. Then (a, a, c, c)− (c, c, a, a) = (a− c, a− c− 1, c−a+9, 10+ c−a). Since a− c >
a−c−1, a−c = a and c = 0. Now a−c−1 = c, so a = 1. But (1, 1, 0, 0)−(0, 0, 1, 1) = (1, 0, 8, 9), so clearly
this does not give a fixed point. So we now know that a > b > c > d. Now, (a, b, c, d) − (d, c, b, a) =
(a − d,−1 + b − c, 9 − b + c, 10 − a + d). Note that a − d > −1 + b − c, and 9 + c − b > 10 + d − a > d.
So, d is either −1 + b − c or 10 + d − a. If d = 10 + d − a, then a = 10, which is not a single digit. Thus,
d = −1 + b − c. Now, we see that c is either a − d or 10 + d − a. If c = a − d, then d = −1 + b − c =
−1+b−a+d. From this, we arrive at a+1 = b, a contradiction. Thus c = 10+d−1. If a = a−d, then d =
0. Proceeding along with thought, b = c + 1 = 9 + c− b now, which tells us that b = 8, c = 7 and a = 4.
This is a contradiction. Thus a = 9+ c− b and b = a−d. We now have four equations in four unknowns.
Solving this system, we find that a = 7, b = 6, c = 4, and d = 1. This gives a fixed point, namely 6174.

2.1.33. a. First show that the result of the operation must yield a multiple of 9. Then, it suffices to check only
multiples of 9 with decreasing digits. There are only 79 of these. If we perform the operation on
each of these 79 numbers and reorder the digits, we will have one of the following 23 numbers:
7551, 9954, 5553, 9990, 9981, 8820, 9810, 9620, 8532, 8550, 9720, 9972, 7731, 6543, 8730, 8640, 8721,
7443, 9963, 7632, 6552, 6642, or 6174. It will suffice to check only 9810, 7551, 9990, 8550, 9720, 8640,
and 7632.

b. From the solution in part (a), construct a tree from the last seven numbers. The longest branch is six
steps. Every number will reach the tree in two steps. The maximum is given by 8500 (for instance)
which takes eight steps.

2.1.34. Let a0 = (a, b, c, d) be a base 5 fixed point of T5. Then T5(a0) = (a, b, c, d) − (d, c, b, a) =
(a − d, b − 1 − c, c + 4 − b, d + 5 − a), for all a0, with b 6= c. Note that the center two digits of T (a0)
sum to (3)5, and the outer two to (10)5. Since the order of the digits is irrelevant, we need only ex-
amine four cases: (1034)5, (1124)5, (2033)5, and (2124)5. By checking these cases one at a time, we
find that they all go to (3032)5, which is a fixed point of T5. Similarly, if b 6= c, then T5(a0) is one of
(0444)5, (1443)5, (2442)5, (3441)5, and (4440)5. By symmetry, we need only check (0444)5, (1443)5, and
(2442)5. All of these do, in fact, go to (3032)5, the Kaprekar’s constant for the base 5.

2.1.35. Consider a0 = (3043)6. Then T6((3043)6) = (3552)6, T6((3552)6) = (3133)6, T6((3133)6) = (1554)6,
T6((1554)6) = (4042)6, T6((4042)6) = (4132)6, and T6((4132)6) = (3043)6 = a0. So T6 repeats with pe-
riod 6. Therefore, it never goes to a Kaprekar’s constant for the base 6. Hence, there is no Kaprekar’s
constant for the base 6.

2.1.36. Let (abc)10, be the digits of an integer with a ≤ b ≤ c, and a, b, and c not all the same. Then (abc)10 −
(cba)10 = ((a− c)(9)(10 + c− a))10, so the form of the next integer is 9bc. Then (9bc)10 − (cb9)10 = ((9−
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c− 1)(9)(1 + c))10. After re-ordering, we see that after two iterations we must have one of the numbers
891, 792, 693, or 594. Then T (981) = 792, T (792) = 693, T (693) = 594, and T (594) = 495, up to order of
the digits. Therefore 495 is a Kaprekar’s constant for three-digit base 10 integers.

2.2. Computer Operations with Integers
2.2.1. To add (101111011)2 and (1100111011)2 we first add 1 and 1, obtaining the rightmost bit 0 and the

carry 1. Then we add the bits 1 and 1 and the carry 1, obtaining the second bit from the right in the sum
1 and the carry 1. Then we add the bits 0 and 0, and the carry 1, obtaining the third bit from the right in
the sum, 1. Then we add the bits 1 and 1, obtaining the fourth bit from the right in the sum, 0, and the
carry 1. Then we add the bits 1 and 1 and the carry 1, obtaining the fifth bit from the right in the sum 1,
and the carry 1. Then we add the bits 1 and 1 and the carry obtaining the sixth bit from the right in the
sum 1, and the carry 1. Then we add the bits 1 and 0 and the carry 1 obtaining the seventh bit from the
right in the sum, 0, and the carry, 1. Then we add the bits 0 and 0 and the carry 1, obtaining the eighth
bit from the right in the sum 1. Then we add the bits 1 and 1, obtaining the ninth bit from the right, 0,
and the carry 1. Then we add the (leading) bit 0 and the bit 1 and the carry 1, obtaining the tenth bit in
the sum, 0, and the carry, 1, which is the leading bit from the left. Hence the sum is (10010110110)2.

2.2.2. We have (10001000111101)2 + (11111101011111)2 = (110000110011100)2

2.2.3. We have (1111000011)2 − (11010111)2 = (1011101100)2

2.2.4. We have (1101101100)2 − (101110101)2 = (111110111)2

2.2.5. To multiply (11101)2 and (110001)2 we need to add 20(110001)2 = (110001)2, 22(110001)2 = (11000100)2,
23(110001)2 = (110001000)2, and 24(110001)2 = (1100010000)2. The first bit and carry are computed
from 1 + 0 + 0 + 0 = 1. The second bit and carry are computed from 0 + 0 + 0 + 0 = 0. The third bit and
carry are computed from 0+1+0+0 = 1. The fourth bit and carry are computed from 0+0+1+0 = 1.
The fifth bit and carry are computed from 1 + 0 + 0 + 1 = 10. The sixth bit and carry are computed from
(with the carry 1) 1 + 1 + 0 + 0 + 0 = 10. The seventh bit and carry are computed from (with the carry 1)
1+0+1+0+0 = 10. The eighth bit and carry are computed from (with the carry 1) 1+0+1+1+0=11. The
ninth bit and carry are computed from (with the carry 1) 1+0+0+1+1= 11. The tenth bit and eleventh bit
are computed from (with the carry 1) 1+0+0+0+1=10. Hence (11101)2 · (110001)2 = (10110001101)2.

2.2.6. We have (1110111)2 · (10011011)2 = (100100000001101)2

2.2.7. We have (110011111)2 = (11111)2 · (1101)2 + (1100)2

2.2.8. We see that, because of the length of the words (11101)2 and (110100111)2, that our quotient has
four digits. We begin with (110100111)2 = 23(11101)2 + (10111111)2. We continue with (10111111)2 =
22(11101)2 + (1001011)2 and (1001011)2 = 2(11101)2 + (10001)2. Thus, when (110100111)2 is divided by
(11101)2, we get a quotient of (1110)2 and a remainder of (10001)2.

2.2.9. We have (1234321)5 + (2030104)5 = (3314430)5

2.2.10. We have (4434201)5 − (434421)5 = (3444230)5

2.2.11. We have (1234)5 · (3002)5 = (3023)5 + (4312000)5 = (4320023)5

2.2.12. We have (14321)5 = (22)5 · (334)5 + (313)5

2.2.13. To add (ABAB)16 and (BABA)16 we first add the rightmost hexadecimal digits B and A obtaining
the rightmost digit of the sum, 5, and carry, 1. Then we add the hexadecimal digits in the second po-
sition from the right and the carry, namely A,B and 1, obtaining the second digit from the right in the
sum, 6, and the carry, 1. Then we add the hexadecimal digits in the third position from the right, namely
B, A, and 1, obtaining the digit in the third position from the right, 6, and the carry, 1. Finally, we add
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the hexadecimal digits in the leftmost position and the carry, namely A,B, and 1, obtaining the second
hexadecimal digit from the left in the sum, 6, and the leftmost hexadecimal digit in the sum 1. Hence
the sum is (16665)16.

2.2.14. We have (FEED)16 − (CAFE)16 = (33EF )16

2.2.15. We have (FACE)16 · (BAD)16 = (B705736)16

2.2.16. We have (BEADED)16 = (11C)16 · (ABBA)16 + (2B95)16

2.2.17. We represent the integer (18235187)10 using three words: ((018)(235)(187))1000 and the integer (22135674)10
using three words: ((022)(135)(674))1000, where each base 1000 digit is represented by three base 10 dig-
its in parentheses. To find the sum, difference, and product of these integers from their base 1000 repre-
sentations we carry out the algorithms for such computations for base 1000. The details are omitted.

2.2.18. The algorithms for addition, subtraction, multiplication, and integer division for numbers written in
a negative base are identical to those written in a positive base.

2.2.19. To add numbers using the one’s complement representation, first decide whether the answer will be
negative or positive. To do this is easy if both numbers have the same lead (sign) bit; otherwise conduct
a bit-by-bit comparison of a positive summand’s digits and the complement of the negative’s. Now, add
the other digits (all but the initial (sign) bit) as an ordinary binary number. If the sum is greater than 2n

we have an overflow error. If not, consider the three quantities of the two summands and the sum. If
exactly zero or two of these are negative, we’re done. Otherwise, we need to add (1)2 to this answer.
Also, add an appropriate sign bit to the front of the number.

2.2.20. To subtract b from a, obtain −b as in Exercise 20, Section 2.1. Then add a and −b as in Exercise 19.

2.2.21. Let a = (amam−1 . . . a2a1)! and b = (bmbm−1 . . . b2b1)!. Then a+b is obtained by adding the digits from
right to left with the following rule for producing carries. If aj + bj + cj−1, where cj−1 is the carry from
adding aj−1 and bj−1, is greater than j, then cj = 1, and the resulting jth digit is aj + bj + cj−1 − j − 1.
Otherwise, cj = 0. To subtract b from a, assuming a > b, we let di = ai − bi + ci−1 and set ci = 0 if
ai − bi + ci−1 is between 0 and j. Otherwise, di = ai − bi + ci−1 + j + 1 and set ci = −1. In this manner,
a− b = (dmdm−1 . . . d2d1)!.

2.2.22. a. We have (374)12 eggs removed from (B03)12 eggs (where B is the base 12 digit that represents the
decimal integer 11). Since (B30)12 − (374)12 = (778)12 there are 7 gross, 7 dozen, and 8 eggs left.

b. We have (5)12 times (237)12 eggs in the delivery. Since (5)12 ·(237)12 = (B5B)12 there were 11 gross,
5 dozen, and 11 eggs in the delivery.

c. We have three groups of eggs each containing (BA6)12/(3)12 eggs. Since (BA6)12/(3)12 = (3B6)12,
each group contains 3 gross, 11 dozen, and 6 eggs.

2.2.23. We have (an . . . a15)210 = (10(an . . . a1)10 + 5)2 = 100(an . . . a1)210 + 100(an . . . a1)10 + 25 =
100(an . . . a1)10((an . . . a1)10 + 1) + 25. The decimal digits of this number consist of the decimal digits of
(an . . . a1)10((an . . . a1)10 + 1) followed by 25 since this first product is multiplied by 100 which shifts its
decimal expansion two digits.

2.2.24. We have (an . . . a1B)22B = (2B(an . . . a1)10 + B)2 = (2B)2(an . . . a1)210 + 4B2(an . . . a1)2B + B2 =
(2B)2(an . . . a1)2B((an . . . a1)2B +1)+25. The base 2B digits of this number consist of the base 2B digits
of (an . . . a1)2B(an . . . a1)2B +1 followed by B2 since this first product is multiplied by (2B)2 which shifts
its base 2B expansion two digits. To finish the proof, note that B2 = (B/20)2B =
(2B)(B/2) + 0 is valid when B is even. Furthermore, when B is odd, B2 = ((B − 1)/2B)2B =
(2B)((B − 1)/2) + B.



2.3. COMPLEXITY AND INTEGER OPERATIONS 31

2.3. Complexity and Integer Operations
2.3.1. a. We have 2n + 7 is O(n) since 2n + 7 ≤ 9n for every positive integer n.

b. Note that n2/3 is not O(n) for if C is a real number it follows n2/3 > Cn whenever n > 3C.

c. We have 10 is O(n) since 10 ≤ 10n whenever n is a positive integer.

d. We have n2 + 1 ≤ 2n2 whenever n is a positive integer. Hence log(n2 + 1) ≤ log(2n2) = 2 log n +
log 2 ≤ 3n whenever n is a positive integer. It follows that log(n2 + 1) is O(n).

e. Note that
√

n2 + 1 ≤
√

2n2 ≤ √
2 · n whenever n is a positive integer. Hence

√
n2 + 1 is O(n).

f. We have (n2 + 1)/(n + 1) < (2n2/n = 2n whenever n is a positive integer. Hence (n2 + 1)/(n + 1)
is O(n).

2.3.2. Note that for n ≥ 1, 2n4 + 3n3 + 17 ≤ 2n4 + 3n4 + 17n4 = 22n4. So we take K = 22, in the definition.

2.3.3. First note that (n3 + 4n2 log n + 101n2) is O(n3) and that (14n log n + 8n) is O(n log n) as in Example
1.36. Now applying Theorem 1.12 yields the result.

2.3.4. Note that n! =
∏n

j=1 j ≤ ∏n
j=1 n = nn whenever n is a positive integer. Hence n! = O(nn).

2.3.5. Use Exercise 4 and follow Example 1.34, noting that (log n)3 ≤ n3 whenever n is a positive integer.

2.3.6. Note that n! =
∑n

j=1 jm ≤ ∑n
j=1 nm = nm+1. Hence

∑n
j=1 jm = O(nm+1).

2.3.7. Let k be an integer with 1 ≤ k ≤ n. Consider the function f(k) = (n + 1 − k)k, whose graph is a
concave-down parabola with k-intercepts at k = 0 and k = n + 1. Since f(1) = f(n) = n, it is clear that
f(k) ≥ n for k = 1, 2, 3, . . . , n. Now consider the product (n!)2 =

∏n
k=1 k(n + 1 − k) ≥ ∏n

k=1 n, by the
inequality above. This last is equal to nn. Thus we have nn ≤ (n!)2. Taking logarithms of both sides
yields n log(n) ≤ 2 log(n!), which shows that n log(n) is O(log(n!)).

2.3.8. There exist by hypothesis k1 and k2 such that f1 ≤ k1O(g1) and f2 ≤ k2O(g2). Let k = max{c1k1, c2k2}.
Then c1f1 + c2f2 ≤ c1k1O(g1) + c2k2O(g2) ≤ k(O(g1) + O(g2)) = kO(g1 + g2).

2.3.9. Suppose that f is O(g) where f(n) and g(n) are positive integers for every integer n. Then there is an
integer C such that f(n) < Cg(n) for all x ∈ S. Then fk(n) < Ckgk(n) for all x ∈ S. Hence fk is O(gk).

2.3.10. Suppose f(n) = O(log2 n). Then f(n) ≤ k log2 n = k log2 r logr n = k′ logr n. Conversely, if f(n) ≤
k logr n = k(log2 n)/(log2 r) = k′ log2 n, and so f(n) = O(log2 n).

2.3.11. The number of digits in the base b expansion of n is 1 + k where k is the largest integer such that bk ≤
n < bk+1 since there is a digit for each of the powers of b0, b1, . . . , bk. Note that this inequality is equiva-
lent to k ≤ logb n < k + 1, so that k = [logb n]. Hence there are [logb n] + 1 digits in the base b expansion
of n.

2.3.12. For addition, three numbers (two operations) must be added for each digit. Thus it takes less than or
equal to 2n operations to add two numbers. Subtraction follows in a similar manner.

2.3.13. To multiply an n-digit integer by an m-digit integer in the conventional manner, one must multiply
every digit of the first number by every digit of the second number. There are nm such pairs.

2.3.14. a. There are n− 1 addition signs in 1 + 2 + · · ·n, so there are n− 1 additions total. Each addition takes
at most 2[log2 n]+2 bit operations (see solution to Exercise 12 and Exercise 11). So, the total number
of bit operations is at most 2(n− 1)([log2 n] + 1).
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b. Here we have one multiplication, which will require at most ([log2 n + 1] + 1)2 operations. Shifting
is one bit operation, so the total number of bit operations is at most ([log2 n + 1] + 1)2 − 1.

2.3.15. a. We use the result of Theorem 2.6. Let m = [log2 n + 1]. If we first multiply consecutive pairs of
integers in the the product, we have O(n/2) multiplications of integers with at most m bits. By
Theorem 2.6, there is an algorithm for doing this using O(m log2 m log2 log2 m) operations. Now
we have [n/2] integers of at most 2m bits. If we multiply pairs of these integers together, then
by Theorem 2.6 again, this results in O((n/4)(2m) log2 m log2 log2 m), where we use the fact that
log2 km log2 log2 km = O(log2 m log2 log2 m) for any constant k. Continuing in this manner we find
that computing n! takes O(

∑m
j=1 n/(2j)2j−1 log2 m log2 log2 m) = O((n/2)m2 log2 m log2 log2 m) =

O(n log2
2 n log2 log2 n log2 log2 log2 n) operations.

b. We need to find three factorials, which will have the same big-O value as in part (a). We will also
need to perform one subtraction (which will not affect the big-O value), one multiplication and one
division. The factorials have at most n log n bits, so by Theorem 2.5, the multiplication will take at
most O((n log n)1+ε) bit operations. By Theorem 2.7, the division will take O((n log n)1+ε), so in to-
tal the number of bit operations is O((n log n)1+ε).

2.3.16. Let m be an integer. Then m has n = [log2(m)+1] bits, from Exercise 11. Using the method of Example
2.1, we need to perform the division algorithm n times. Each division takes O(n2) = O([log2(m)+1]2) =
O(log2 m). Therefore, the binary expansion can be found in O(log3 m) bit operations.

2.3.17. (1001)2 ·(1011)2 = (24 +22)(10)2(10)2 +22(10−01)2(11−10))2 +(22 +1)(01)2(11)2 = (10100)2(100)2 +
(100)2(01)2(01)2 + (101)2(01)2(11)2 = (1010000)2 + (100)2 + (1111)2 = (1100011)2

2.3.18. (10010011)2 · (11001001)2 = (28 + 24)(1001)2(1100)2 + 24(1001 − 0011)2(1001 − 1100))2 +
(24 + 1)(0011)2(1001)2 = (100010000)2(1101100)2 − (10000)2(0110)2(0011)2 + (10001)2(11011)2 =
(110110000000000)2 + (11011000000)2 − (100100000)2 + (111001011)2 = (111001101101011)2, where we
have used identity (1.9) with n = 2 to do the smaller multiplications.

2.3.19. a. ab = (102n + 10n)A1B1 + 10n(A1 −A0)(B0 −B1) + (10n + 1)A0B0 where Ai and Bi are defined as
in identity (1.9).

b. 73 · 87 = (102 + 10)7 · 8 + 10(7− 3)(7− 8) + (11)3 · 7 = 5600 + 560− 40 + 210 + 21 = 6351.

c. 4216 · 2733 = (10100)42 · 27 + (100)(42− 16)(33− 27) + (101)16 · 33. Then, 42 · 27 = (102 + 10)4 · 2 +
10(4− 2)(7− 2) + (11)2 · 7 = 1134, and, 26 · 06 = (102 + 10)2 · 0 + 10(2− 6)(6− 0) + (11)6 · 6 = 156,
and 16 · 33 = (102 + 10)1 · 3 + 10(1− 6)(3− 3) + (11)6 · 3 = 528. Then 4216 · 2733 = (10100)1134 +
(100)156 + (101)528 = 11522328.

2.3.20. Note that an element of the kth column of A will be multiplied with each element of the kth row of
B. Thus, each of the n2 entries of A will be multiplied n entries of B. In other words, n3 multiplications
will be performed.

2.3.21. That the given equation is an identity may be seen by direct calculation. The seven multiplications
necessary to use this identity are: a11b11, a12b21, (a11 − a21 − a22)(b11 − b12 − b22), (a21 + a22)(b12 − b11),
(a11 + a12 − a21 − a22)b22, (a11 − a21)(b22 − b12), a22(b11 − b21 − b12 + b22).

2.3.22. We proceed by mathematical induction. Exercise 21 serves to complete the basis step. For the induc-
tive hypothesis, assume that it requires 7k multiplications to multiply two 2k × 2k matrices, and fewer
than 7k+1 additions. Note that the identity from Exercise 21 holds when the entries of the 2× 2 matrices
are themselves square matrices, all the same size. Thus we may view a 2k+1 × 2k+1 matrix as a 2 × 2
matrix whose entries are 2k × 2k matrices. Thus we will need to multiply 2k × 2k matrices seven times,
requiring 7 · 7k = 7k+1 multiplications. Similarly, we will need to add 2k × 2k matrices 18 times, requir-
ing exactly 18 · 2k additions. But 18 · 2k < 7 · 3 · 2 · 2k−1 < 72 · 2k−1 < 7k+1, as desired.
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2.3.23. Let k = [log2 n] + 1. Then the number of multiplications for 2k × 2k matrices is O(7k). But, 7k =
2(log2 7)([log2 n]+1) = O(2log2 n log2 72log2 7) = O(nlog2 7). The other bit operations are absorbed into this
term.





CHAPTER 3

Primes and Greatest Common Divisors

3.1. Prime Numbers
3.1.1. a. We see that 101 is prime since it is not divisible by any positive integers other than 1 or 101. To ver-

ify this it is sufficient to check that 101 is not divisible by any prime not exceeding
√

101. The only
such primes are 2, 3, 5, and 7 and none of these divide 101.

b. We see that 103 is prime since it is not divisible by any positive integers other than 1 or 103. To ver-
ify this it is sufficient to check that 103 is not divisible by any prime not exceeding

√
103. The only

such primes are 2, 3, 5, and 7 and none of these divide 103.

c. We see that 107 is prime since it is not divisible by any positive integers other than 1 or 107. To ver-
ify this it is sufficient to check that 107 is not divisible by any prime not exceeding

√
107. The only

such primes are 2, 3, 5, and 7 and none of these divide 107.

d. We see that 111 is not prime since it is divisible by 3.

e. We see that 113 is prime since it is not divisible by any positive integers other than 1 or 113. To ver-
ify this it is sufficient to check that 113 is not divisible by any prime not exceeding

√
113. The only

such primes are 2, 3, 5, and 7 and none of these divide 113.

f. We see that 121 is not prime since it is divisible by 11.

3.1.2. a. We have 201 = 3 · 67, so 201 is not prime.

b. We have 203 = 7 · 29, so 203 is not prime.

c. We have 207 = 9 · 23, so 207 is not prime.

d. 211 is prime.

e. We have 213 = 3 · 71, so 213 is not prime.

f. We have 221 = 13 · 17, so 221 is not prime.

3.1.3. The primes less than 150 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149

3.1.4. In addition to the primes in Exercise 3, we have 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 and 199.

3.1.5. Suppose that n = x4− y4 = (x− y)(x+ y)(x2 + y2), where x > y. The integer n can not be prime since
it divisible by x + y which can not be 1 or n.

3.1.6. We note that n must be positive. Otherwise n3 + 1 is less than or equal to 1 and no such integers are
prime. Since n3 + 1 = (n + 1)(n2 − n + 1), n3 + 1 is not prime unless one of the two factors on the right
hand side of this equation is 1 and the other is n3 + 1. But n + 1 is greater than 1 for every positive in-
teger n, and the only way for n + 1 = n3 + 1 is when n = 1 as is easily verified. It is this case we have

35
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13 + 1 = (1 + 1)(12 − 1 + 1) = 2. Hence 2 is the only prime of this form.

3.1.7. Using the identity given in the hint with k such that 1 < k < n and k | n, then ak − 1 | an − 1. Since
an − 1 is prime by hypothesis, ak − 1 = 1. From this, we see that a = 2 and k = 1, contradicting the fact
that k > 1. Thus we must have a = 2 and n is prime.

3.1.8. Since Qn is a positive integer greater than 1, by Lemma 3.1 it has a prime divisor p. If p ≤ n, then p|n!,
so then p|Qn − n! = 1, a contradiction. Therefore, we must have p > n. So we can construct an infinite
sequence of primes as follows. Choose p1 to be a prime divisor of Q1. Then choose p2 to be a prime di-
visor of Qp1 , and in general choose pk+1 to be a prime divisor of Qpk

. Then p1 < p2 < · · · < pk < · · · ,
which proves that there are infinitely many primes.

3.1.9. We need to assume n ≥ 3 to assure that Sn > 1. Then by Lemma 3.1, Sn has a prime divisor p. If p ≤
n then p|n!, and so p|n! − Sn = 1, a contradiction. Therefore we must have p > n. Since we can find
arbitrarily large primes, there must be infinitely many.

3.1.10. a. We proceed by induction. When n = 1 we have p1 = 2 ≤ 220
= 2. Now assume that pk ≤ 22k

for
k = 1, 2, . . . , n−1. Then by Euclid’s proof, a prime q other than p1, p2, . . . , pn divides Qn. Then pn <

q ≤ Qn = p1p2 · · · pn + 1 ≤ 220
221 · · · 22n−1

= 220+21+···+2n−1
= 22n−1−1 + 1. Since the inequality is

strict and we are dealing with integers we have pn ≤ 22n−1−1 ≤ 22n−1
, which completes the induc-

tion step.

b. By part a., the (n + 1)st prime is less than or equal to 22n

, and since a power of 2 can not be prime
itself when n > 0, we must have at least n + 1 primes strictly less than 22n

.

3.1.11. Q1 = 3, Q2 = 7, Q3 = 31, Q4 = 211, Q5 = 2311, Q6 = 30031. The smallest prime factors are 3, 7, 31,
211, 2311, and 59, respectively.

3.1.12. Let Q = p1p2 · · · pn−1 + 1, where pi is the ith prime. Then by Euclid’s proof, some prime q different
from p1, p2, . . . , pn−1 divides Q. Then pn ≤ q ≤ Q.

3.1.13. If n is prime, we are done. Otherwise n/p < ( 3
√

n)2. If n/p is prime, then we are done. Otherwise, by
Theorem 3.2, n/p has a prime factor less than

√
n/p < 3

√
n, a contradiction.

3.1.14. Suppose p = 3k + 1 for some positive integer k. If k is odd, then k = 2n + 1 for some integer n and so
p = 3(2n + 1) + 1 = 6n + 4 = 2(3n + 2) which is clearly not prime, a contradiction. Therefore, k must be
even, say k = 2n for some integer n. Then p = 3(2n) + 1 = 6n + 1 as desired.

3.1.15. a. The arithmetic progression is 3n + 1 and the first values are 4, 7, 10, . . .. The first prime is 7.

b. We list the first few numbers of the shape 5n + 4 until we find a prime: 9, 14, 19, which is prime.

c. We list the first few numbers of the shape 11n + 16 until we find a prime: 27, 38, 49, 60, 71, which is
prime.

3.1.16. a. We list the first few numbers of the shape 5n + 1 until we find a prime: 6, 11, which is prime.

b. We list the first few numbers of the shape 7n + 2 until we find a prime: 9, 16, 23, which is prime.
(But if we begin with n = 0, the first term is 2, which is prime.)

c. We list the first few numbers of the shape 23n + 13 until we find a prime: 36, 59, which is prime.
(But if we begin with n = 0, the first term is 13 which is prime.)

3.1.17. If n is prime the statement is true for n. Otherwise, n is composite, so n is the product of two integers
a and b such that 1 < a ≤ b < n. Since n = ab and by the inductive hypothesis both a and b are the
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product of primes, we conclude that n is also the product of primes.

3.1.18. The number of integers not exceeding n that are prime are the integers other than 1 that are either
primes less than

√
n or integers greater than

√
n not exceeding n that are not divisible by any of these

primes. We can use the principle of inclusion-exclusion to find the number of positive integers not ex-
ceeding

√
n that are not divisible by any of the primes p1, p2, . . . , pr not exceeding

√
n. Then we can

add π(
√

n) to count the number of primes not exceeding
√

n, and subtract 1 since the integer 1 is not
divisible by any of these primes, but is not itself prime. Since the number of integers not exceeding n
that are divisible by the primes pi1 , pi2 , . . . , pir

is [n/(pi1pi2 · · · pir
)], the principle of inclusion-exclusion

tells us that the number of integers not exceeding n that are not divisible by any of these primes is n −∑r
i=1[n/pi] +

∑
1≤i<j≤r[n/(pipj)]−

∑
1≤i<j<k≤r[n/(pipjpk)] + · · ·+ (−1)r[n/

∏r
i=1 pi]. We see that π(n)

is obtained by adding π(
√

n)− 1 to this quantity.

3.1.19. Using Exercise 18, we have, π(250) = (π(
√

250) − 1) + 250 − ([250/2] + [250/3] + [250/5] + [250/7] +
[250/11]+[250/13])+([250/6]+[250/10]+[250/14]+[250/22]+[250/26]+[250/15]+[250/21]+[250/33]+
[250/39]+[250/35]+[250/55]+[250/65]+[250/77]+[250/91]+[250/143])−([250/30]+[250/42]+[250/66]+
[250/70] + [250/78] + [250/105] + [250/110] + [250/130] + [250/132] + [250/154] + [250/165] + [250/195] +
[250/231]) + ([250/210]) = 5 + 250− (125 + 83 + 50 + 35 + 22 + 19) + (41 + 25 + 17 + 11 + 9 + 16 + 11 +
7 + 6 + 7 + 4 + 3 + 3 + 2 + 1)− (8 + 5 + 3 + 3 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1) + 1 = 53.

3.1.20. Let f(x) = x2 − x + 41. Then f(0) = 41, f(1) = 41, f(2) = 43, f(3) = 47, f(4) = 53, f(5) = 61, f(6) =
71, f(7) = 83, f(8) = 97, f(9) = 113, f(10) = 131, f(11) = 151, f(12) = 173, f(13) = 197, f(14) =
223, f(15) = 251, f(16) = 281, f(17) = 313, f(18) = 347, f(19) = 383, f(20) = 421, f(21) = 461, f(22) =
503, f(23) = 547, f(24) = 593, f(25) = 641, f(26) = 691, f(27) = 743, f(28) = 797, f(29) = 853, f(30) =
911, f(31) = 971, f(32) = 1033, f(33) = 1097, f(34) = 1163, f(35) = 1231, f(36) = 1301, f(37) =
1373, f(38) = 1447, f(39) = 1523, and f(40) = 1601 are all primes, but f(41) = 412 − 41 + 41 = 412

is composite.

3.1.21. For n = 1, 2, . . . 10, the values of the function are 13, 19, 29, 43, 61, 83, 109, 139, 173, 211, each of which
is prime. But 2 · 112 + 11 = 11(2 · 11 + 1) = 11 · 23, so it is not prime.

3.1.22. For n = 1, 2, . . . 28, the values of the function are 31, 37, 47, 61, 79, 101, 127, 157, 191, 229, 271, 317, 367,
421, 479, 541, 607, 677, 751, 829, 911, 997, 1087, 1181, 1279, 1381, 1487, 1597, each of which is prime. But 2 ·
292 + 29 = 29(2 · 29 + 1) = 29 · 59, so it is not prime.

3.1.23. Assume not. Let x0 be a positive integer. It follows that f(x0) = p where p is prime. Let k be an inte-
ger. We have f(x0 + kp) = an(x0 + kp)n + · · · + a1(x0 + kp) + a0. Note that by the binomial theorem,
(x0 + kp)j =

∑j
i=1

(
j
i

)
xj−i

0 (kp)i. It follows that f(x0 + kp) =
∑n

j=0 ajx
j
0 + Np = f(x0) + Np, for some

integer N . Since p | f(x0) it follows that p | (f(x0) + Np) = f(x0 + kp). Since f(x0 + kp) is supposed to
be prime, it follows that f(x0 + kp) = p for all integers k. This contradicts the fact that a polynomial of
degree n takes on each value no more than n times. Hence f(y) is composite for at least one integer y.

3.1.24. The sequence of lucky numbers less than 100 is: 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69,
73, 75, 79, 87, 93, 99.

3.1.25. At each stage of the procedure for generating the lucky numbers the smallest number left, say k, is
designated to be a lucky number and infinitely many numbers are left after the deletion of every kth in-
teger left. It follows that there are infinitely many steps, and at each step a new lucky number is added
to the sequence. Hence there are infinitely many lucky numbers.

3.1.26. a. Suppose pj |tk − Qk + 1 = tk − (p1 · · · pk + 1) + 1 = tk − p1 · · · pk. Since pj |p1 · · · pk + 1, then pj |tk
which is impossible by Euclid’s proof.

b. For k = 1 we have Q1 = 2 + 1 = 3, so t1 = 5 and t1 −Q1 + 1 = 5− 3 + 1 = 3 is prime. For k = 2, we
have Q2 = 2 ·3+1 = 7, so t2 = 11 and t2−Q2+1 = 11−7+1 = 5 which is prime. For k = 3 we have
Q3 = 2 ·3 ·5+1 = 31, so t3 = 37 and t3−Q3 +1 = 37−31+1 = 7 which is prime. For k = 4 we have
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Q = 2 ·3 ·5 ·7+1 = 211 so t4 = 223 and t4−Q4+1 = 223−211+1 = 13 which is prime. For k = 5 we
have Q5 = 2·3·5·7·11+1 = 2311, so t5 = 2333 and t5−Q5+1 = 2333−2311+1 = 23 which is prime.

3.2. The Distribution of Primes
3.2.1. The smallest 5 consecutive composite integers can be found by locating the first pair of consecutive

composite odd integers, 25 and 27. Hence the smallest 5 consecutive composite integers are 24, 25, 26, 27,
and 28. (These are considerably smaller than the integers (5+1)!+j = 6!+j = 720+j for j = 2, 3, 4, 5, 6.)

3.2.2. 1000001! + j, is divisible by j for all j = 2, 3, . . . , 1000001, which gives one million consecutive com-
posite integers.

3.2.3. Suppose that p, p + 2, and p + 4 were all prime. We consider three cases. First, suppose that p is of the
form 3k. Then p cannot be prime unless k = 1, and the prime triplet is 3, 5, and 7. Next, suppose that p
is of the form 3k + 1. Then p + 2 = 3k + 3 = 3(k + 1) is not prime. We obtain no prime triplets in this
case. Finally, suppose that p is of the form 3k +2. Then p+4 = 3k +6 = 3(k +2) is not prime. We obtain
no prime triplet in this case either. Since the three cases are exhaustive, we have only one prime triplet
of this kind, 3, 5, and 7.

3.2.4. By searching through a table we find these triples: (5, 7, 11), (11, 13, 17), (17, 19, 23), and (41, 43, 47).

3.2.5. By searching through a table we find these triples: (7, 11, 13), (13, 17, 19), (37, 41, 43), and (67, 71, 73).

3.2.6. a. The smallest prime between 3 and 6 is 5.

b. The smallest prime between 5 and 10 is 7.

c. The smallest prime between 19 and 38 is 23.

d. The smallest prime between 31 and 62 is 37.

3.2.7. a. The smallest prime between 4 and 8 is 5.

b. The smallest prime between 6 and 12 is 7.

c. The smallest prime between 23 and 46 is 29.

d. The smallest prime between 47 and 94 is 53.

3.2.8. To see that the primes are indeed in the range, we print them as triples (n2, smallest prime, (n + 1)2).
For n = 1, 2, . . . , 10 we have (1, 2, 4), (4, 5, 9), (9, 11, 16), (16, 17, 25), (25, 29, 36), (36, 37, 49), (49, 53, 64),
(64, 67, 81), (81, 83, 100), and (100, 101, 121).

3.2.9. To see that the primes are indeed in the range, we print them as triples (n2, smallest prime, (n + 1)2).
For n = 11, 12, . . . , 20 we have (121, 127, 144), (144, 149, 169), (169, 173, 196), (196, 197, 225), (225, 227, 256),
(256, 257, 289), (289, 293, 324), (324, 331, 361), (361, 367, 400), and (400, 401, 441).

3.2.10. a. We have 50 = 47 + 3.

b. We have 98 = 87 + 11.

c. We have 102 = 97 + 5.

d. We have 144 = 139 + 5.
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e. We have 200 = 197 + 3.

f. We have 222 = 211 + 11

3.2.11. a. We have 7 = 3 + 2 + 2.

b. We have 17 = 11 + 3 + 3.

c. We have 27 = 23 + 2 + 2.

d. We have 97 = 89 + 5 + 3.

e. We have 101 = 97 + 2 + 2.

f. We have 199 = 191 + 5 + 3

3.2.12. Let n be an integer greater than 11. Suppose, first, that n is even. Then n = 4+(n−4) exhibits n as the
sum of two composite integers, since 4 is composite and n − 4 is composite since it is even and greater
than two. Now suppose that n is odd. Then n = (n − 9) + 9 exhibits n as the sum of two composite
integers since 9 is composite and n− 9 is an even integer greater than two.

3.2.13. Suppose Goldbach’s conjecture is true and let n > 5 be an integer. If n is even, then n − 2 is an even
integer greater than 2 and so is the sum of two primes, p and q. Then n = p + q + 2, the sum of three
primes. If n is odd, then n− 3 is an even integer greater than 2 and so is the sum of two primes p and q.
Then n = p + q + 3, the sum of three primes.

Conversely, suppose every integer greater than 5 is the sum of three primes. Let n > 2 be an even
integer. Then n + 2 is also even and is greater than 5. (It is not equal to 5 since it is even.) By hypothesis,
n+2 is the sum of 3 primes. If all three primes were odd, then n+2 would be odd, a contradiction, so at
least one of the primes is even, that is, one of the primes must be 2, so n + 2 = p + q + 2 for some primes
p and q. Therefore n = p + q, the sum of two primes.

3.2.14. a. For n = 4, we have 4 = 2 + 2 so G(4) = 1. For n = 6, we have 6 = 3 + 3, so G(6) = 1. Since 8 =
5 + 3, G(8) = 1. Since 10 = 5 + 5 = 7 + 3, G(10) = 2. Since 12 = 7 + 5, G(12) = 1. Since 14 = 7 + 7 =
11 + 3, G(14) = 2. Since 16 = 13 + 3 = 11 + 5, G(16) = 2. Since 18 = 13 + 5 = 11 + 7, G(18) = 2.
Since 20 = 17 + 3 = 13 + 7, G(20) = 2. Since 22 = 19 + 3 = 17 + 5 = 11 + 11, G(22) = 3. Since 24 =
19 + 5 = 17 + 7 = 13 + 11, G(24) = 3. Since 26 = 23 + 3 = 19 + 7 = 13 + 13, G(26) = 3. Since 28 =
23 + 5 = 17 + 11, G(28) = 2. Since 30 = 23 + 7 = 19 + 11 = 17 + 13, G(30) = 3.

b. The primes less than 158 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, and 157. If we subtract each of these from
158 we get the following list of numbers: 156, 155, 153, 151, 147, 145, 141, 139, 135, 129, 127, 121, 117,
115, 111, 105, 99, 97, 91, 87, 85, 79, 75, 69, 61, 57, 55, 51, 49, 45, 31, 27, 21, 19, 9, 7, 1, of which only 151,
139, 127, 97, 79, 61, 31, 19, and 7 are primes, so G(158) = 9.

c. The primes less than 188 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, and 181 If we
subtract each of these from 188 we get the following list of numbers: 186, 185, 183, 181, 177, 175,
171, 169, 165, 159, 157, 151, 147, 145, 141, 135, 129, 127, 121, 117, 115, 109, 105, 99, 91, 87, 85, 81, 79,
75, 61, 57, 51, 49, 39, 37, 31, 25, 21, 15, 9, 7, of which only 181, 157, 151, 127, 109, 79, 61, 37, 31, and 7
are prime, so G(188) = 10.

3.2.15. Let p < n be prime. Using the division algorithm, we divide each of the first p + 1 integers in the se-
quence by p to get a = q0p + r0, a + k = q1p + r1, . . . , a + pk = qp + rp, with 0 ≤ ri < p for each i. By the
pigeonhole principle, at least two of the remainders must be equal, say ri = rj . We subtract the corre-
sponding equations to get a + ik − a − jk = qip + ri − qjp + rj , which reduces to (i − j)k = (qi − qj)p.
Therefore p|(i− j)k, and since p is prime, it must divide one of the factors. But since (i− j) < p we must
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have p|k.

3.2.16. Exercise 15 tells us that every prime less than six will have to divide the common difference, so we
will try a difference of 30 = 2 · 3 · 5, which generates the sequence 7, 37, 67, 97, 127, 157, all of which are
prime.

3.2.17. From Exercise 15, we know that every prime less than four must must divide the difference, so 6 must
divide the difference. Therefore the smallest possible difference is 6. This minimum is achieved with
5, 11, 17, 23.

3.2.18. From Exercise 15, we know that every prime less than five must must divide the difference, so 6 must
divide the difference. Therefore the smallest possible difference is 6. This minimum is Achieved with
the sequence 5, 11, 17, 23, 29.

3.2.19. From Exercise 15, we know that every prime less than six must must divide the difference, so 30 must
divide the difference. Therefore the smallest possible difference is 30. This minimum is achieved by the
example given in Exercise 16.

3.2.20. a. Since 509 is less than 29, we consider the numbers 509 − 2k for k = 0, 1, 2, . . . , 8. This gives us the
sequence 508, 507, 505, 501, 493, 477, 445, 381, 253. It is easy to check that none of these are prime,
and so the conjecture is false.

b. One way to search for likely candidates is to make a sieve. We can write out the odd numbers in a
range, say from 509 to 651. Then we can list the prime numbers in a small range, say from 450 to
650. From the list of odd numbers, we strike out every value that 2 more than a prime in our list.
Then we strike out every value that is 4 more than a prime in our list. Then we strike out every
value that is 23 more than a prime in our list, and continue in this fashion, until we have reduced
the size of our list sufficiently. Then each number crossed off will have a representation as a power
of two plus a prime so we shouldn’t consider it. Only a short sequence should be left over: 533, 547,
569, 583, 599 . . ., which can be tested more thoroughly. And 599 turns out to be the next smallest
counterexample.

3.2.21. If pα − qβ = 1, with p, q primes, then p or q is even, so p or q is 2. If p = 2, there are several cases: we
have 2α − qβ = 1. If α is even, say α = 2k, (22k − 1) = (2k − 1)(2k + 1) = qβ . So q|(2k − 1) and q|(2k + 1),
hence q = 1, a contradiction. If α is odd and β is odd, 2α = 1 + qβ = (1 + q)(qβ−1 − qβ−2 + · · · + 1).
So 1 + q = 2n for some n. Then 2α = (2n − 1)β + 1 = 2n(odd number), since β is odd. So 2α−n = odd
number and so α = n. Therefore 2α = 1 + (2α − 1)β and so β = 1 which is not allowed. If α = 2k + 1
and β = 2n we have 22k+1 = 1 + q2n. Since q is odd, q2 is of the form 4m + 1, and by the binomial theo-
rem, so is q2n. Thus the right hand side of the last equation is of the form 4m + 2, but this forces k = 0, a
contradiction. If q = 2, we have pα − 2β = 1. Whence 2β = (p− 1)(pα−1 + pα−2 + · · ·+ p + 1), where the
last factor is the sum of α odd terms but must be a power of 2, therefore, α = 2k for some k. Then 2β =
(pk − 1)(pk + 1). These last two factors are powers of 2 which differ by 2 which forces k = 1, α = 2, β =
3, p = 3, and q = 2 as the only solution: 32 − 23 = 1.

3.2.22. The conjecture is true for n = 1, 2, and 3. Let n be an odd integer greater than 3, and assume the con-
jecture is true for all odd integers less than n. Let k = (n± 1)/2 where the sign is chosen so that k is odd.
Then k ≥ 3 and n− k is even and ≥ 1. If p is a prime such that k < p ≤ n, then p is odd and p | n!, p - k!,
and p - (n−k)!. Therefore, p divides

(
n
k

)
. Hence,

∏
k<p≤n p | (n

k

)
and so

∏
k<p≤n p ≤ (

n
k

)
. But

(
n
k

)
=

(
n

n−k

)

and both these binomial coefficients appear in the expansion of (1 + 1)n = 2 · 2n−1. Using the induction
hypothesis we have

∏
p≤n p =

∏
p≤k p ·∏k<p≤n p < 4k · 2n−1 = 2n+2k−1 ≤ 22n = 4n. So the conjecture is

true for all odd positive integers. If n is even, we have
∏

p≤n p =
∏

p≤(n−1) p ≤ 4n−1 < 4n.

3.2.23. Since 3p > 2n, p, and 2p are the only multiples of p that appear as factors in (2n)!. So p divides (2n)!
exactly twice. Since 2p > n, p is the only multiple of p that appears as a factor in n!. So p | n! exactly
once. Then since

(
2n
n

)
= 2n!/(n!n!), the two factors of p in the numerator are cancelled by the two in the
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denominator.

3.2.24. The theorem holds for n = 2, 3, . . . , 127, as can be seen by (tedious) inspection. Let n ≥ 128 and
suppose there is no prime between n and 2n. Let

(
2n
n

)
=

∏
p≤2n pr be the prime factorization for(

2n
n

)
. But there are no primes between n and 2n, so

(
2n
n

)
=

∏
p≤n pr. If p is a prime in the range

2n/3 < p ≤ n then p divides n! exactly once and (2n)! exactly twice. Thus p -
(
2n
n

)
. Therefore

(
2n
n

)
=∏

p≤√2n pr
∏√

2n<p≤2n/3 pr ≤ ∏
p≤√2n 2n

∏
p≤2n/3 p since if p is in the range

√
2n < p ≤ 2n/3, then p

divides
(
2n
n

)
exactly once. The number of primes less than

√
2n is less than the number of odd integers

less than
√

2n, i.e. less than
√

2n/2− 1 =
√

n/2− 1. Therefore
∏

p≤√2n 2n ≤ (2n)
√

n/2−1. Using Exercise

26, we have
∏

p≤2n/3 p < 42n/3. Thus
(
2n
n

)
< (2n)

√
n/2−142n/3. Now

(
2n
n

)
is the largest of 2n + 1 terms

in the binomial expansion of (1 + 1)2n, so we have (2n + 1)
(
2n
n

)
> (2n)

(
2n
n

)
> 22n, hence (2n)−122n <(

2n
n

)
< (2n)

√
n/2−142n/3, which implies 22n/3 < (2n)

√
n/2. Take logarithms and divide by

√
2n/6 and get√

8n log 2− 2 log(2n) < 0. Denote the left side by f(n), and take its derivative to get f ′(n) = (
√

2n log 2−
3)/n. Note that f(128) = 8 log 2, which is positive, and f ′(n) is positive for n ≥ 128, so f(n) is increasing
and therefore positive for n ≥ 128. This contradicts the last inequality.

3.2.25. By Bertrand’s conjecture, there must be a prime in each interval of the form (2k−1, 2k), for k =
2, 3, 4, . . .. Thus, there are at least k−1 primes less than 2k. Since the prime 2 isn’t counted here, we have
at least k primes less than 2k.

3.2.26. First check that the statement is true for n = 7, 8, . . . , 16. Let n ≥ 17. By Bertrand’s conjecture, there is
a prime p such that [(n−7)/2] < p ≤ 2[(n−7)/2], or equivalently, [(n−5)/2] ≤ p ≤ 2[(n−7)/2]. Let n1 =
n, and for each nj , let pj be a prime between [(nj − 5)/2] and 2[(nj − 7)/2], inclusive. Then set nj+1 =
nj−pj , and if nj+1 ≥ 17, repeat the procedure. The sequence will terminate with some value nk+1 ≤ 16.
Since [(nj − 5)/2] ≤ pj ≤ 2[(nj − 7)/2], we will have 7 ≤ nk+1 ≤ [(nj + 6)/2]. Thus the final value nk+1

will lie between 7 and 16 inclusive. We will also have pj+1 ≤ 2[(nj+1 − 7)/2] ≤ 2[([nj + 6)/2]− 7)/2] ≤
[(nj − 8)/2] < [(nj − 5)/2] ≤ pj . Hence the sequence pj will be descending with no duplicates. Note also
that nj ≤ 2pj + 6. Thus, since nj > 16 for j ≤ k, pj > 5, i.e. pk, the smallest of the pj , will be at least 7.
We also have the following: If pj = 7, then nj ≤ 20 and nj+1 ≤ 13; if pj = 11, then nj ≤ 28 and nj+1 ≤
17; if pj = 13, then nj ≤ 32 and nj+1 ≤ 19.

Now suppose that nk+1 = 16. We know from the above that pk ≥ 11. Since 16 = 13 + 3 = 11 + 5,
we need only be concerned with the case that pk = 11 and pk−1 = 13. But then, nk−1 ≤ 32 and nk+1 =
nk−1 − pk−1 − pk ≤ 32 − 13 − 11 = 8. Thus if nk+1 = 16, we cannot have both pk−1 = 13 and pk = 11.
Thus by using either 16 = 13 + 3 or 16 = 11 + 5, we have a partition of n into distinct primes. Suppose
next that nk+1 = 15. We have again pk ≥ 11, and since 15 = 7 + 5 + 3, we have a partition of n into
distinct primes. Suppose next that nk+1 = 14. We have again pk ≥ 11, and since 14 = 7 + 5 + 2, we have
a partition of n into distinct primes. Suppose next that nk+1 = 13. As in the case nk+1 = 16, we cannot
have both pk−1 = 13 and pk = 11, since that implies that nk+1 ≤ 8, thus using either 13 = 13 or 13 =
11 + 2, we have a partition of n into distinct primes. Suppose next that nk+1 = 12. If pk > 7, then since
12 = 7 + 5, we have a partition of n into distinct primes. If pk = 7, then nk = 19. We cannot also have
pk−1 = 11, since then nk−1 ≤ 28 and nk+1 ≤ 28 − 11 − 7 = 10. Thus since 19 = 11 + 5 + 3, we have
a partition of n into distinct primes. Suppose next that nk+1 = 11. As in the previous case, we cannot
have both pk = 7 and pk−1 = 11, thus if pk = 7 or pk > 11, we have a partition of n into distinct primes.
If pk = 11, then nk = 22. As before, we cannot also have pk−1 = 13, thus with 22 = 13 + 7 + 2 we have a
partition of n into distinct primes.

Suppose next that nk+1 = 10. Since pk ≥ 7 and 10 = 5 + 3 + 2, we have a partition of n into distinct
primes. Finally, suppose that nk+1 ≤ 9. If pk = 7, then nk ≤ 16, but by the construction of the sequence
we must have nk ≥ 17, thus pk > 7. Then with 9 = 7 + 2, 8 = 5 + 3 or 7 = 7, we have a partition of n
into distinct primes.

3.2.27. Since 1/1 is an integer, we may assume n > 1. First suppose that m < n. Then 1/n + 1/(n + 1) + · · ·+
1/(n+m) ≤ 1/n+1/(n+1)+ · · ·+1/(2n− 1) < 1/n+1/n+ · · ·+1/n ≤ n(1/n) = 1, so the sum can not
be an integer. Now suppose m ≥ n. Then by Bertrand’s postulate, there is a prime p such that n < p <
n + m. Let p be the largest such prime. Then n + m < 2p, otherwise there would be a prime q with p <
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q < 2p ≤ n+m contradicting the choice of p. Suppose that 1/n+1/(n+1)+ · · ·+1/p+ · · ·+1/(n+m) =
a where a is an integer. Note that p occurs as a factor in only one denominator, since 2p > n + m. Let
Q =

∏n+m
j=n j, and let Qi = Q/i, for i = n, n + 1, . . . , n + m. If we multiply the equation by Q we get

Qn +Qn+1 + · · ·+Qp + · · ·+Qn+m = Qa. Note that every term on both sides of the equation is divisible
by p except for Qp. If we solve the equation for Qp and factor a p out of the other side we have an equa-
tion of the form Qp = pN where N is some integer. But this implies that p divides Qp, a contradiction.
Therefore a can not be an integer.

3.2.28. a. (Proof by Ed Hook) With the given notation, suppose that pj divided p1p2 · · · pk−1i− 1 for some i =
1, 2, . . . , pk and some j = 1, 2, . . . , k − 1. Then, as in Euclid’s proof, pj would also have to divide
1, a contradiction, so none of the first k − 1 primes can divide any of these pk numbers. Further,
suppose some larger prime p divided two of these numbers. Then it would have to divide the dif-
ference and we would have p|((p1p2 · · · pk−1i−1)− (p1p2 · · · pk−1j−1)) = (i− j)(p1p2 · · · pk−1). But
since i − j < pk, the larger prime can not divide it, so it must divide the product p1p2 · · · pk−1, but
these are all smaller primes, another contradiction. Therefore, a prime larger than pk can divide at
most one of these numbers.

b. Since there are n−k+1 primes from pk up to pn, and each one can divide at most one of the pk num-
bers p1p2 · · · pk−1i−1, there must be at least one of the numbers which is not divisible by any prime
from pk up to pn. (There are more numbers than primes.) From part (a), the primes less than pk also
do not divide any of the the numbers, in particular, the one whose existence we have just shown.

c. From part (b), there is a number of the form p1p2 · · · pk−1i − 1 whose least prime divisor is at least
pn+1, since none of the primes p1, . . . , pn can divide it. Therefore, pn+1 ≤ p1p2 · · · pk−1pk if n − k +
1 < pk. So let k be the smallest positive integer for which this inequality holds. Then n− (k − 1) +
1 ≥ pk−1 which reduces to n− k ≥ pk−1 − 2. Now since the sequence of primes grows by at least 2
at each step after 3 and pk−1 − 2 = 7 − 2 = 5 = k when k = 5, we have the left-hand side growing
faster than the right. So pk−1−2 ≥ k for k ≥ 5. So if n ≥ 10, then n−k +1 has to be less than pk and
a quick check shows that this forces k ≥ 5 (since if n ≥ 10 and k ≤ 4 then n− k + 1 ≥ 10− 4 + 1 =
7 = p4, which fails the condition.) Therefore, if n ≥ 10, the condition n− k + 1 < pk is satisfied and
so pn+1 ≤ p1p2 · · · pk−1pk for some k such that n− k ≥ pk−1 − 2 ≥ k. Note that this implies 2k ≤ n.

Then assuming n ≥ 10 we can derive Bonse’s inequality as follows. For the k found above we
have p2

n+1 < (p1p2 · · · pk)(p1p2 · · · pk) < (p1p2 · · · pk)(pk+1pk+2 · · · p2k) ≤ p1p2 · · · pn, which is the de-
sired inequality.

d. When n = 4, we have p2
5 = 121 < 210 = 2 · 3 · 5 · 7 = p1 · p2 · p3 · p4. When n = 5, we have p2

6 =
169 < 2310 = 2 · 3 · 5 · 7 · 11 = p1 · · · p5. When n = 6, we have p2

7 = 172 = 289 < 30030 = p1 · · · p6.
When n = 7, we have p2

8 = 192 = 361 < 510510 = p1 · · · p7. When n = 8, we have p2
9 = 232 = 529 <

9699690 = p1 · · · p8. When n − 9, we have p2
10 = 292 = 841 < 223092870 = p1 · · · p9, which verifies

all remaining cases.

3.2.29. Suppose n has the stated property and n ≥ p2 for some prime p. Since p2 is not prime, there must a
prime dividing both p2 and n, and the only possibility for this is p itself, that is, p|n. Now if n ≥ 72, then
it is greater than 22, 32, and 52 and hence divisible by 2, 3, 5, and 7. This is the basis step for induction.
Now assume n is divisible by p1, p2, . . . , pk. By Bonse’s inequality p2

k+1 < p1p1 · · · pk < n, so pk+1|n
also. This induction implies that every prime divides n, which is absurd. Therefore if n has the stated
property, it must be less than 72 = 49.

Now we note that the integers less that 30 sharing no common prime factor with 30 are 1, 7, 11, 13,
17, 19, 23 and 29, all of which are prime or 1. So 30 has the property. It remains to show that the numbers
from 31 to 48 do not have the property. We exhibit a counterexample in each case. For n = 31, 33, 35,
37, 39, 41, 43, 45 and 47 we note that k = 8 shares no prime factor with n, and yet is not prime. For n =
32, 34, 38, 40, 44 and 46, we note that k = 9 shares no prime factor with n and yet is not prime. For the re-
maining cases n = 36, 42, and 48, we note that k = 25 shares no prime factor with n and yet is not prime.

3.2.30. From part (c) in Exercise 28, we have that when n ≥ 10 then pn+1 < p1p2 · · · pk−1pk for some k ≥ 5
such that n − k ≥ k. By Bertrand’s postulate, we have pn+1 < pn+2 < 2pn+1,so we have pn+1pn+2 <
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pn+12pn+1 < (p1p2 · · · pk)(2p1p2 · · · pk). Since 2p1 = 4 < 5 ≤ pk+1 and since pi < pk+i for i > 1 we have
the last expression less than p1p2 · · · pkpk+1pk+2 · · · p2k < p1 · · · pn, since n− k ≥ k implies 2k < n. It re-
mains to check the cases for 4 ≤ n < 10. When n = 9, we have p10p11 = 29 · 31 = 899 < 2 · 3 · 5 · 7 · 11 · 13 ·
17 ·19 ·23 = 223092870. When n = 8, we have p9p10 = 23 ·29 = 677 < 2 ·3 ·5 ·7 ·11 ·13 ·17 ·19 = 9699690.
When n = 7, we have p8p9 = 19 · 23 = 437 < 2 · 3 · 5 · 7 · 11 · 13 · 17 = 510510. When n = 6, we have
p7p6 = 17 · 19 = 232 < 2 · 3 · 5 · 7 · 11 · 13 = 30030. When n = 5, we have p6p5 = 13 · 17 = 221 < 2310 =
2·3·5·7·11. And when n = 4 we have p5p6 = 11·13 = 143 < 2·3·5·7 = 210, which completes all the cases.

3.2.31. First suppose n ≥ 8. Note that by Bertrand’s postulate we have pn−1 < pn < 2pn−1 and pn−2 < pn−1 <
2pn−2. Therefore, p2

n < (2pn−1)(2pn−1) < (2pn−1)(4pn−2) = 8pn−1pn−2 = pn−1pn−2p5 ≤ pn−1pn−2pn−3,
since n ≥ 8. All that remains is to check that the inequality it true for n = 6 and 7. When n = 7 we have
p2
7 = 172 = 289 < 1001 = 13 ·11 ·7 = p6p5p4, and when n = 6 we have p2

6 = 132 = 169 < 385 = 11 ·7 ·5 =
p5p4p3. This completes the proof. To see that the inequality does not hold for smaller n, we check that
for n = 5, we have p2

5 = 112 = 121 > 7 · 5 ·3 = 105 and when n = 4, we have p2
4 = 72 = 49 > 5 · 3 ·2 = 30.

3.2.32. Let n be a sufficiently large integer and consider the sequence of primes 3 = p2 < p3 < · · · < pn. Let S
be the set {pi+1 − pi|i = 2, . . . , n− 1} of n− 2 differences between successive primes up to pn. Note that
some differences may be repeated, and since each of the primes is odd, every difference is even. Suppose
there are at least [(n − 2)/N ] elements in S, then there is one difference of at least 2, another difference
of at least 4, and so on up to [(n− 2)/N ]. Thus, pn− p2 = (pn− pn−1) + (pn−1− pn−2) + · · ·+ (p3− p2) ≥
2 + 4 + · · · 2[(n − 2)/N ] = 2([(n − 2)/N ]([(n − 2)/N ] + 1)/2. Now the right hand side is asymptotic to
n2/M2, but by the prime number theorem, the left hand side is asymptotic to n log n, which is impos-
sible. Therefore, there are less than [(n − 2)/N ] elements in S. Since we must assign n − 2 differences
among less than [(n − 2)/N ] values, at least one value, say K is assigned to more than N differences.
Otherwise we would have less than [(n− 2)/N ]N < n− 2 differences.

3.3. Greatest Common Divisors
3.3.1. a. The positive divisors of 15 are 1, 3, 5, and 15 and the positive divisors of 25 are 1, 5, and 25. Hence

the greatest common divisor of 15 and 25 is 5.

b. Every positive integer is a divisor of 0. Hence the greatest common divisor of 0 and 111 is 111.

c. The positive divisor of −12 are 1, 2, 3, 4, 6, and 12 and the positive divisors of 18 are 1, 2, 3, 6, 9, and
18. Hence the greatest common divisor of −12 and 18 is 6.

d. No positive integer greater than 1 can divide 99 and 100 since any common divisor of 99 and 100
divides 100− 99 = 1. Hence the greatest common divisor of 99 and 100 is 1.

e. The positive divisors of 11 are 1 and 11 and the positive divisors of 121 are 1, 11, and 121. Hence
the greatest common divisor of 11 and 121 is 11.

f. A common divisor of 100 and 102 is also a divisor of 102− 100 = 2. Since 2 is a common divisor of
100 and 102, 2 is the greatest common divisor of these integers.

3.3.2. a. The positive divisors of 5 are 1 and 5 and the positive divisors of 15 are 1, 5, and 15. Therefore, the
greatest common divisor of 5 and 15 is 5.

b. Every positive integer is a divisor of 0. Hence the greatest common divisor of 0 and 100 is 100.

c. The positive divisors of −27 are 1, 3, 9, and 27. The positive divisors of −45 are 1, 3, 5, 9, 15, and 45.
It follows that the greatest positive divisor of −27 and −45 is 3.

d. The greatest common divisor of −90 and 100 will also divide their sum, 10. As 10 divides −90 and
100, the greatest common divisor of −90 and 100 is 10.
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e. The positive divisors of 121 are 1, 11, and 121. Of these, 11 and 121 do not divide 100. Hence the
greatest common divisor of 100 and 121 is 1.

f. The positive divisors of 289 are 1, 17, and 289. As neither 17 nor 289 divide 1001, the greatest com-
mon divisor of 289 and 1001 is 1.

3.3.3. The greatest common divisor of a and 2a is also a divisor of their difference, 2a− a = a. As a divides
both a and 2a, the greatest common divisor of a and 2a is a.

3.3.4. Since a is a common divisor of a and a2 and a can have no divisor larger than itself, we have (a, a2) =
a.

3.3.5. As (a+1, a) is the least positive linear combination of a and a+1, it is clear that (a+1, a) ≤ (a+1)−a =
1. It follows that (a + 1, a) = 1.

3.3.6. A common divisor of a and a + 2 is also a divisor of (a + 2) − 2 = 2. Hence if a is even, the greatest
common divisor of a and a + 2 is 2, since 2 does divide both of these integers, while if a is odd, then the
greatest common divisor of a and a + 2 is 1.

3.3.7. By Theorem 3.8, (ca, cb) = cma + cnb = |c| · |ma + nb|, where cma + cnb is as small as possible. There-
fore, |ma + nb| is as small a positive integer as possible, i.e. equal to (a, b).

3.3.8. Suppose that d | (a + b) and d | (a − b). Then d | ((a + b) + (a − b)) = 2a and d | ((a + b) −
(a − b)) = 2b. Note that by Exercise 5 (2a, 2b) = 2(a, b) = 2. Since d is a common divisor of 2a and 2b it
follows that d | 2. Hence either d = 1 or d = 2. Moreover, if one of a and b is even and the other odd,
then both a + b and a− b are odd, so that (a + b, a− b) = 1. If both a and b are odd then both a + b and
a− b are even, so that (a + b, a− b) = 2.

3.3.9. Let p be a prime dividing (a2 + b2, a + b). Then p | (a + b)2 − (a2 + b2) = 2ab. Now if p | a, then p | b
since p | a + b. But (a, b) = 1, so p - a. Similarly, p - b. Therefore p | 2 and so p = 1 or p = 2. If a and b
have the same parity, then 2|a + b and 2|a2 + b2, and so (a2 + b2, a + b) = 2. But if a and b have opposite
parity, then a + b and (a2 + b2, a + b) = 1.

3.3.10. Let the least positive linear combination of a and b be (a, b) = an + bm. Now, an + bm = (a/2)(2n) +
(b/2)(2m) = 2((a/2)n+(b/2)m) ≥ 2(a/2, b/2). To see the reverse inequality, expand (a/2, b/2) as a small-
est positive linear combination and proceed similarly. As (a, b) ≤ 2(a/2, b/2) and (a, b) ≥ 2(a/2, b/2), we
see that (a, b) = 2(a/2, b/2).

3.3.11. Let a = 2k. Since (a, b) | b, and b is odd, (a, b) is odd. But (a, b) | a = 2k. Thus (a, b) | k. So (a, b) =
(k, b) = (a

2 , b).

3.3.12. As c | (a + b), a + b = cn for some n. It can be seen from this that any common divisor of a and c is
also a divisor of b, hence of (a, b). Similarly, (b, c) = 1.

3.3.13. Let d = (a, b). Then (a/d, b/d) = 1, so if g|a/d, then (g, b/d) = 1. In particular, if we let e = (a/d, bc/d),
then e|a/d, so (e, b/d) = 1, so we must have e|c. Since e|a/d, then e|a, so e|(a, c). Conversely, if f =
(a, c), then (f, b) = 1, so (d, f) = 1, so f |a/d and trivially, f |bc/d. Therefore f |e, whence e = f . Then
(a, b)(a, c) = de = d(a/d, bc/d) = (a, bc).

3.3.14. a. By Theorem 3.8 there are integers u,v,r, and s such that 1 = ua + vb = ra + sc. Multiplication of
ua + vb and ra + sc shows that 1 = (uva + usc + vbr)a + (vs)bc. Hence by Theorem 2.2 it follows
that (a, bc) = 1.

b. Suppose that (ai, b) = 1 for i = 1, 2, . . . , n. Let Ai =
∏i

j=1 aj . We wish to prove that (An, b) = 1. We
use mathematical induction. The basis case, n = 2 was shown in part (a). For the inductive step,
assume that (Ai, b) = 1. Then since (ai+1, b) = 1, part (a) implies that (Ai+1, b) = 1 since Ai+1 =
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Aiai+1.

3.3.15. Let p, q, r be prime numbers. The set {pq, qr, pr} is a set of three integers that are mutually relatively
prime, but no two of which are relatively prime.

3.3.16. We can take 30, 42, 70, and 105. We find these by taking all products of three different primes in the
set {2, 3, 5, 7}. We have (30, 42, 70, 105) = 1, but (30, 42, 70) = 2, (30, 70, 105) = 5, (30, 42, 105) = 3,
(42, 70, 105) = 7.

3.3.17. a. We have (8, 10, 12) = 2.

b. We have (5, 25, 75) = 5.

c. We have (99, 9999, 0) = 99.

d. We have (6, 15, 21) = 3.

e. We have (−7, 28,−35) = 7.

f. We have (0, 0, 1001) = 1001

3.3.18. We have (66,105,42) = 3, (66,105,70) = 1, (66,105,165) = 3, (66,42,70) = 2, (66,42,165) = 3, (66,70,165) =
1, (105,42,70) = 7, (105,70,165) = 5, and (42,70,165) = 1. Hence there are three sets of mutually relatively
prime integers in this set, namely {66, 105, 70} , {66, 70, 105},and {42, 70, 165}.

3.3.19. Let d | ai, 1 ≤ i ≤ n. Then clearly dc | cai, 1 ≤ i ≤ n. So dc | (ca1, ca2, . . . , can). To see the other direc-
tion, note that c | cai for all i, so c | (ca1, ca2, . . . , can) = d. Express d as d = cd′, where d′ is as great as
possible. But since cd′ | cai, d

′ | ai and d′|(a1, a2, . . . , an), say d′k = (a1, a2, . . . , an). If k > 1, this contra-
dicts the maximality of d′, so we must have d′ = (a1, a2, . . . , an).

3.3.20. We use induction on n. The basis step is done by Theorem 3.8. For the inductive step, we use Lemma
2.1. Thus (a1, . . . an) = (a1, . . . , (an−1, an)) = m1a1 + · · · + mn−1(an−1, an), by the inductive hypoth-
esis. Now m1a1 + · · · + mn−1(an−1, an) = m1a1 + · · · + mn−1(m

′
n−1an−1 + m

′
nan) = m1a1 + · · · +

mn−1m
′
n−1an−1 + mn−1m

′
nan. This completes the proof.

3.3.21. Suppose that (6k + a, 6k + b) = d. Then d | b − a. We have a, b ∈ {−1, 1, 2, 3, 5} , so if a < b it follows
that b− a ∈ {1, 2, 3, 4, 6}. Hence d ∈ {1, 2, 3, 4, 6}. To show that d = 1 it is sufficient to show that neither
2 nor 3 divides (6k + a, 6k + b). If p = 2 or p = 3 and p | (6k + a, 6k + b) then p | a and p | b. However,
there are no such pairs a, b in the set {−1, 1, 2, 3, 5}.

3.3.22. We have 5(3k + 2)− 3(5k + 3) = 1 , so that by Theorem 3.8,3k + 2 and 5k + 3 are relatively prime.

3.3.23. We proceed with the Euclidean algorithm. 8a + 3 = 1(5a + 2) + (3a + 1). 5a + 2 = 1(3a + 1) + (2a + 1).
3a + 1 = 1(2a + 1) + (a). 2a + 1 = 2(a) + (1). Therefore (8a + 3, 5a + 2) = 1.

3.3.24. Let d = (a + 2b, 2a + b). Then d | 2(a + 2b) − (2a + b) = 3b. Likewise, d | 3a. Hence, d | (3a, 3b) =
3(a, b) = 3. Therefore, d = 1 or 3.

3.3.25. From Exercise 21, we know that 6k − 1, 6k + 1, 6k + 2, 6k + 3, and 6k + 5 are pairwise relatively
prime. To represent n as the sum of two relatively prime integers greater than one, let n = 12k + h, 0 ≤
h < 12. We now examine the twelve cases, one for each possible value of h, in the following chart:
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h n
0 (6k − 1) + (6k + 1)
1 (6k − 1) + (6k + 2)
2 (6k − 1) + (6k + 3)
3 (6k + 1) + (6k + 2)
4 (6k + 1) + (6k + 3)
5 (6k + 2) + (6k + 3)
6 (6k + 1) + (6k + 5)
7 (6k + 2) + (6k + 5)
8 (6k + 3) + (6k + 5)
9 (12k + 7) + 2
10 (12k + 7) + 3
11 (12k + 9) + 2

3.3.26. The Farey series of order 7 is 0
1 , 1

7 , 1
6 , 1

5 , 1
4 , 2

7 , 1
3 , 2

5 , 3
7 , 1

2 , 3
5 , 4

7 , 2
3 , 5

7 , 3
4 , 4

5 , 5
6 , 6

7 , 1
1 .

3.3.27. Let S be the set of all fractions P/Q = (xa+ye)/(xb+yf) where x, y are relatively prime positive inte-
gers. Then every element of S lies between a/b and e/f and is in lowest terms. The first element of S to
appear in a Farey series will have the smallest Q, i.e. x = y = 1. This fraction must be c/d by hypothesis.

3.3.28. Let x0, y0 be a solution to the Diophantine equation bx − ay = 1. Then x = x0 + at, y = y0 + bt is a
solution for any integer t. Choose t0 so that n − b < y0 + bt0 ≤ n. Then x = x0 + at0, y = y0 + bt0 is
a solution such that (x, y) = 1 and 0 ≤ n − b < y ≤ n. Since x/y is in lowest terms, and y ≤ n, it is a
fraction of the nth Farey series. Also

x

y
=

a

b
+

1
by

>
a

b
,

so that x/y comes later than a/b in the series. If it is not c/d, then it comes later in the series than c/d, and
x

y
− c

d
=

dx− cy

dy
≥ 1

dy
,

and
c

d
− a

b
=

bc− ad

bd
≥ 1

bd
.

Hence
1
by

=
bx− ay

by
=

x

y
− a

b
≥ 1

dy
+

1
bd

=
b + y

bdy
>

n

bdy
≥ 1

by
,

which is a contradiction. Therefore, x/y must be c/d and bc− ad = 1.

3.3.29. Since a/b < (a + c)/(b + d) < c/d, we must have b + d > n, or a/b and c/d would not be consecutive,
since otherwise, (a + c)/(b + d) would have appeared in the Farey series of order n.

3.3.30. a. Let c = a− b. We may then write (an− bn)/(a− b) as ((b+ c)n− bn)/c. The binomial theorem shows
that this is nbn−1 + k · c. Thus (((b+ c)n− bn)/c, c) divides (nbn−1, c). Rewriting (an− bn)/(a− b) as
(an − (a− c)n)/c shows that (((b + c)n − bn)/c, c) divides (nan−1, c). Therefore (((b + c)n − bn)/c, c)
divides (n(a, b)n−1, c). These expansions also make it clear that (n(a, b)n−1, c) is a divisor of (an −
bn)/(a− b).

b. If a and b are relatively prime then (a, b) = 1. Apply part (a).

3.3.31. Since (a/b)+ (c/d) = (ad+ bc)/bd is an integer, bd | ad+ bc. Certainly, then, bd | d(ad+ bc) = ad2 + cbd.
Now since bd | cbd, it must be that bd | ad2. From this, bdn = ad2 for some integer n, and it follows that
bn = ad, or b | ad. Since (a, b) = 1, we must have b | d. Similarly, we can find that d | b hence, b = d.

3.3.32. We can conclude that b = 1, and a = c = 1 or 2. To see this, note that as (1/a) + (1/b) + (1/c) =
(bc + ac + ab)/abc is an integer, abc | bc + ac + ab. Continuing as in Exercise 29, abc | c(bc + ac + ab) =
abc + (bc2 + ac2). Now, we have that abc | bc2 + ac2 = c(bc + ac), or equivalently (as c 6= 0) ab | bc + ac.
But, b | ab and ab | bc + ac, from which it follows that b | ac. Using Exercise 11, we can now see that b |
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(a, b)(c, b) = 1 · 1 = 1, and so b = 1. Now, if (1/a) + (1/b) + (1/c) is an integer, then so is (1/a) + (1/c).
We now have the situation of Exercise 29, and so a = c. And (1/a) + (1/c) = 2/a is an integer only if a |
2, i.e. when a = 1 or 2.

3.3.33. Consider the lattice points inside or on the triangle with vertices (0, 0), (a, 0), and (a, b). Note that a
lattice point lies on the diagonal from (0, 0) to (a, b) if and only if [bx/a] is an integer. Let d = (a, b) and
a = cd, so that (c, b) = 1. Then [bx/a] will be an integer exactly when x is a multiple of c, since then d|b
and c|x so then a = cd|bx. But there are exactly d multiples of c less than or equal to a since cd = a, so
there are exactly d + 1 lattice points on the diagonal when we count (0, 0) also. So one way to count the
lattice points in the triangle is to consider the rectangle which has (a + 1)(b + 1) points and divide by 2.
But we need to add back in half the points on the diagonal, which gives us (a+1)(b+1)/2+((a, b)+1)/2
total points in or on the triangle. Another way to count all the points is to count each column above the
horizontal axis, starting with i = 1, 2, . . . , a−1. The equation of the diagonal is y = (b/a)x, so for a given
i, the number of points on or below the diagonal is [bi/a]. So the total number of interior points in the
triangle plus the points on the diagonal is

∑a−1
i=1 [bi/a]. Then the right-hand boundary has b points (not

counting (a, 0)) and the lower boundary has a+1 points, counting (0, 0). So in all, we have
∑a−1

i=1 [bi/a]+
a + b + 1 points in or on the triangle. If we equate our two expressions and multiply through by 2 we
have (a + 1)(b + 1) + (a, b) + 1 = 2

∑a−1
i=1 [bi/a] + 2a + 2b + 2 which simplifies to our expression.

3.3.34. Let k = j − i, then (n!i + 1, n!j + 1) = (n!i + 1, n!(i + k) + 1) = (n!i + 1, n!i + 1 + n!k) = (n!i + 1, n!k)
by Theorem 3.7. But none of the divisors of n!k can divide n!i + 1, so this last greatest common divisor
is equal to 1, as desired.

3.3.35. Assume there are exactly r primes and consider the r + 1 numbers (r + 1)! + 1. From Lemma 3.1,
each of these numbers has a prime divisor, but from Exercise 34, these numbers are pairwise relatively
prime, so these prime divisors must be unique, so we must have at least r + 1 different prime divisors,
a contradiction.

3.3.36. First we prove by induction that (ai, d) = 1 for all i. Since a0 = c and (c, d) = 1 by hypothe-
sis, the basis step holds. Now suppose that (ai, d) = 1 for i = 0, 1, . . . , k. Then by Theorem 3.7, we
have (ak+1, d) = (a0a1 · · · ak + d, d) = (a0a1 · · · ak, d), and since d is relatively prime to every factor in
a0a1 · · · ak, we have that (ak+1, d) = 1, which completes the induction. Now let i < j, and consider
(ai, aj) = (ai, a0a1 · · · ai · · · aj−1 +d) = (ai, d) since we can subtract the multiple of ai from the right side
by Theorem 3.7. This last is equal to 1 from our work above, which proves the proposition.

3.4. The Euclidean Algorithm
3.4.1. a. We have 75 = 1 · 45 + 30, 45 = 1 · 30 + 15, 30 = 2 · 15 + 0, so (45, 75) = 15.

b. We have 222 = 2 · 102 + 18, 102 = 5 · 18 + 12, 18 = 1 · 12 + 6, 12 = 2 · 6 + 0, so (222, 102) = 6.

c. We have 1414 = 2 · 666 + 82, 666 = 8 · 82 + 10, 82 = 8 · 10 + 2, 10 = 5 · 2 + 0, so (1414, 666) = 2.

d. We have 44350 = 2 · 20785 + 2780, 20785 = 7 · 2780 + 1325, 2780 = 2 · 1325 + 130, 1325 = 10 · 130 +
25, 130 = 5 · 25 + 5, 25 = 5 · 5 + 0, so (44350, 2780) = 5.

3.4.2. a. We have 87 = 1 · 51 + 36, 51 = 1 · 36 + 15, 36 = 2 · 15 + 6, 15 = 2 · 6 + 3, 6 = 2 · 3, so (51, 87) = 3.

b. We have 300 = 2 · 105 + 90, 105 = 1 · 90 + 15, 90 = 6 · 15 so (105, 300) = 15.

c. We have 1234 = 1 · 981 + 253, 981 = 3 · 253 + 222, 253 = 1 · 222 + 31, 222 = 7 · 31 + 5, 31 = 6 · 5 + 1,
so (981, 1234) = 1.

d. We have 100313 = 2 ·34709+30895, 34709 = 1 ·30895+3814, 30895 = 8 ·3814+383, 3814 = 9 ·383+
367, 383 = 1 · 367 + 16, 367 = 22 · 16 + 15, 16 = 1 · 15 + 1, so (34709, 100313) = 1.
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3.4.3. a. We have q1 = 1, q2 = 1, q3 = 2, so s0 = 1, s1 = 0, s2 = s0 − q1s1 = 1, s3 = s1 − q2s2 = −1 and t0 =
0, t1 = 1, t2 = t0 − q1t1 = −1, t3 = t1 − q2t2 = 2. Thus, (75, 45) = (−1)75 + (2)45.

b. We have q1 = 2, q2 = 5, q3 = 1, so s0 = 1, s1 = 0, s2 = 1, s3 = −5, s4 = 6 and t0 = 0, t1 = 1, t2 =
−2, t3 = 11, t4 = −13. Thus (222, 102) = (6)222 + (−13)102.

c. We have, from Exercise 1(c), that 2 = 82− 8 · 10 == (1414− 2 · 666)− 8(666− 8 · 82) = 1414− 10 ·
666 + 64(1414− 2 · 666) = −138(666) + (65)1414.

d. We have, from Exercise 1(d), that 5 = 130− 5 · 25 = (2780− 2 · 1325)− 5(1325− 10 · 130) = (44350−
2 · 20785)− 7(20785− 7 · 2780) + 50(2780− 2 · 1325) = 44350− 9 · 20785 + 99(44350− 2 · 20785)−
100(20785−7 ·2780) = 100 ·44350−307 ·20785−7(44350−2 ·20785) = −1707(20785)+800(44350).

3.4.4. a. We have, from Exercise 2(a), that 3 = 15− 2 · 6 = (51− 36)− 2(36− 2 · 15) = 51− 3(87− 51)+4(51−
36) = 8(51)− 3(87)− 4(87− 51) = 12(51)− 7(87).

b. We have, from Exercise 2(b), that 15 = 105− 90 = 105− (300− 2 · 105) = 3(105)− 1(300) = 15.

c. We have, from Exercise 2(c), that 1 = 31 − 6 · 5 = (253 − 222) − 6(222 − 7 · 31) = (1234 − 981) −
7(981− 3 · 253) + 42(253− 222) = 1234− 8(981) + 63(1234− 981)− 42(981− 3 · 235) = 64(1234)−
113(981) + 126(1234− 981) = −239(981) + 190(1234).

d. We have, from Exercise 2(d), that 1 = 16− 15 = (383− 367)− (367− 22 · 16) = (30895− 8 · 3814)−
2(3814− 9 · 383) + 22(383− 367) = (100313− 2 · 34709)− 10(34709− 30895) + 40(30895− 8 · 3814)−
22(3814− 9 · 383) = 100313− 12(34709)+50(100313− 2 · 34709)− 342(34709− 30895)+198(30895−
8 ·3814) = 51(100313)−454(34709)+540(100313−2 ·34709)−1584(34709−30895) = 591(100313)−
3118(34709) + 1584(100313− 2 · 34709) = −6286(34709) + 2175(100313).

3.4.5. a. We have (6, 10, 15)((6, 10), 15) = (2, 15) = 1.

b. We have (70, 98, 105) = (70, (98, 105)) = (70, (98, 105− 98)) = (70, (98, 7)) = (70, 7) = 7.

c. We have (280, 330, 405, 490) = (10(28, 33), 5(81, 98)) = (10, 5) = 5.

3.4.6. a. We have (15, 35, 90) = ((15, 35), 90) = (5, 90) = 5.

b. We have (300, 2160, 5040) = 20(15, 108, 252) = 20((15, 108), 252) = 20(3, 252) = 20 · 3 = 60.

c. We have (1240, 6660, 15540, 19980) = 20((62, 333), (777, 999)) = 20(1, 111) = 20.

3.4.7. a. Since (6, 10) = 2 = 2 · 6 − 10, we have 1 = (6, 10, 15) = (2, 15) = 8 · 2 − 15 = 8(2 · 6 − 10) − 15 =
16 · 6− 8 · 10− 15.

b. Since (70, 98) = 14 = 3 · 70 − 2 · 98, we have 7 = (70, 98, 105) = (14, 105) = 105 − 7 · (14) = 105 −
7(3 · 70− 2 · 98) = 105− 21 · 70 + 14 · 98.

c. Since (280, 330) = 10 = 17 · 330 − 20 · 280, and (405, 490) = 5 = −75 · 405 + 62 · 490, we have
(280, 330, 405, 490) = 5 = 0 · 280 + 0 · 330− 75 · 405 + 62 · 490.

3.4.8. a. Since (15, 35) = 5 = −2 · 15 + 35, we have (15, 35, 90) = 5 = −2 · 15 + 1 · 35 + 0 · 90.

b. Since (300, 2160) = 60 = −7·300+2160, we have (300, 2160, 5040) = 60 = −7·300+1·2160+0·5040.

c. We can write 20 = 188 · 1240− 35 · 6660 + 0 · 15540 + 0 · 19980, since (1240, 6660) = 20 = 188 · 1240−
35 · 6660.
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3.4.9. Applying the reductions in the algorithm we find that (2106, 8318) = 2(1053, 4159) = 2(3106, 1053) =
2(1553, 1053) = 2(500, 1053) = 2(250, 1053) = 2(125, 1053) = 2(125, 928) = 2(125, 464) = 2(125, 232) =
2(125, 116) = 2(125, 58) = 2(125, 29) = 2(96, 29) = 2(48, 29) = 2(24, 29) = 2(12, 29) = 2(6, 29) =
2(3, 29) = 2(3, 26) = 2(3, 13) = 2(3, 10) = 2(3, 5) = 2(3, 2) = 2(3, 1) = 2(2, 1) = 2(1, 1) = 2.

3.4.10. Since (a, b) = (±a,±b), we assume a and b to be always positive. The exercise then follows from
Exercises 8 and 9 from Section 3.3, and Theorem 3.7 with c = −1. The algorithm terminates since the
magnitude of the two arguments’ sum is always decreasing and positive.

3.4.11. The algorithm stops after 2n − 2 steps. To prove this we use mathematical induction. When n = 2,
a = 1 and b = 2. The first step leaves a = 1 and b = 1, and the second step will find the g.c.d.. Thus, the
basis step holds. For the inductive hypothesis, we assume that the algorithm uses 2n − 2 steps to find
the g.c.d.. of (2n − (−1)n)/3 and (2(2n−1 − (−1)n−1)/3. To find the g.c.d. of (2n+1 − (−1)n+1)/3 and
(2(2n− (−1)n))/3, the first step reduces this to the g.c.d. of (2n+1− (−1)n+1)/3 and (2n− (−1)n)/3. The
next step, as neither of these numbers is even, gives us (2n− (−1)n)/3 and (1/3)(2n+1− (−1)n+1− 2n +
(−1)n) = (1/3)(2n + 2(−1)n) = (2/3)(2n−1 − (−1)n−1). By the inductive hypothesis, the algorithm will
take 2n− 2 more steps, for a total of 2n = 2(n− 1)− 2 steps.

3.4.12. Let S(a, b) be the number of subtractions needed to find (a, b) using this algorithm. Then S(a, b) =
S(b, a), and if a is even, S(a, b) = S(a/2, b), so we may assume that both a and b are odd, and a ≥ b.
We proceed by induction on a. Note that S(b, b) = 1 ≤ 1 + [log2 max(b, b)]. Now suppose that S(c, b) ≤
1 + [log2 max(c, b)] for all c = b, b + 1, b + 2, . . . , a − 1. Since a and b are odd, the first step of the algo-
rithm will be (a, b) = (a − b, b), then since b is odd and a − b is even, the next step will be (a − b, b) =
((a − b)/2, b). So S(a, b) = 1 + S((a − b)/2, b) ≤ 1 + [log2 max((a − b)/2, b)] ≤ 1 + [log2(a/2 + b/2)] =
1 + [log2(a + b)/2] ≤ 1 + [log2 max(a, b)], which completes the induction step.

3.4.13. Suppose we have the balanced ternary expansions for integers a ≥ b. If both expansions end in zero,
then both are divisible by 3, and we can divide this factor of 3 out by deleting the trailing zeros (a shift)
in which case (a, b) = 3(a/3, b/3). If exactly one expansion ends in zero, then we can divide the factor of
3 out by shifting, and we have (a, b) = (a/3, b), say. If both expansions end in 1 or in−1, we can subtract
the larger from the smaller to get (a, b) = (a − b, b), say, and then the expansion for a − b ends in zero.
Finally, if one expansion ends in 1 and the other in −1, then we can add the two to get (a + b, b), where
the expansion of a + b now ends in zero. Since a + b is no larger than 2a and since we can now divide
a + b by three, the larger term is reduced by a factor of at least 2/3 after two steps. Therefore this algo-
rithm will terminate in a finite number of steps, when we finally have a = b = 1.

3.4.14. We have 384 = 2 · 226− 68, 226 = 3 · 68 + 14, 68 = 5 · 14− 2, 14 = 7 · 2. Hence (384, 226) = 2.

3.4.15. Lemma: If c and d are integers and c = dq ± r where q and r are integers, then (c, d) = (d, r).
Proof of Lemma: If an integer e divides both c and d, then since r = ±(c − dq), Theorem 1.8 shows

that e | r. If e | d and e | r, then since c = dq + r, from Theorem 1.8 we see that e | c. Since the common
divisors of c and d are the same as the common divisors of d and r, we see that (c, d) = (d, r).

Proof of proposition: Let r0 = a and r1 = b be positive integers with a ≥ b. By successively applying
the least-remainder division algorithm, we find that

r0 = r1q1 + e2r2,
−r1

2
< e2r2 ≤ r1

2
...

rn−2 = rn−1qn−1 + enrn,
−rn−1

2
< enrn ≤ rn−1

2
rn−1 = rnqn.

We eventually obtain a remainder of zero since the sequence of remainders a = r0 > r1 > r2 > · · · ≥
0 cannot contain more than a terms. By the Lemma we see that (a, b) = (r0, r1) = (r1, r2) = · · · =
(rn−2, rn−1) = (rn−1, rn) = (rn, 0) = rn. Hence (a, b) = rn, the last nonzero remainder.
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3.4.16. Let E(a, b) be the number of steps to find (a, b) with the Euclidean algorithm, and L(a, b) the number
of steps to find (a, b) with the least-remainder algorithm. Note that if the first step of the Euclidean al-
gorithm produces r2 (with r0 = a and r1 = b), then E(a, b) = 1 + E(b, r2). For this to work with r2 = 0,
we define E(a, 0) = 0. Similarly, for the least-remainder algorithm, L(a, b) = 1 + L(b, r2) with L(a, 0) =
0. Following the hint, we prove that L(a, b) ≤ L(a, a− b) if a and b are positive integers with 2b < a. We
use mathematical induction on b. Clearly it is true for b = 1, since L(a, 1) = 1 ≤ L(a, a − 1). So we can
assume L(a′, b′) ≤ L(a′, a′ − b′) for all positive integers a′, b′ with 2b′ < a′ and b′ < b. Consider the first
step of the least-remainder algorithm for (a, a − b). We can write a = (a − b) + b, giving r2 = b if b ≤
(a− b)/2, i.e. a ≥ 3b, or a = 2(a− b)− (a− 2b), giving r2 = a− 2b if a− 2b < (a− b)/2, i.e. a < 3b. Thus
if a ≥ 3b, we get L(a, a− b) = 1 + L(a− b, b). But L(a− b, b) = L(a, b) (the remainders after division by
b are the same), so in this case L(a, b) < L(a, a − b). Now suppose 2b < a < 3b. We have L(a, a − b) =
1 + L(a− b, a− 2b). Consider the first step of the least-remainder algorithm for (a, b). We can write a =
2b + (a− 2b), giving r2 = a− 2b if a− 2b ≤ b/2, i.e. a ≤ 5b/2, or a = 3b− (3b− a), giving r2 = 3b− a if
3b − a < b/2, i.e. a > 5b/2. If 2b < a ≤ 5b/2 we have L(a, b) = 1 + L(b, a − 2b). But L(a − b, a − 2b) =
L(b, a − 2b) since a − b = b + (a − 2b). So in this case L(a, b) = L(a, a − b). Finally, if 5b/2 < a < 3b we
have L(a, b) = 1 + L(b, 3b− a). We need to show that L(b, 3b− a) ≤ L(a− b, a− 2b) = L(b, a− 2b). But
this is L(a′, b′) ≤ L(a′, a′ − b′) with a′ = b and b′ = 3b − a. Note that a′ > 2b′ (i.e. a > 5b/2) and b′ < b
(i.e. a > 2b), so this is true by the induction hypothesis. This completes the proof of the hint. Now, to
prove that L(a, b) ≤ E(a, b), we will again use induction on b. For b = 1 we have L(a, 1) = 1 = E(a, 1).
So we can assume L(a′, b′) ≤ E(a′, b′) for all positive integers a′, b′ with b′ < b. Consider the first step
of the Euclidean algorithm for (a, b): a = qb + r where 0 ≤ r < b, and E(a, b) = 1 + E(b, r). Now if r ≤
b/2, this is also the first step of the least-remainder algorithm, i.e. L(a, b) = 1 + L(b, r) ≤ 1 + E(b, r) =
E(a, b) by the induction hypothesis. On the other hand, if r > b/2, the first step of the least-remainder
algorithm is a = (q + 1)b− (b− r) with b− r < b/2, and L(a, b) = 1 + L(b, b− r). But since 2(b− r) < b,
the result of the hint says that L(b, b − r) ≤ L(b, r). So, again using the induction hypothesis, L(a, b) ≤
1 + L(b, r) ≤ 1 + E(b, r) = E(a, b), as desired.

3.4.17. Let v2 = v3 = 2, and for i ≥ 4, vi = 2vi−1 + vi−2. Thus the least remainder algorithm will proceed
with ei = 1 and qi = 2 for all i. To prove this we use induction. It clearly requires one division in the
least-remainder division algorithm to find the g.c.d. of v2 and v3. This completes the basis step. For the
induction hypothesis, we assume that it takes n steps to find the g.c.d. of vn+1 and vn+2. To find the
g.c.d. of vn+2 and vn+3, the first step will be: vn+3 = 2vn+2 + vn+1 by the definition of our vi’s. From
this point, the algorithm will look identical to that for vn+1 and vn+2. By our induction hypothesis, this
will require n more steps. Hence, the total number of steps is n + 1.

3.4.18. In the algorithm, starting with a = r0 and b = r1, we have, if r2 6= 0, r1 = q2r2 + e3r3 ≥ 2r2 + r3,
(since r1 ≥ 2r2 and r2 ≥ 2r3, so q2 = r1/r2 − e3r3/r2 ≥ 3/2, and hence q2 ≥ 2, and if q2 = 2 then e3

must be +1 and if q2 > 2 then r1 ≥ 3r2 − r3 ≥ 2r2 + r3). Iterating this, induction shows, if rj 6= 0, then
r1 ≥ cjrj + cj−1rj+1 where c1 = 1, c2 = 2 and cj+2 = 2cj+1 + cj . In particular, if (a, b) takes at least n

steps then rn ≥ 1 so b ≥ cn. We claim that cn ≥ 10((3n−4)/8). Thus if b has d digits, b < 10d, then (a, b)
must take fewer than n steps if d ≤ (3n − 4)/8, i.e. if n ≥ (8d + 4)/3. To prove the claim, note first
that c1 = 1 > 10(−1/8) and c2 = 2 > 10(2/8). If it is true for cj−2 and cj−1 then cj = 2cj−1 + cj−2 ≥
210((3j−7)/8) + 10((3j−10)/8) ≥ 10((3j−4)/8) since 210(−3/8) + 10(−6/8) = 1.021221 . . . > 1, as desired.

3.4.19. Performing the Euclidean algorithm with r0 = m and r1 = n, we find that r0 = r1q1 + r2, 0 ≤ r2 <
r1, r1 = r2q2 + r3, 0 ≤ r3 < r2, . . . , rk−3 = rk−2qk−2 + rk−1, 0 ≤ rk−1 < rk−2, and rk−2 = rk−1qk−1. We
have (m,n) = rk−1. We will use these steps to find the greatest common divisor am−1 and an−1. First,
we show that if u and v are positive integers, then the least positive residue of au − 1 modulo av − 1 is
ar − 1 where r is the least positive residue of u modulo v. To see this, note that u = vq + r where r is the
least positive residue of u modulo v. It follows that au−1 = avq+r−1 = (av−1)(av(q−1)+r + · · ·+av+r +
ar) + (ar − 1). This shows that the remainder is ar − 1 when au − 1 is divided by av − 1. Now let R0 =
am − 1 and R1 = an − 1. When we perform the Euclidean algorithm starting with R0 and R1 we obtain
R0 = R1Q1+R2, where R2 = ar2−1, R1 = R2Q2+R3 where R3 = ar3−1, . . . , Rk−3 = Rk−2Qk−2+Rk−1

where Rk−1 = ark−1−1. Hence the last nonzero remainder, Rk−1 = ark−1 − 1 = a(m,n) − 1 is the greatest
common divisor of am − 1 and an − 1.
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3.4.20. Suppose that m > n. Performing the Euclidean algorithm with r0 = m and r1 = n, we find that r0 =
r1q1 + r2, 0 ≤ r2 < r1, r1 = r2q2 + r3, with 0 ≤ r3 < r2, . . . , rt−2 = rt−1qt−1 + rt, with 0 ≤ rt < rt−1, and
rt−1 = rtqt. We have (m,n) = rt. We have (fm, fn) = (fr1q1+r2 , fn). Using the result of Exercise 38 of
Section 1.5 we have fr1q1−1fr1q1fr2+1. Since fr1 | fr1q1 it follows that (fm, fn) = (fr1q1−1fr2 , fr1). Hence
(fm, fn) = (fr1q1−1, fr1)(fr2 , fr1) = (fr2 , fr1) since fr1 | fr1q1 and (fr1q1−1, fr1q1) = 1. Similarly, we can
show that (fri−1 , fri−2) = (fri , fri−1) for all i. It follows that (fm, fn) = (frt , frt−1). Since rt is a divisor of
rt−1 it follows that frt

| frt−1 . Hence (frt
, frt−1) = frt

. Since rt = (m,n) it follows that (fm, fn) = f(m,n).

3.4.21. Note that (x, y) = (x − ty, y), as any divisor of x and y is also a divisor of x − ty. So, every move in
the game of Euclid preserves the g.c.d. of the two numbers. Since (a, 0) = a, if the game beginning with
{a, b} terminates, then it must do so at {(a, b), 0)}. Since the sum of the two numbers is always decreas-
ing and positive, the game must terminate.

3.4.22. First, we show the hint. For convenience, let g = (1 +
√

5)/2. If y < x ≤ yg, then the move {x, y} to
x− y, y is a legal move. But x− 2y < x− gy ≤ 0, so there is only one legal move. In this case, we have,
since g2 = g + 1, that, x ≤ yg, so xg ≤ y(g + 1) and hence zg = (x − y)g ≤ y, as desired. Now if a = b,
then the first player wins immediately. Suppose a > bg. Then let k be defined by kb < a < (k + 1)b. If
a− kb < b ≤ (a− kb)g, then the first player makes the move {a− kb, b}, which leaves the second player
in the situation of the hint. Therefore, the second player has only one move, which puts the first player
back into the situation with a > bg again. If, on the other hand, (a−kb)g < b, then the first player makes
the move {a−(k−1)b, b}, in which case, we have bg > (a−kb)g2 = (a−kb)(g+1) = (a−kb)g+(a−kb) >
b+(a−kb) = a− (k−1)b. Therefore, the second player is again put into the situation of the hint. Hence,
a player in the position a > bg can always force the other player to be in the situation in the hint.

3.4.23. Choose the integer m so that d has no more than m bits and that q has 2m bits, appending extra ze-
ros to the front of q if necessary. Then m = O(log2 q) = O(log2 d). Then from Theorems 2.7 and 2.5 we
know that there is an algorithm for dividing q by d in O(m2) = O(log2 q log2 d) bit operations. Now let
n be the number of steps needed in the Euclidean algorithm to find the greatest common divisor of a
and b. Then by Theorem 3.12, n = O(log2 a). Let qi and ri be as in the proof of Theorem 3.12. Then
the total number of bit operations for divisions in the Euclidean algorithm is

∑n
i=1 O(log2 qi log2 ri) =∑n

i=1 O(log2 qi log2 b) = O (log2 b
∑n

i=1 log2 qi) = O (log2 b log2

∏n
i=1 qi) . By dropping the remainder

in each step of the Euclidean algorithm, we have the system of inequalities ri ≥ ri+1qi+1, for i =
0, 1, . . . , n − 1. Multiplying these inequalities together yields

∏n−1
i=0 ri ≥

∏n
i=1 riqi. Cancelling common

factors reduces this to a = r0 ≥ rn

∏n
i=1 qi. Therefore, from above we have that the total number of bit

operations is O (log2 b log2

∏n
i=1 qi) = O(log2 b log2 a) = O((log2 a)2).

3.4.24. a. From the recursion relation, we have rjqj = rj−1 − rj+1 for 1 ≤ j ≤ n, so
∑n

j=1 rjqj = (r0 − r2) +
(r1 − r3) + · · ·+ (rn−2 − rn) + (rn−1 − rn+1) = r0 + r1 − rn − rn+1 = a + b− (a, b), where we notice
that the second sum is telescoping.

b. From the recursion relation, we have r2
j qj = rj(rj−1 − rj+1) = rj−1rj − rjrj+1, so

∑n
j=1 r2

j qj =
(r0r1 − r1r2) + · · ·+ (rn−1rn − rnrn+1) = r0r1 − rnrn+1 = ab, where we notice that the second sum
is telescoping.

3.4.25. We apply the Qi’s one at a time. When we multiply
(

qn 1
1 0

) (
rn

0

)
=

(
qnrn

rn

)
=

(
rn−1

rn

)
, the top

component is the last equation in the series of equations in the proof of Lemma 3.3. When we multi-

ply this result on the left by the next matrix we get
(

qn−1 1
1 0

)(
rn−1

rn

)
=

(
qn−1rn−1 + rn

rn−1

)
=

(
rn−2

rn−1

)
,

which is the matrix version of the last two equations the proof of Lemma 3.3. In general, at the ith step

we have
(

qn−i 1
1 0

)(
rn−i−1

rn−i

)
=

(
qn−irn−i−1 + rn−i

rn−i−1

)
=

(
rn−i−2

rn−i−1

)
, so that we inductively work our

way up the equations in the proof of Lemma 3.3, until finally we have
(

r0

r1

)
=

(
a
b

)
.
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3.5. The Fundamental Theorem of Arithmetic
3.5.1. a. We have 36 = 62 = 22 · 32.

b. We have 39 = 3 · 13.

c. We have 100 = 102 = 22 · 52.

d. We have 289 = 172.

e. We have 222 = 2 · 111 = 2 · 3 · 37.

f. We have 256 = 28.

g. We have 515 = 5 · 103.

h. We have 989 = 23 · 43.

i. We have 5040 = 10 · 504 = 2 · 5 · 4 · 126 = 24 · 32 · 5 · 7.

j. We have 8000 = 8 · 103 = 26 · 53.

k. We have 9555 = 3 · 5 · 72 · 13.

l. We have 9999 = 9 · 1111 = 32 · 11 · 101.

3.5.2. We have 111111 = 111 · 1001 = 3 · 37 · 7 · 11 · 13.

3.5.3. We have 4849845 = 3 · 5 · 7 · 11 · 13 · 17 · 19.

3.5.4. a. We have 100000 = 105, so the only prime factors are 2 and 5.

b. We have 10500000 = 105 · 105, so the only prime factors are 2, 3, 5 and 7.

c. If a prime divides 10!, then it must divide one of the factors from 1 to 10. Thus the only prime fac-
tors are those less than or equal to 10, namely 2, 3, 5 and 7.

d. We have
(
30
10

)
= (21 ·22 ·23 ·24 ·25 ·26 ·27 ·28 ·29 ·30)/(2 ·3 ·4 ·5 ·6 ·7 ·8 ·9 ·10) = 32 ·5 ·7 ·11 ·13 ·23 ·29.

3.5.5. a. We have 196608 = 2163.

b. We have 7290000 = 729 · 104 = 243654.

c. If a prime divides 20!, then it must divide one of the factors from 1 to 20. Thus the prime factors are
exactly those less than or equal to 20.

d. We have
(
50
25

)
= (26·27·28·29·30·31·32·33·34·35·36·37·38·39·40·41·42·43·44·45·46·47·48·49·50)/(2·

3·4·5·6·7·8·9·10·11·12·13·14·15·16·17·18·19·20·21·22·23·24·25) = 23327213·29·31·37·41·43·47.

3.5.6. If n = p2a1
1 p2a2

2 · · · p2ar
r then (pa1

1 pa2
2 · · · par

r )2 = n, so n is a perfect square. Conversely, if n = d2 for
some integer d with prime factorization d = pa1

1 pa2
2 · · · par

r , then n = d2 = p2a1
1 p2a2

2 · · · p2ar
r .

3.5.7. The integers with exactly three positive divisors are those of the form p2 where p is prime. The inte-
gers with exactly four positive divisors are those of the form pq or p3 where p and q are distinct primes.
These results can be proved considering the cases where the integer is a power of a prime, the product
of powers of two primes, and the product of powers of more that two primes.



3.5. THE FUNDAMENTAL THEOREM OF ARITHMETIC 53

3.5.8. Suppose that the primes in the factorization of n that occur to an even power are p1, . . . , pk and let
the power of pi in the factorization be 2bi and suppose that the primes that occur to an odd power are
q1, . . . , ql and let the power of qj in the factorization be 2cj + 1. Then n = (pb1

1 pb2
2 · · · pbk

k qc1
1 qc2

2 · · · qcl

l )2 ·
(q1q2 · · · ql). This is a factorization of n into a perfect square and a square-free integer.

3.5.9. Let n = p2a1
1 p2a2

2 · · · p2ak

k q2b1+3
1 q2b2+3

2 · · · q2bl+3
l be the factorization of a powerful number. Then n =

(pa1
1 pa2

2 · · · pak

k qb1
1 qb2

2 · · · qbl

l )2(q1q2 · · · ql)3 is a product of a square and a cube.

3.5.10. Let p be a prime divisor of a, and let pr be the highest power of p dividing a. Then p3r | a3, and hence
p3r | b2. Let ps be the highest power of p dividing b. Then 3r ≤ 2s. Therefore, r ≤ (2/3)s < s, and so pr |
b. Since this is true for all primes dividing a, we have a | b.

3.5.11. Suppose that pa || m and pb || n. Then m = paQ and n = pbR where both Q and R are products of
primes other than p. Hence mn = (paQ)(pbR) = pa+bQR. It follows that pa+b || mn since p does not
divide QR.

3.5.12. If pa || m then m = pan where p - n. Then p - nk and we have mk = pkank and we see that pka || mk.

3.5.13. Suppose that pa || m and pb || n with a 6= b. Then m = paQ and n = pbR where both Q and R are
products of primes other than p. Suppose, without loss of generality, that a = min(a, b). Then m + n =
paQ + pbR = pmin(a,b)(Q + pb−aR). Then p - (Q + pb−aR) because p - Q but p | pb−aR. It follows that
pmin(a,b) || (m + n).

3.5.14. To determine the power of p in the prime factorization of n! we can add the number of positive in-
tegers not exceeding n that are divisible by p, the number of positive integers not exceeding n that are
divisible by p2, the number of positive integers not exceeding n that are divisible by p3, and so on. This
will count the total number of factors of p in n! because it will count exactly once each factor of p in each
integer not exceeding n. Since there are [n/pi] positive integers not exceeding n that are divisible by pi,
it follows that the power of p in the prime factorization of n is [n/p] + [n/p2] + [n/p3] + · · · .

3.5.15. We know that in the prime power factorization of 20! the number 2 occurs [20/2] + [20/4] + [20/8] +
[20/16] = 10 + 5 + 2 + 1 = 18 times, 3 occurs [20/3] + [20/9] = 6 + 2 = 8 times, 5 occurs [20/5] = 4 times,
7 occurs [20/7] = 2 times, 11 occurs [20/11] = 1 time, 13 occurs [20/13] = 1 time, 17 occurs [20/17] = 1
time, and 19 occurs [20/19] = 1 time. Hence 20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19.

3.5.16. The number of 0’s at the end of 1000! in decimal notation is the minimum of the powers of 2 and 5
in the prime factorization of 1000!. This is the number of 5’s in the factorization since there are clearly
more 2’s than 5’s in the prime factorization of 1000!. Since the power of 5 in the prime factorization of
1000! in

∑4
j=1[1000/5j ] = 200 + 40 + 8 + 1 = 249, there are 249 0’s at the end of 1000!.

The number of 0’s at the end of 1000! in base eight notation is the highest power of 8 that divides
1000! evenly. This is the quotient obtained when 3 is divided into the power of 2 in the prime factoriza-
tion of 1000!. Since the power of 2 in the prime factorization of 1000! is

∑9
j=1[1000/2j ] = 500 + 250 +

125 + 62 + 31 + 15 + 7 + 3 + 1 = 994 and since 994 = 331 · 3 + 1, there are 331 zeros at the end of the base
eight expansion of 1000!.

3.5.17. Suppose n! ends with exactly 74 zeroes. Then 574 · 274 = 1074 | n!. Since there are more multiples of
2 than 5 in 1, 2, . . . , n, we need only concern ourselves with the fact that 574 | n!. Thus, via Exercise 12,
we need to find an n such that 74 = [n/5] + [n/25] + · · · . By direct calculation, 74 = [300/5] + [300/25] +
[300/125]. It follows that 300!, 301!, 302!, 303!, and 304! end with exactly 74 zeroes.

3.5.18. The number of zeros at the end of n! equals the number of 5’s in the prime factorization of n!. This
is clearly an increasing function of n. There are

∑3
j=1[624/5j ] = 124 + 24 + 4 = 152 zeros at the end of

decimal expansion of 624!. However since 54 divides 625, we see that there are 152+4=156 zeros at the
end of the decimal expansion of 625!. It follows that there cannot be 153,154, or 155 zeros at the end of
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the decimal expansion of n!.

3.5.19. We compute αβ = (ac−5bd)+(ad+bc)
√−5. Thus N(αβ) = (ac−5bd)2+5(ad+bc)2 = a2c2−10acbd+

25b2d2 + 5a2d2 + 10adbc + 5b2c2 = a2(c2 + 5d2) + 5b2(5d2 + c2) = (a2 + 5b2)(c2 + 5d2) = N(α)N(β).

3.5.20. Suppose 2 = αβ. Then by Exercise 19, 4 = N(2) = N(α)N(β). Then N(α) = 1, 2 or 4. Let α =
a + b

√−5. Then we must have a2 + 5b2 = 1, 2, or 4. Thus b = 0 and a = ±1 or ±2 are the only possibili-
ties. Since α = ±1 is excluded, we must have α = ±2, which forces β = ±1.

3.5.21. Suppose 3 = αβ. Then by Exercise 19, 9 = N(3) = N(α)N(β). Then N(α) = 1, 3 or 9. Let α =
a + b

√−5. Then we must have a2 + 5b2 = 1, 3, or 9. So either b = 0 and a = ±1 or ±3, or b = ±1 and a =
±2. Since a = ±1, b = 0 is excluded, and since a = ±3 forces β = ±1, we must have b = ±1. That is, α =
±2±√−5. But then N(α) = 9, and hence N(β) = 1, which forces β = ±1.

3.5.22. Note that N(1 ± √−5) = 6. If 1 ± √−5 = αβ is a nontrivial factorization, then N(α) = 2, say. But
N(α) = a2 + 5b2 = 2 has no solution in the integers. Hence, no nontrivial factorization exists.

3.5.23. Note that 21 = 3 · 7 = (1 + 2
√−5)(1 − 2

√−5). We know 3 is prime from Exercise 21. Similarly if we
seek α = a + b

√−5 such that N(α) = a2 + 5b2 = 7, we find there are no solutions. For |b| = 0 implies
a2 = 7, |b| = 1 implies a2 = 2 and |b| > 1 implies a2 < 0, and in each case there is no such a. Hence if
αβ = 7, then N(αβ) = N(α)N(β) = N(7) = 49. So one of N(α) and N(β) must be equal to 49 and the
other equal to 1. Hence 7 is also prime. We have shown that there are no numbers of the form a + b

√−5
with norm 3 or 7. So in a similar fashion to the argument above, if αβ = 1 ± 2

√−5, then N(αβ) =
N(α)N(β) = N(1 ± 2

√−5) = 21. And there are no numbers with norm 3 or 7, so one of α and β has
norm 21 and the other has norm 1. Hence 1± 2

√−5 is also prime.

3.5.24. Note that, for instance, 25 = 5 · 5 = (1 + 2
√−6)(1 − 2

√−6). By arguments identical to those in the
solutions to Exercises 21 and 22, we see that 5 and 1± 2

√−6 are prime.

3.5.25. The product of 4k + 1 and 4l + 1 is (4k + 1)(4l + 1) = 16kl + 4k + 4l + 1 = 4(4kl + k + l) + 1 = 4m + 1
where m = 4kl + k + l. Hence the product of two integers of the form 4k + 1 is also of this form.

3.5.26. The twenty smallest Hilbert primes are: 5, 9, 13, 17, 21, 29, 33, 37, 43, 49, 53, 57, 61, 69, 73, 77, 89, 93,
97, 101, 105.

3.5.27. We proceed by mathematical induction on the elements of H . The first Hilbert number greater than 1,
5, is a Hilbert prime because it is an integer prime. This completes the basis step. For the inductive step,
we assume that all numbers in H less than or equal to n can be factored into Hilbert primes. The next
greatest number in H is n + 4. If n + 4 is a Hilbert prime, then we are done. Otherwise, n = hk, where h
and k are less than n and in H . By the inductive hypothesis, h and k can be factored into Hilbert primes.
Thus, n + 4 can be written as the product of Hilbert primes.

3.5.28. We have 693 = 9 · 77 = 21 · 33. All of 9, 21, 33, and 77 are Hilbert primes since none of these integers
are divisible by any smaller integers of the form 4k + 1.

3.5.29. Suppose that n is divisible by all primes not exceeding
√

n. Let M be the least common multiple of
the integers m with 1 ≤ m ≤ √

n. Then for every prime p with p ≤ √
n, pk | M but pk+1 does not divide

M where pk is the largest power of p not exceeding
√

n. Then M = pk1
1 · · · pkt

t where the powers of the
prime pi is the largest power of this prime not exceeding

√
n. Since

√
n < pki+1

i for i = 1, 2, . . . t we have
(
√

n)t < pk1+1
1 · · · pkt+1

t . But note that pk1+1
1 · · · pkt+1

t = (pk1
1 · · · pkt

t ) · (p1 · · · pk) ≤ M · p1 · · · pt ≤ M2. It
follows that (

√
n)t < M2. Since M | n it follows that M ≤ n, so (

√
n)t < n2. It follows that t < 4. If t is

the number of primes less than
√

n and there are four or fewer primes less than
√

n and 7 is the fourth
prime, it follows that

√
n ≤ 7, so n < 49. Examining the integers less than 49 shows that the only inte-

gers satisfying the conditions are n = 1, 2, 3, 4, 6, 8, 12, and 24.
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3.5.30. a. We have [8, 12] = 24.

b. We have [14, 15] = 1.

c. We have [28, 35] = 140.

d. We have [111, 303] = 11211.

e. We have [256, 5040] = 80640.

f. We have [343, 999] = 342657.

3.5.31. a. We have [7, 11] = 77.

b. We have [12, 18] = 36.

c. We have [25, 30] = 150.

d. We have [101, 333] = 33633.

e. We have [1331, 5005] = 605605.

f. We have [5040, 7700] = 277200.

3.5.32. a. We have (23253, 223372) = 1, and [23253, 223372] = 23253223372.

b. We have (2 · 3 · 5 · 7, 7 · 11 · 13) = 7, and [2 · 3 · 5 · 7, 7 · 11 · 13] = 2 · 3 · 57 · 11 · 13.

c. We have (2836541113, 2 · 3 · 5 · 11 · 13) = 2 · 3 · 5 · 11, and [2836541113, 2 · 3 · 5 · 11 · 13] = 283654111313.

d. We have (4110147431031001, 4111434783111) = 4111, and [4110147431031001, 4111434783111] =
4110147431031001434783111.

3.5.33. a. We have (22335577, 27355372) = 22335372; [22335577, 27355372] = 27355577.

b. We have (2·3·5·7·11·13, 17·19·23·29) = 1; [2·3·5·7·11·13, 17·19·23·29] = 2·3·5·7·11·13·17·19·23·29.

c. We have (23571113, 2 · 3 · 5 · 7 · 11 · 13) = 2 · 5 · 11; [23571113, 2 · 3 · 5 · 7 · 11 · 13] = 23 · 3 · 57 · 7 · 1113 · 13.

d. We have (4711791111011001, 4111831111011000) = 1011000; [4711791111011001, 4111831111011000] =
4111471179111831111011001.

3.5.34. Let m = [a, b] an suppose M is a common multiple of a and b which is not divisible by m. Then by the
division algorithm, we have M = qm + r, with 0 < r < m. Since a | m and a | M , then a | M − qm =
r. Similarly, b | r. Therefore, r is a positive common multiple of a and b which is less than m. This is a
contradiction, so no such M exists.

3.5.35. Suppose that both 13-year and 17-year cicadas emerge in a location in 1900. The 13-year cicada will
emerge again in years 1900 + 13k where k is a positive integer. The 17-year cicadas will emerge again
in years 1900 + 17k where k is a positive integer. Both 13-year and 17-year cicadas will emerge again in
years 1900 + [13, 17]k = 1900 + 221k where k is a positive integer. Hence they both will emerge again in
the year 2121.

3.5.36. Each of a and b must be a multiple of 18, say a = 18k and b = 18m, with (k, m) = 1. By The-
orem 2.8, ab = 18k · 18m = 18 · 540, or km = 2 · 3 · 5. The possible values for the pair (k,m) are
(1, 30), (2, 15), (3, 10), (5, 6), in either order. So the possible values of a and b are these pairs multiplied
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by 18.

3.5.37. Let a = pr1
1 pr2

2 · · · prk

k and b = ps1
1 ps2

2 · · · psk

k , where pi is a prime and ri and si are nonnegative. (a, b) =
p
min(r1,s1)
1 · · · pmin(rk,sk)

k and [a, b] = p
max(r1,s1)
1 · · · pmax(rk,sk)

k . So [a, b] = (a, b)pmax(r1,s1)−min(r1,s1)
1 · · ·

p
max(rk,sk)−min(rk,sk)
k . Since max(ri, si)−min(ri, si) is clearly nonnegative, we now see that (a, b) | [a, b].

3.5.38. Let e = (a, b). Then (a/e, b) = 1. Let c = a/e and d = b.Then cb = ab/e = [a, b] by Theorem 3.16.

3.5.39. If [a, b] | c, then since a | [a, b], a | c.Similarly, b | c. Conversely, suppose that a = pa1
1 pa2

2 · · · pan
n and b =

pb1
1 pb2

2 · · · pbn
n and c = pc1

1 pc2
2 · · · pcn

n . If a|c and b|c, then max(ai, bi) ≤ ci for i = 1, 2, . . . , n. Hence, [a, b] | c.

3.5.40. Suppose that p | a2 where p is prime and a is an integer. Then by Lemma 3.5 it follows that p | a.

3.5.41. Assume that p | an = ± | a | · | a | · · · | a |. Then by Lemma 3.5, p || a | and so p | a.

3.5.42. Let pr ‖ c, ps ‖ a, and pt ‖ b. Then pr | ab, so r < s + t. Then pmax(r,s) | (a, c), and pmax(r,t) | (b, c). Since
max(r, s) + max(r, t) > s + t > r, we have pr | (a, c)(b, c).

3.5.43. a. Suppose that (a, b) = 1 and p | (an, bn) where p is a prime. It follows that p | an and p | bn. By Exer-
cise 41, p | a and p | b. But then p | (a, b) = 1, which is a contradiction.

b. Suppose that a does not divide b, but an | bn. Then there is some prime power, say pr that divides a
but does not divide b (else a | b by the Fundamental Theorem of Arithmetic). Thus, a = prQ, where
Q is an integer. Now, an = (prQ)n = prnQn, so prn | an | bn. Then bn = mprn, from which it follows
that each of the n b’s must by symmetry contain r p’s. But this is a contradiction.

3.5.44. a. Suppose 3
√

5 = a/b, with a and b integers and (a, b) = 1. Then 5 = a3/b3, or 5b3 = a3. Then 5 | a3,
so 5 | a and we have 53 | a3. Then 53 | 5b3, or 52 | b3. But then 5 | b, so 5 | (a, b), a contradiction.
Therefore 3

√
5 is irrational.

b. By Theorem 2.11, a root of x3 − 5 is either an integer or an irrational number. 3
√

5 is a root, but 13 <

5 < 23, so 1 < 3
√

5 < 2. Since there are no integers between 1 and 2, 3
√

5 must be irrational.

3.5.45. Suppose that x =
√

2 +
√

3. Then x2 = 2 + 2
√

2
√

3 + 3 = 5 + 2
√

6. Hence x2 − 5 = 2
√

6. It follows
that x4 − 10x2 + 25 = 24. Consequently, x4 − 10x2 + 1 = 0. By Theorem 3.17 it follows that

√
2 +

√
3 is

irrational, since it is not an integer (we can see this since 3 <
√

2 +
√

3 < 4).

3.5.46. Suppose that log2 3 is rational. Then log2 3 = a/b where a and b are integers with b 6= 0. This implies
that 2

a
b = 3. Raising both sides to the bth power gives 2a = 3b. But the fundamental theorem of arith-

metic shows that this is impossible since the integer 2a has a unique factorization into primes, and so
cannot equal 3b.

3.5.47. Suppose that m/n = logp b. This implies that p
m
n = b, from which it follows that pm = bn. Since b is

not a power of p, there must be another prime, say q, such that q | b. But then q | b | bn = pm = p · p · · · p.
By Lemma 2.4, q | p, which is impossible since p is a prime number.

3.5.48. Suppose that 1 + 1
2 + 1

3 + · · · + 1
n = Q where Q is an integer. Let 2a be the largest power of 2 not

exceeding n. Multiply both sides by 2a−1R where R is product of the largest powers of odd primes less
than n. We obtain A+ 1

2 = 2a−1RQ where A is an integer. This is a contradiction since the left-hand side
is not an integer but the right-hand side is an integer.

3.5.49. Let p be a prime that divides a or b. Then p divides a + b and [a, b]. Hence p divides both sides of the
equation. Define s, t by ps || a, pt || b, say that a = xps and b = ypt. Without loss of generality, suppose
s ≤ t. Then a + b = ps(x + pt−s), so ps ‖ a + b. Also, pmax(s,t) ‖ [a, b]. But max(s, t) = t, so pt ‖ [a, b].
Therefore pmin(s,t) ‖ (a + b, [a, b]). But min(s, t) = s, so the same power of p divides both sides of the
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equation. Therefore the two sides must be equal.

3.5.50. By Exercise 41 we know that (a, b) = (a + b, [a, b]) = (798, 10780) = 14. Let c = a
14 and d = b

14 . Since
ab = (a, b)[a, b] it follows that cd = 10780/14 = 770 and c + d = 57. We can find c and d by solving the
equation (x − c)(x − d) = x2 − (c + d)x + cd = x2 − 57x + 770 = 0. The roots are c = 35 and d = 22.
Hence a = 490 and b = 308.

3.5.51. Let a = pr1
1 pr2

2 · · · prk

k , b = ps1
1 ps2

2 · · · psk

k , and c = pt1
1 pt2

2 · · · ptk

k , with pi prime and ri, si, and ti nonnega-
tive. Observe that min(x, max(y, z)) = max(min(x, y), min(x, z)). We also know that [a, b] =
p
max(r1,s1)
1 p

max(r2,s2)
2 · · · pmax(rk,sk)

k , and so ([a, b], c) = p
min(t1,max(r1,s1))
1 p

min(t2,max(r2,s2))
2 · · · pmin(tk,max(rk,sk))

k .
We also know that (a, c) = p

min(r1,t1)
1 p

min(r2,t2)
2 · · · pmin(rk,tk)

k and (b, c) = p
min(s1,t1)
1 p

min(s2,t2)
2 · · · pmin(sk,tk)

k .
Then, [(a, c), (b, c)] = p

max(min(r1,t1),min(s1,t1))
1 p

max(min(r2,t2),min(s2,t2))
2 · · · pmax(min(rk,tk),min(sk,tk))

k . There-
fore, ([a, b], c) = [(a, c), (b, c)]. In a similar manner, noting that min(max(x, z), max(y, z)) = max(min(x, y), z),
we find that [(a, b), c] = ([a, c], [b, c]).

3.5.52. We have [6, 10, 15] = 30 and [7, 11, 13] = 1001.

3.5.53. Let c = [a1, . . . , an], d = [[a1, . . . , an−1], an], and e = [a1, . . . , an−1]. If c | m, then all ai’s divide m,
hence e | m and an | m, so d | m. Conversely, if d | m, then e | m and an | m, so all ai’s divide m, thus c |
m. Since c and d divide all the same numbers, they must be equal.

3.5.54. Let a, b, and n have prime factorizations a = pa1
1 · · · par

r , b = pb1
1 · · · pbr

r , and n = pc1
1 · · · pcr

r , where some
of the ai and bi may be 0. If n = [a, b], we have max(ai, bi) = ci for each i. So one of each pair ai, bi must
be equal to ci. If ai = ci, there are ci + 1 choices for bi. If ai 6= ci, then bi = ci and there are ci choices for
ai, giving 2ci + 1 ways in all. Since this occurs for each i, we have (2c1 + 1) · · · (2cr + 1) ways in all.

3.5.55. a. There are six cases, all handled the same way. So without loss of generality, suppose that a ≤ b ≤
c. Then max(a, b, c) = c,min(a, b) = a,min(a, c) = a,min(b, c) = b, and min(a, b, c) = a. Hence c =
max(a, b, c) = a + b + c−min(a, b)−min(a, c)−min(b, c) + min(a, b, c) = a + b + c− a− a− b + a.

b. The power of a prime p that occurs in the prime factorization of [a, b, c] is max(a, b, c) where a, b, and
c are the powers of this prime in the factorizations of a, b, and c, respectively. Also a + b + c is the
power of p in abc, min(a, b) is the power of p in (a, b),min(a, c) is the power of p in (a, c), min(b, c)
is the power of p in (b, c), and min(a, b, c) is the power of p in (a, b, c). It follows that a + b + c −
min(a, b) − min(a, c) − min(b, c) is the power of p in abc(a, b, c)/((a, b)(a, c)(b, c)). Hence [a, b, c] =
abc(a, b, c)/((a, b)(a, c)(b, c)).

3.5.56. The formula for [a1, a2, . . . , an] is a rational number whose numerator is the product of the greatest
common divisors of the ai’s taken 1, 3, 5, . . . at a time, and whose denominator is the product of the
greatest common divisors of the ai’s taken 2, 4, 6, . . . at a time.

3.5.57. Let a = pr1
1 pr2

2 · · · prk

k , b = ps1
1 ps2

2 · · · psk

k , and c = pt1
1 pt2

2 · · · ptk

k , with pi prime and ri, si, and ti non-
negative. Then pri+si+ti

i ‖ abc, but p
min(ri,si,ti)
i ‖ (a, b, c) and p

ri+si+ti−min(ri,si,ti)
i ‖ [ab, ac, ab], and

p
min(ri,si,ti)
i · pri+si+ti−min(ri,si,ti)

i = pri+si+ti
i .

3.5.58. Let a, b, and c have prime factorizations a = pa1
1 · · · par

r , b = pb1
1 · · · pbr

r , and c = pc1
1 · · · pcr

r , where some
of the ai and bi may be 0. Then [a, b, c](ab, ac, bc) = p

max(a1,b1,c1)
1 · · · pmax(ar,br,cr)

r p
min(a1+b1,a1+c1,b1+c1)
1 · · ·

p
min(ar+br,ar+cr,br+cr)
r = pa1+b1+c1

1 · · · par+br+cr
r = abc.

3.5.59. Let a = pr1
1 pr2

2 · · · prk

k , b = ps1
1 ps2

2 · · · psk

k , and c = pt1
1 pt2

2 · · · ptk

k , with pi prime and ri, si, and ti nonnega-
tive. Then, using that (a, b, c) = p

min(r1,s1,t1)
1 p

min(r2,s2,t2)
2 · · · pmin(rk,sk,tk)

k , and [a, b, c] =
p
max(r1,s1,t1)
1 p

max(r2,s2,t2)
2 · · · pmax(rk,sk,tk)

k , we can write the prime factorization of ([a, b], [a, c], [b, c]) and
[(a, b), (a, c), (b, c)]. For instance, consider the case where k = 1. Then ([a, b], [a, c], [b, c]) =
(pmax(r1,s1)

1 , p
max(r1,t1)
1 , p

max(s1,t1)
1 ) = p

min(max(r1,s1),max(r1,t1),max(s1,t1)
1 . Similarly, [(a, b), (a, c), (b, c)] =
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p
max(min(r1,s1),min(r1,t1),min(s1,t1)
1 . Clearly, these two are equal (examine the six orderings r1 ≥ s1 ≥

t1, . . .).

3.5.60. Suppose that there are only finitely many primes p1, . . . , pt of the form 6k+5. Form N = 6p1p2 · · · pt−
1. Then N is not divisible by any of the primes p1, . . . , pt, since each leaves a remainder of −1 when it
is divided into N . Now N can only have prime divisors of the form 6k + 1 and 6k + 5 since (N, 6) = 1.
There also must be at least one prime divisor of the form 6k + 5 since the product of primes of the form
6k + 1 is also of this form. Hence there are infinitely many primes of the form 6k + 5.

3.5.61. First note that there are arbitrarily long sequences of composites in the integers. For example, (n +
2)! + 2, (n + 2)! + 3, . . . , (n + 2)! + (n + 2) is a sequence of n consecutive composites. To find a se-
quence of n composites in the sequence a, a + b, a + 2b, . . ., look at the integers in a, a + b, a + 2b,
. . . with absolute values between (nb + 2)! + 2 and (nb + 2)! + (nb + 2). There are clearly n or n + 1
such integers, and all are composite.

3.5.62. a. We have 106−1 = (103 +1)(103−1). Also, we find that (103 +1) = (10+1)(102−10+1) = 11 ·91 =
11 · 7 · 13. We also have (103− 1)− (10− 1)(102 + 10 + 1) = 9 · 111 = 33 · 37. It follows that 106− 1 =
33 · 7 · 11 · 13 · 37.

b. We have 3211 · 73 · 101 · 137.

c. We have 7 · 31 · 151.

d. We have 325 · 7 · 13 · 17 · 241.

e. We have 327 · 11 · 31 · 151 · 331.

f. We have 335 · 7 · 13 · 19 · 37 · 73 · 109.

3.5.63. We have 8137 = 79 · 103. Since the price of the camera is an integer and less than 99 dollars, it follows
that the discounted price of a camera is 79 dollars. Hence they sold 103 cameras at 79 dollars each.

3.5.64. Note that 375961 = 79 · 4759. So the possible prices of the book are $1, $79, $4759, and $375,961. The
most likely of these is $79, so we suspect that the number of books sold was 4759.

3.5.65. Since 139499 = 199 · 701, the price must have been $199 and so the number of electronic organizers
sold was 701.

3.5.66. Suppose that a and b are integers such that a2 | b2. Then there is an integer k such that b2 = ka2. It
follows that k = (a/b)2. Suppose that

√
k is not an integer. Then by Theorem 2.11 we see that

√
k is ir-

rational. However
√

k = a/b. It follows that
√

k = l is an integer. Hence b = l · a where l is an integer.
Thus a | b.

3.5.67. Let a =
∏s

i=1 pαi
i and b =

∏t
i=1 pβi

i . The condition (a, b) = 1 is equivalent to min(αi, βi) = 0 for all i
and the condition ab = cn is equivalent to n | (αi + βi) for all i. Hence n | αi and βi = 0 or n | βi and
αi = 0. Let d be the product of p

αi/n
i over all i of the first kind, and let e be the product of p

βi/n
i over all

i of the second kind. Then dn = a and en = b.

3.5.68. We proceed by induction. The basis step is [a1, a2] = a1a2/(a1, a2) = a1a2, since (a1, a2) = 1. Suppose
the proposition if true for n − 1. Then by Exercise 45, we have [a1, . . . , an−1, an] = [[a1, . . . , an−1], an] =
[(a1 · · · an−1), an] = a1 · · · an.

3.5.69. Suppose the contrary and that a ≤ n is in the set. Then 2a cannot be in the set. Thus, if there are k
elements in the set not exceeding n then, there are k integers between n + 1 and 2n which cannot be in
the set. So there are at most k + (n− k) = n elements in the set.
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3.5.70. The power of the prime p in the prime factorization of (m + n)! is
∑t

r=1[(m + n)/pr] where pt is the
largest power of p not exceeding m+n. The power of this prime in the factorization of m! is

∑t
r=1[m/pr].

The power of this prime in the factorization of n! is
∑t

r=1[n/pr]. By Exercise 23 of Section 1.4 it follows
that [(m + n)/pr] ≥ [m/pr] + [n/pr]. Hence the prime p occurs to a nonnegative power, namely [(m +
n)/pr] − [m/pr] − [n/pr], in the rational number (m + n)!/(m!n!). Since this is true for every prime p,
(m + n)!/(m!n!) is an integer.

3.5.71. he fundamental theorem of arithmetic implies that m and n have the same prime divisors. So sup-
pose that m and n have prime-power factorizations m = pa1

1 pa2
2 · · · pak

k and n = pb1
1 pb2

2 · · · pbk

k . From the
equation mn = nm it follows that ain = bim for i = 1, 2, . . . , k. We first assume that n > m. Then ai <
bi for i = 1, 2, . . . , k. Hence n is divisible by m, so n = dm for some integer d. This implies that mdm =
(dm)m. Taking the mth roots of both sides gives md = dm, which implies that md−1 = d. Since n > m
we know that d > 1, so m > 1. However 22−1 = 2 and when d > 2 it follows that md−1 > d. When d >
2 and m ≥ 2 we have md−1 ≥ 2d−1 > d since 23−1 > 3 and when d = 2 and m > 2 we have md−1 = m >
2 = d. Hence the only solution with n > m has m = 2 and n = 2d = 2 · 2 = 4. Consequently all solutions
are given by m = 2 and n = 4, m = 4 and n = 2, or m = n.

3.5.72. Suppose that there are only finitely many primes, say n of them: p1, p2, . . . , pn. Let Q be the product
of m primes, and R the product of the remaining n−m primes. Suppose pi | (Q+R). Since pi is a factor
of Q or R, it must also be a factor of the other. This is not possible, therefore no prime divides Q + R.
But Q + R is larger than pn, the largest prime. This contradiction tells us that there are infinitely many
prime numbers.

3.5.73. By Lemma 3.1, S must have a prime divisor, and by our assumption, it must be one of the pi, i =
1, 2, . . . r. For j 6= i, pi|Qj , since it is one of the factors. So pi must divide S − ∑

j 6=i Qj = Qi =
p1 · · · pi−1pi+1 · · · pr, but by the Fundamental Theorem of Arithmetic, pi must be equal to one of these
last factors, a contradiction, therefore S must have a prime factor different from the list we have. Since
no finite list can contain all the primes, there must be infinitely many primes.

3.5.74. We have
(

p
k

)
= p!/(k!(p − k)!). This is an integer and p divides the numerator and not the denomina-

tor. It follows that (p− 1)!/(k!(p− k)!) is an integer, so that
(

p
k

)
= p · (p− 1)!/(k!(p− k)!. It follows that p

divides
(

p
k

)
.

3.5.75. Let p be the largest prime less than or equal to n. If 2p were less than or equal to n then Bertrand’s
postulate would guarantee another prime q such that p < q < 2p ≤ n contradicting the choice of p.
Therefore, we know that n < 2p. Therefore, in the product n! = 1 · 2 · 3 · · ·n, there appears only one
multiple of p, namely p itself, and so in the prime factorization of n, p appears with exponent 1.

3.5.76. a. Such an n has prime power factorization n = p2a1+e1
1 p2a2+e2

2 · · · p2aj+ej

j , where ei = 0 if pi appears
to an even power and ei = 1 if pi appears to an odd power. Note that some ai’s may be zero in this
expression. Then n = (p2a1

1 · · · p2aj

j )(pe1
1 · · · pej

j ) = (pa1
1 · · · paj

j )2(pe1
1 · · · pej

j ) which is of the desired
form.

b. Since s is of the form pe1
1 · · · pej

j , and there are two choices for each of the values ei, i = 1, 2, . . . , j,
there are exactly 2j possible values for s.

c. We have r2 ≤ r2s = n ≤ x, so taking square roots yields r ≤ √
n
√

x, so there are at most
√

x possi-
ble values for r, and hence for r2. Then combining this with the result in part (b), there are at most
2j
√

x possible values for r2. That is, N(x) ≤ 2j
√

x.

d. Since pj is assumed to be the largest prime, then no integer can be divisible by any larger prime. So
N(x) = x for every x.
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e. From part (d) we have N(x) = x ≤ 2j
√

x by part (c). Squaring both sides gives us x2 ≤ 22jx and
dividing by x yields x ≤ 22j . Since j is fixed and x can be as large as we please, this leads to a con-
tradiction.

3.5.77. a. Uniqueness follows from the Fundamental Theorem. If a prime pi doesn’t appear in the prime fac-
torization, then we include it in the product with an exponent of 0. Since ei ≥ 0, we have pe1

1 =
pe1
1 p0

2 · · · p0
r ≤ pe1

1 pe2
2 · · · per

r = m.

b. Since pei
1 < pei

i ≤ m ≤ Q = pn
r , we take logs of both sides to get ei log p1 ≤ n log pr. Solving for ei

gives the first inequality. If 1 ≤ m ≤ Q, then m has a prime-power factorization of the form given
in part (a), so the r-tuples of exponents count the number of integers in the range 1 ≤ m ≤ Q.

c. To bound the number of r-tuples, by part (b) there are at most Cn + 1 choices for each ei, therefore
there are at most (Cn + 1)r r-tuples, which by part (b) gives us pn

r ≤ (Cn + 1)r = (n(C + 1/n))r ≤
nr(C + 1)r.

d. Taking logs of both sides of the inequality in part (c) and solving for n yields n ≤ (r log n + log(C +
1))/ log pr, but since n grows much faster than log n, the left side must be larger than the right for
large values of n. This contradiction shows there must be infinitely many primes.

3.5.78. From Exercise 80, we know the answer for primes, so S(2) = 2, S(3) = 3, S(5) = 5, S(7) = 7, and
S(11) = 11. Since 4, 8 and 12 divide 4! = 24 and no lower factorial, we have S(4) = S(8) = S(12) =
4. Since 1|1!, S(1) = 1. Since 6|3!, S(6) = 3. Since 9|6! but no lower factorial, S(9) = 6, and since 10|5!,
S(10) = 5.

3.5.79. Since 40 has lots of small factors in its prime factorization, we expect it to have a small Smarandache
value. Since it’s divisible by 5, the smallest possible value will be 5, and since 40 does indeed divide 5!,
we have S(40) = 5. Since 41 and 43 are primes, after Exercise 80 we have S(41)=41, S(43)=43.

3.5.80. If a prime p divides n!, then p must appear as a factor in the product. The smallest value of n for which
this happens is n = p, and p indeed divides p!. Therefore S(p) = p.

3.5.81. From Exercise 83, we have a(2) = 2, a(3) = 3, a(5) = 5, a(7) = 7, and a(11) = 11. The smallest value
of m such that S(m) = 1 is m = 1, so a(1) = 1. S(4) = 4, but not for any smaller argument, so a(4) =
4. To find a(6) we consider the smallest number which would require two factors of 3 in the factorial,
and that number would be 9, so a(6) = 9. To find a(8), we consider the smallest number which would
require 5 factors of 2 in the factorial (one factor from 2, two factors from 4, one factor from 6 and the
additional factor from 8.) And that number would be 32, so a(8) = 32. Similarly a(9) = 27, since 27 is
the smallest number requiring the 3 factors of 3 (one from 3, one from 6 and the additional one from 9.)
Similarly a(10) = 25, since 25 is the smallest number needing both factors of 5. In sum, the sequence is
a(n) = 1, 2, 3, 4, 5, 9, 7, 32, 27, 25, 11.

3.5.82. If k|12! the last factor of 12 must contribute a new factor of either 2 or 3 which no number smaller than
k has. Since 28 = 256‖11! and 34 = 81‖11!, we see that 34 is smaller, and so it must be that the factor of
12 is needed for 35 to divide 12!. So a(n) = 35 = 243.

3.5.83. From Exercise 80, we have S(p) = p whenever p is prime. If m < p and m|S(p)! = p! then m|(p−1)!, so
S(p) must be the first time that S(n) takes on the value p. Therefore of all the inverses of p, p is the least.

3.5.84. a. Since 300 = 22 · 3 · 52, we have rad(300) = 2 · 3 · 5.

b. Since 444 = 22 · 3 · 37, we have rad(444) = 2 · 3 · 37.

c. Since 44004 = 22 · 3 · 19 · 193, we have rad(44004) = 2 · 3 · 19 · 193.
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d. Since 128128 = 27 · 7 · 11 · 13, we have rad(128128) = 2 · 7 · 11 · 13.

3.5.85. Let n be a positive integer and suppose n is square-free. Then no prime can appear to a power greater
than one in the prime-power factorization of n. So n = p1p2 · · · pr for some distinct primes pi. Then
rad(n) = p1p2 · · · pr = n. Conversely, if n is not square-free, then some square d2|n and some prime fac-
tor p1 of d appears to an even power in the prime-power factorization of n. So n = p2a

1 pb2
2 · · · pbr

r . Then
rad(n) = p1p2 · · · pr 6= n.

3.5.86. Since every prime not exceeding n appears in the product, and no prime exceeding n appears in the
product, we have that rad(n!) equals the product of the primes not exceeding n.

3.5.87. Since every prime occurring in the prime-power factorization of mn occurs in either the factoriza-
tion of m or n, every factor in rad(mn) occurs at least once in the product rad(m)rad(n), which gives
us the inequality. If m = pa1

1 · · · par
r and n = qb1

1 · · · qbs
s are relatively prime, then we have rad(mn) =

p1 · · · prq1 · · · qs = rad(m)rad(n).

3.5.88. By Exercise 14, p divides n! exactly
∑∞

i=1[n/pi] times and (2n)! exactly
∑∞

i=1[2n/pi] times. Therefore p

divides
(
2n
n

)
= (2n)!/(n!)(n!) exactly

∑∞
i=1[2n/pi]−2

∑∞
i=1[n/pi] times, and this is the desired expression.

3.5.89. First note that if p | (
2n
n

)
, then p ≤ 2n. This is true because every factor of the numerator of

(
2n
n

)
=

(2n)!
(n!)2 is less than or equal to 2n. Let

(
2n
n

)
= pr1

1 pr2
2 · · · prk

k be the factorization of
(
2n
n

)
into distinct primes.

By the definition of π, k ≤ π(2n). By Exercise 72, pri
i ≤ 2n. It now follows that

(
2n
n

)
= pr1

1 pr2
2 · · · prk

k ≤
(2n)(2n) · · · (2n) ≤ (2n)π(2n).

3.5.90. If p is a prime between n and 2n then n < p. Since there are π(2n) − π(n) such primes, we have
nπ(2n)−π(n) <

∏
n<p≤2n p. On the other hand, each prime in this product divides (2n)! but not n!, so

each prime in the product divides
(
2n
n

)
. Since the primes are mutually relatively prime, their product

divides
(
2n
n

)
, and therefore we have

∏
n<p≤2n p <

(
2n
n

)
.

3.5.91. Note that
(
2n
n

) ≤ ∑2n
a=0

(
2n
a

)
= (1 + 1)2n = 22n. Then from Exercise 74, nπ(2n)−π(n) <

(
2n
n

) ≤ 22n. Tak-
ing logarithms gives (π(2n)− π(n)) log n < log(22n) = n log 4. Now divide by log n.

3.5.92. From Exercise 75, we get the following inequality: log(2n)π(2n) − log(n)π(n) = log(2)π(2n) + log(n)
(π(2n) − π(n)) ≤ log(2)π(2n) + n log(4). Now for n > 3, we have π(2n) ≤ n, (since half of the num-
bers less than 2n are even.) Then we have log(2)π(2n) + n log(4) ≤ log(2)n + n log(4) = 3n log(2).
Then log(2n)π(2n) = (log(2n)π(2n) − log(n)π(n)) + (log(n)π(n) − log(n/2)π(n/2)) + · · · ≤ 4n log(2) +
2n log(2)+n log(2)+· · · = n log(2)(3+3/2+3/4+· · · = 6n log(2). Therefore, π(2n) ≤ 6n log(2)/ log(2n) ≤
n log(64)/ log(n).

3.5.93. Note that 2n =
∏n

a=1 2 ≤ ∏n
a=1(n+a)/a =

(
2n
n

)
. Then by Exercise 73, 2n ≤ (2n)π(2n). Taking logs gives

π(2n) ≥ n log 2/ log 2n. Hence, for a real number x, we have π(x) ≥ [x/2] log 2/ log [x] > c1x/ log x. For
the other half, Exercise 65 gives π(x)−π(x/2) < ax/ log x, where a is a constant. Then log x/2mπ(x/2m)−
log x/2m+1π(x/2m+1) < ax/2m for any positive integer m. Then, log xπ(x) =

∑v
m=0 (log x/2mπ(x/2m)−

log x/2m+1π(x/2m+1)
)

< ax
∑v

m=0 1/2m < c2x, where v is the largest integer such that 2v+1 ≤ x. Then
π(x) < c2x/log x.

3.6. Factorization Methods and the Fermat Numbers
3.6.1. a. We see that 2 does not divide 33776925. Next we see that 3 does divide 33775925, with 33776925 =

3 · 11258975. Note that 3 does not divide 11258975. Next note that 5 does divide 11258975 with
11258975 = 5 · 2251795. We see that 5 also divides 2251795, with 2251795 = 5 · 450359. Next we
see that 5 does not divide 450359. Next we note that 7 does divide 450359 with 450359 = 7 · 64337.
Again dividing by 7 we see that 64337 = 7 · 9191. Dividing by 7 another time shows that 9191 =
7 · 1313. Next we note that 7 does not divide 1313. We see that 11 does not divide 1313. Dividing by
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13 gives 1313 = 13 · 101. Since
√

101 < 13, we conclude that 101 is prime. Hence the prime factor-
ization is 33776925 = 3 · 52 · 73 · 13 · 101.

b. We first note that neither 2, 3, 5, nor 7 divides 210733237. Next we see that 210733237 = 11·19157567.
Dividing by 11 again gives 19157567 = 11 · 1741597, and dividing by 11 yet again shows that
1741597 = 11 · 158327. We see that 11 does not divide 158327. Dividing by 13 shows that 158327 =
13 · 12179. Note that 12179 is not divisible by 13 nor by 17. We see that it is divisible by 19 with
12179 = 19 · 641. We see that 641 is not divisible by 19 or 23. Since 23 is the largest prime not ex-
ceeding

√
641 it follows that 641 is prime. It follows that the prime factorization is 210733237 =

113 · 13 · 19 · 641.

c. We first note that neither 2, 3, 5, 7, nor 11 divides 1359170111. Next we see that 1359170111 = 13 ·
104551547, and that 13 does not divide 104551547. Dividing by 17 gives 104551547 = 17 · 6150091,
but 17 does not divide 6150091. Next we see that 6150091 = 19 · 323689, but 19 does not divide
323689. We see that neither 23, 29, 31, 37, 41, nor 43 divides 323689, but 323689 = 47 · 6887. We see
that 47 does not divide 6887. Neither 53, 59, 61, nor 67 divides 6887, but 6887 = 71 · 97. Since 97 is
prime, we conclude that 1359170111 = 13 · 17 · 19 · 47 · 71 · 97.

3.6.2. a. We have 33108075 = 33527311 · 13.

b. We have 7300977607 = 7511 · 17 · 23 · 101.

c. 4165073376607 = 11 · 13 · 17 · 23 · 29 · 31 · 41 · 43 · 47.

3.6.3. a. Since 11 <
√

143 < 12, we begin by noting that 122−143 = 1 is a perfect square. So, 143 = 122−1 =
(12 + 1)(12− 1) = 13 · 11.

b. Since 47 <
√

2279 < 48, we begin by noting that 482−2279 = 25 = 52 is a perfect square. So, 2279 =
482 − 52 = (48 + 5)(48− 5) = 53 · 43.

c. Since 6 <
√

43 < 7, we begin by looking for a perfect square in the sequence 72 − 43 = 6, 82 − 43 =
21, 92 − 43 = 38, 102 − 43 = 57, 112 − 43 = 78, . . . . The smallest such perfect square is 222 − 43 =
212. From this, it follows that 43 = (22 + 21)(22− 21) = 43 · 1, which shows that 43 is prime.

d. Since 106 <
√

11413 < 107, we begin by looking for a perfect square in the sequence 1072−11413 =
36 = 62, . . .. Thus, 11413 = 1072 − 62 = (107 + 6)(107− 6) = 113 · 101.

3.6.4. a. The smallest square greater than 8051 is 902 = 8100. We see that 902 − 8051 = 49 = 72, so that
8051 = 902 − 72 = (90 + 7)(90− 7) = 97 · 83.

b. The smallest square greater than 73 is 81. But the smallest square a such that a2 − 73 is a perfect
square is 37, for which 372 − 73 = 362. If follows that 73 = 372 − 362 = (37 + 36)(37− 36) = 73 · 1.
This shows that 73 is prime.

c. The smallest square greater than 10897 is 1052. But the smallest square a such that a2 − 10897 is a
square is a = 329. Then 10897 = (329− 312)(329 + 312) = 17 · 641.

d. The smallest square greater than 11021 is 1052, and 1052 − 11021 = 4 = 22, therefore, 11021 =
(105− 1)(105 + 2) = 103 · 107.

e. The smallest square greater than 3200399 is 17892. But the smallest square a such that a2 − 3200399
is a square is a = 1800. Then 3200399 = (1800− 199)(1800 + 199) = 1601 · 1999.

f. We have 49682 − 24681023 = 1, so 24681023 = 4967 · 4969.
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3.6.5. Note that (50+n)2 = 2500+100n+n2 and (50−n)2 = 2500−100n+n2. The first equation shows that
the possible final two digits of squares can be found by examining the squares of the integers 0, 1, . . . , 49,
and the second equation shows that these final two digits can be found by examining the squares of the
integers 0, 1, . . . , 25. We find that 02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 = 36, 72 = 49, 82 =
64, 92 = 81, 102 = 100, 112 = 121, 122 = 144, 132 = 169, 142 = 196, 152 = 225, 162 = 256, 172 = 289, 182 =
324, 192 = 361, 202 = 400, 212 = 441, 222 = 484, 232 = 529, 242 = 576, and 252 = 625. It follows that the
last two digits of a square are 00, e1, e4, 25, o6, and e9 where e represents an even digit and o represents
an odd digit.

3.6.6. Consider only the last two digits of each number in x2 − n = y2. Then y2 and x2 = y2 + n must end
in one of the given patterns. This will eliminate many possibilities from consideration. For example, in
part (a) of Exercise 4, we want to factor 8051. Then x2 = 8051+ y2, so if y2 ends in 00, e1, e4, 25, o6, or e9,
then x2 ends in 51, o2, o5, 76, e7, or e0, respectively. But only 76, and e0 are patterns for perfect squares,
so we only consider squares ending in 76 or e0 as candidates for x2.

3.6.7. Suppose that x2 − n is a perfect square with x > (n + p2)/2p, say a2. Now, a2 = x2 − n > ((n +
p2)/2p)2−n = ((n−p2)/2p)2. It follows that a > (n−p2)/2p. From these inequalities for x and a, we see
that x+a > n/p, or n < p(x+a). Also, a2 = x2−n tells us that (x−a)(x+a) = n. Now, (x−a)(x+a) =
n < p(x + a). Cancelling, we find that x− a < p. But since x− a is a divisor of n less than p, the smallest
prime divisor of n, x− a = 1. In this case, x = (n = 1)/2.

3.6.8. Certainly, m2 = m1 − 2q1 = n1 − 2q1, which is the basis step for induction on k. Suppose mk−1 =
n1−2(q1+ · · ·+qk−2). Then mk = mk−1−2qk−1 = n1−2(q1+ · · ·+qk−2)−2qk−1 = n1−2(q1+ · · ·+qk−1),
as desired. For the other formula, note that n2 = m2 + r1 = (m1 − 2q1) + (n1 − 3q1) = 2n1 − 5q1, which
is the basis step. Assume the formula holds for k − 1, then we have nk = mk + rk−1 = n1 − 2(q1 + · · ·+
qk−1)+nk−1−(2k−1)qk−1 = n1−2(q1 + · · ·+qk−1)+(k−1)n1−(2k−1)(q1 + · · ·+qk−2)−(2k−1)qk−1 =
kn1 − (2k + 1)(q1 + · · ·+ qk−1), as desired.

3.6.9. From the identity in Exercise 8, it is clear that if n = n1 is a multiple of 2k + 1, then so is nk, since it is
the sum of two multiples of 2k +1. If (2k +1) | nk, then (2k +1) | rk and it follows from rk < 2k +1 that
rk = 0. Thus, nk = (2k + 1)qk. Continuing, we see that n = n + 2nk − 2(2k + 1)qk = (2k + 1)n + 2(nk −
kn) − 2(2k + 1)qk. It follows from Exercise 8 that n = (2k + 1)n − 2(2k + 1)

∑k−1
i=1 qi − 2(2k + 1)qk =

(2k + 1)n − 2(2k + 1)
∑k

i=1 qi. Using Exercise 8 again, we conclude that n = (2k + 1)(n − 2
∑k

i=1 qi) =
(2k + 1)mk+1.

3.6.10. We compute n1 = 5899 = m1 = 3 · 1966 + 1, m2 = 5899 − 2(1966) = 1967, n2 = 1967 + 1 = 1968 =
5 ·393+3, m3 = 1967−2 ·393 = 1181, n3 = 1181+3 = 1184 = 7 ·169+1, m4 = 1181−2(169) = 843, n4 =
843 + 1 = 844 = 9 · 93 + 7, m5 = 843− 2(93) = 657, n5 = 657 + 7 = 664 = 11 · 60 + 4, m6 = 657− 2(60) =
537, n6 = 537 + 4 = 541 = 13 · 41 + 8, m7 = 537− 2(41) = 455, n7 = 455 + 8 = 463 = 15 · 30 + 13, m8 =
455− 2(30) = 395, n8 = 395 + 13 = 408 = 17 · 24. Therefore 17 | 5899, and we have 5899 = 17 · 347.

3.6.11. To see that u is even, note that a − c is the difference of odd numbers and that b − d is the difference
of even numbers. Thus a − c and b − d are even, and u must be as well. That (r, s) = 1 follows trivially
from Theorem 2.1 (i). To continue, a2 + b2 = c2 + d2 implies that (a + c)(a− c) = (d− b)(d + b). Dividing
both sides of this equation by u, we find that r(a + c) = s(d + b). From this, it is clear that s | r(a + c).
But since (r, s) = 1, s | a + c.

3.6.12. From Exercise 11, r(a + c) = s(d + b) so rsv = s(b + d) and hence, rv = b + d. Now, (r, s) = 1, so we
have (a + c, d + b) = (sv, rv) = v(s, r) = v. Finally, since a and c are odd, 2 | (a + c), and since b and d
are even, 2 | (b + d), so we have 2 | (a + c, b + d) = v, so v is even.

3.6.13. To factor n, observe that [(u
2 )2 + ( v

2 )2](r2 + s2) = (1/4)(r2u2 + r2v2 + s2u2 + s2v2). Substituting a −
c, d− b, a + c, and d + b for ru, su, sv, and rv respectively, will allow everything to be simplified down to
n. As u and v are both even, both of the factors are integers.
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3.6.14. a. We have u = (11− 5, 10− 14) = 2, r = (11− 5)/2 = 3, s = (14− 10)/2 = 2, v = (11 + 5, 10 + 14) =
8, then 211 = ((2/2)2 + (8/2)2)(32 + 22) = 17 · 13.

b. We have u = 8, r = 6, s = 5, v = 10, then 2501 = ((8/2)2 + (10/2)2)(62 + 52) = 41 · 61.

c. We have u = 4, r = 58, s = 7, v = 34, then 1000009 = ((4/2)2 + (34/2)2)(582 + 72) = 293 · 3413.

3.6.15. We have 24n+2 +1 = 4(2n)4 +1 = (2 ·22n +2 ·2n +1)(2 ·22n−2 ·2n +1). Using this identity we have the
factorization: 218+1 = 4(24)4+1 = (2·28+2·24+1)(2·28−2·24+1) = (29+25+1)(29−25+1) = 545·481.

3.6.16. If m has an odd factor, the identity gives a factorization of am + 1, therefore m must be a power of 2.

3.6.17. We can prove that the last digit in the decimal expansion of Fn is 7 for n ≥ 2 by proving that the last
digit in the decimal expansion of 22n

is 6 for n ≥ 2. This can be done using mathematical induction. We
have 222

= 16 so the result is true for n = 2. Now assume that the last decimal digit of 22n

is 6, that is
22n ≡ 6 (mod 10). It follows that 22n+1

= (22n

)2
n+1−2n ≡ 62n+1−2n ≡ 6 (mod 10). This completes the

proof.

3.6.18. Note that
√

224 + 1 < 257, so we need only check the primes less than 257 which are of the form 64k +
1. Of 64 + 1 = 65, 64 · 2 + 1 = 129, and 64 · 3 + 1 = 193, only 193 is prime. But 193 - 65537, so F4 is prime.

3.6.19. Since every prime factor of F5 = 225
+ 1 = 4294967297 is of the form 27k + 1 = 128k + 1, attempt to

factor F5 by trial division by primes of this form. We find that 128 · 1+1 = 129 is not prime, 128 · 2+1 =
257 is prime but does not divide 4294967297, 128 ·3+1 = 385 is not prime, 128 ·4+1 = 513 is not prime,
and 128 · 5 + 1 = 641 is prime and does divide 4294967297 with 4294967297 = 641 · 6700417. Any fac-
tor of 6700417 is also a factor of 4294967297. We attempt to factor 6700417 by trial division by primes of
the form 128k + 1 beginning with 641. We first note that 641 does not divide 6700417. Among the other
integers of the form 128k + 1 less than

√
6700417, namely the integers 769, 897, 1025, 1153, 1281, 1409,

1537, 1665, 1793, 1921, 2049, 2177, 2305, 2433, and 2561, only 769, 1153, and 1409 are prime, and none of
them divide 6700417. Hence 6700417 is prime and the prime factorization of F5 is 641 · 6700417.

3.6.20. We have 220
+ 5 = 7. This is the only prime of the form 22n

since 22n

+ 5 ≡ (−1)2
n

+ 5 ≡ 1 + 5 ≡ 0
(mod 3) when n > 1.

3.6.21. The number of decimal digits of Fn is [log10 Fn] + 1 = [log2 Fn/ log2 10] + 1 by the change of base for-
mula for logarithms. But this is approximately log2 22n

/ log2 10 + 1 = 2n/ log2 10 + 1.

3.6.22. Suppose that a prime p divides Fn. Then by Theorem 3.20, p is of the form 2n+1k + 1, but this number
is larger than n for all k = 1, 2, . . ., so p - n. Therefore, (n, Fn) = 1.

3.6.23. Suppose na − 2m = 1 for some integer n. Then 2m = (n − 1)(na−1 + na−2 + · · · + n + 1), where the
last factor is the sum of a odd terms but must be a power of 2, therefore, a = 2k for some k. Then 2m =
(nk − 1)(nk + 1). These last two factors are powers of 2 which differ by 2 which forces k = 1, a = 2, m =
3, and n = 3 as the only solution.

3.6.24. For 901, we try 311 − 901 = 60, 321 − 901 = 123, 331 − 901 = 188, 341 − 901 = 255, 351 − 901 = 324 =
182, so 901 = (35 − 18)(35 + 18) = 17 · 53. On the other hand, for 2703, we try only 522 − 2703 = 1, so
2703 = (52− 1)(52 + 1) = 51 · 53 = 3 · 17 · 53.

3.7. Linear Diophantine Equations
3.7.1. a. Using the Euclidean algorithm we find that 2 · 3 + 5 · (−1) = 1. Multiplying both sides by 11 gives

2 ·33+5 ·(−11) = 11. Hence x = 33, y = −11 is a solution. All solutions are given by x = 33−5t, y =
−11 + 2t where t is an integer.
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b. Using the Euclidean algorithm we find that 17 · (−3) + 13 · 4 = 1. Multiplying both sides by 100
gives 17 · (−300) + 13 · 400 = 100. Hence x = −300, y = 400 is a solution. All solutions are given by
x = −300 + 13t, y = 400− 17t, where t is an integer.

c. Using the Euclidean algorithm we see that 21 · 1 + 14 · (−1) = 7. Multiplying both sides by 21 gives
21 · 21 + 14 · (−21) = 147. Hence x = 21, y = −21 is a solution. All solutions are given by x =
21− 2t, y = −21 + 3t where t is an integer.

d. Since (60,18)=3 and 97 is not divisible by 3, it follows that there are no solutions in integer of 60x +
18y = 97.

e. Using the Euclidean algorithm it follows that 1402 · 889 + 1969 · (−633) = 1. Hence x = 889, y =
−633 is a solution. All solutions are given by x = 889−1969t, y = −633+1402t where t is an integer.

3.7.2. a. Using the Euclidean algorithm we find that 3 · 1 + 4 · 1 = 7. Hence x = 1, y = 1 is a solution. All
solutions are given by x = 1− 4t, y = 1 + 3t where t is an integer.

b. Since (12, 18) = 6 and 6 - 50, there are no solutions.

c. Using the Euclidean algorithm we find that 11 · 30 + 47 · (−7) = 1. Multiplying both sides by −11
gives −121 · 30 + 47 · (77) = −11. Hence x = −121, y = 77 is a solution. All solutions are given by
x = −121− 47t, y = 77 + 30t where t is an integer.

d. We divide the equation by 5 to get 5x + 19y = 194. Using the Euclidean algorithm we find that
5 · 4 + 19 · (−1) = 1. Multiplying both sides by 194 gives 5 · 776 + 19 · 194 = 194. Hence x = 776, y =
194 is a solution. All solutions are given by x = 776− 19t, y = 194 + 5t where t is an integer.

e. Using the Euclidean algorithm we find that 442 · 102 + 1001 · (−43) = 1. Hence x = 442, y = −43 is
a solution. All solutions are given by x = 442− 1001t, y = −43 + 102t where t is an integer.

3.7.3. Let x be the number of U.S. dollars and y be the number of Canadian dollars the businessman ex-
changes. Then 122x + 112y = 15286. Since (122, 112) | 15286, there exist solutions with integer x and
y. Using the Euclidean algorithm we find that 112(12) − 122(11) = 2. It follows that 122(−84073) +
112(91716) = 15286. Consequently all solutions of the linear diophantine equation are given by x =
−84073 + 56t, y = 91716− 61t. But our situation requires that both x and y be positive. We can see that
x is positive when t > 1501, and y is positive when t < 1504. It follows that the only positive solutions
which occur when t = 1502 and t = 1503, namely x = 39, y = 94 and x = 95, y = 33, respectively.

3.7.4. Let e be the number of euros and f be the number of francs. Then 111e+83f = 4626. Since (111, 83) =
1, there exist solutions. Using the Euclidean algorithm we find that 111(3) + 83(−4) = 1. It follows that
111(13878) + 83(−18504) = 4626, so all solutions to the diophantine equation are given by e = 13878−
83t, f = −18504 + 111t, where t is an integer. For e to be positive we must have 13878 > 83t which
implies that t ≤ 167. For f to be positive we must have 111t > 18504, which implies that t > 166, so we
must have t = 167, which means that e = 17 and f = 33.

3.7.5. Let e be the number of euros and p be the number of pounds. Then 111e + 169p = 11798. Since
(111, 169) = 1, there exist solutions. Using the Euclidean algorithm, we find that 111(−102) + 169(67) =
1, so that multiplying by 11798 gives us 111(−1203396)+169(790466) = 11798, so all solutions are given
by e = −1203396 + 169t, p = 790466 − 111t. Since e is positive we must have 169t > 1203396, which
implies t > 7120. Since p is positive we must have 111t < 790466, which implies that t ≤ 7121, so we
must have t = 7121. Therefore e = 53 and p = 35.

3.7.6. Let x be the number of plantains in each of the 63 equal piles and y be the number of plantains dis-
tributed to each traveller. Then 23y = 63x + 7, which in this context is a diophantine equation for which
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we seek positive solutions. The smallest positive solutions are x = 5 and y = 14, so each pile had 5 plan-
tains. (Mahavira’s intent being to find the smallest solution.)

3.7.7. Let x be the number of apples and y the number of oranges. We have 25x + 18y = 839. Using the
Euclidean algorithm we find that −5 · 25 + 7 · 18 = 1. It follows that 25(−5 · 839) + 18(7 · 839) =
25(−4195) + 18 · 5873 = 839. Consequently all solutions of the linear diophantine equation are given
by x = −4195 + 18t, y = 5873 − 25t where t is an integer. For x and y to both be nonnegative, we must
have 4195/18 ≤ t ≤ 5873/25. Since t must be an integer, this requires that t = 234. This give the unique
nonnegative solution x = −4195 + 18 · 234 = 17, y = 5873− 25 · 234 = 23.

3.7.8. We need to solve the diophantine equation 18x + 33y = 549. We get the general solution x = 366 −
11t, y = −183 + 6t. We seek only positive solutions, and to minimize the number of fruit, we will maxi-
mize y, the number of more expensive fruit. This gives us x = 3, y = 15 when t = 33.

3.7.9. a. Suppose that x 14-cent stamps and y 21-cent stamps are combined to form $ 3.50. Then 14x+21y =
350. Since (14, 21) = 7 and 7 | 350 it follows that there are solutions in integers to this diophantine
equation. We can find these by first noting that 7 = −1 ·14+1 ·21, so 350 = 50 ·7 = −50 ·14+50 ·21.
This implies that all solutions in integers are given by x = −50 + (21/7)t = −50 + 3t and y = 50−
(14/7)t = 50− 2t where t is an integer. For x to be positive we must have t ≥ 17 and for y to be pos-
itive we must have t ≤ 25. This gives the solutions, for 17 ≤ t ≤ 25, x = 1, y = 16; x = 4, y = 14;x =
7, y = 12; x = 10, y = 10; x = 13, y = 8; x = 16, y = 6; x = 19, y = 4; x = 22, y = 2; and x = 25, y = 0.

b. Let x be the number of 14-cent stamps and y be the number of 21-cent stamps. Then 14x + 21y =
400. However, (14, 21) = 7 but 7 does not divide 400. Hence there are no solutions in integers and
it is impossible to use 14-cent and 21-cent stamps to form postage of $ 4.00.

c. We have 18 solutions: (0, 37), (3, 35), . . . , (54, 1).

3.7.10. a. We solve the diophantine equation 11x + 8y = 777 and get the general solution x = 2331 − 8t, y =
−3108 + 11t. Since we seek only positive solutions, the first equation implies that 2331− 8t ≥ 0 or
t ≤ 291. The second equation implies that t ≥ 282. So there are 10 possible configurations for the
order.

b. We solve the diophantine equation 11x + 8y = 96 and get the general solution x = 288 − 8t, y =
−384 + 11t. Since we seek only positive solutions, the first equation implies that 288− 8t ≥ 0 or t ≤
36. The second equation implies that t ≥ 35. So either x = 288 − 8 · 35 = 8, y = −384 + 11 · 35 = 1
or x = 288− 8 · 36 = 0, y = −384 + 11 · 36 = 12.

c. We solve the diophantine equation 11x + 8y = 69 and get the general solution x = 207 − 8t, y =
−276 + 11t. Since we seek only positive solutions, the first equation implies that 207− 8t ≥ 0 or t ≤
25. The second equation implies that t ≥ 26, so there are no solutions.

3.7.11. a. Since (2, 3) = 1, we can take z to be any integer t and solve the diophantine equation 2x + 3y =
5− 4t, which leads to the solution x = −5 + 3s− 2t, y = 5− 2s, z = t

b. Since (7, 21, 35) = 7 - 8, there are no solutions.

c. Since (101, 102) = 1, we can take z to be any integer t and solve the diophantine equation 101x +
102y = 1− 103z, which leads to the solution x = −1 + 102s + t, y = 1− 101s− 2t, z = t

3.7.12. a. Since (2, 3) = 1, we can choose any values for x2, and x3, and solve the remaining equation for x1

and x4. We have 2(−1)+3(1) = 1, so 2(−1(5− 5x2− 4x3))+3(5− 5x2− 4x3) = 5− 5x2− 4x3. Then
a general solution is given by x1 = −5+5x2 +4x3 +3t, x2 = x2, x3 = x3 and x4 = 5−5x2−4x3−2t.
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b. The general solution is given by x1 = x1, x + 2 = 3 − x1 − 2x4 − 3t, x3 = −6 + x1 + 3x4 + 7t, and
x4 = x + 4.

c. Note that (6, 35) = 1, so we can choose x1, x3, and x4 freely and solve for the other variables. This
gives us a general solution of x1 = x1, x2 = 6(1− 15x1 − 10x3 − 21x4) + 35t, x3 = x3, x4 = x4, and
x5 = −(1− 15x1 − 10x3 − 21x4)− 6t.

3.7.13. Let x be the number of pennies, y the number of dimes, and z the number of quarters. Then x+10y +
25z = 99. Since x, y, and z are all nonnegative, it follows that z = 0, 1, 2, or 3. First suppose that z = 0.
Then x + 10y = 99. We find the nonnegative solutions to this by letting y range form 0 to 9. We see that
x = 9, y = 9; x = 19, y = 8; x = 29, y = 7; x = 39, y = 6; x = 49, y = 5; x = 59, y = 4; x = 69, y = 3; x =
79, y = 2;x = 89, y = 1; and x = 99, y = 0 are the solutions for z = 0. Now let z = 1. Then x + 10y = 74.
The nonnegative solutions to this are determined by letting y range from 0 to 7. We see that x = 4, y =
7; x = 14, y = 6;x = 24, y = 5;x = 34, y = 4;x = 44, y = 3; x = 54, y = 2; x = 64, y = 1; and x = 74, y =
0 are the solutions with z = 1. Now let z = 2. Then x + 10y = 49. The nonnegative solutions to this are
determined by letting y range from 0 to 4. We see that x = 9, y = 4; x = 19, y = 3; x = 29, y = 2; x =
39, y = 1; and x = 49, y = 0 are the solutions with z = 2. Finally, let z = 3. Then x + 10y = 24. The
nonnegative solutions to this are determined by letting y range from 0 to 2. We see that x = 4, y = 2;x =
14, y = 1; and x = 24, y = 0 are the solutions with z = 3. We have exhausted all nonnegative solutions
of our equation.

3.7.14. a. We can use either 0, 2, or 4 quarters, and make up the difference with dimes. This gives us 3 ways:
(dimes, quarters) = (10, 0), (5, 2), or (0, 4).

b. In part (a) we can replace any dime by two nickels and any quarter by 5 nickels, this gives us the
following solutions: (nickels, dimes, quarters) = (0, 10, 0), (2, 9, 0), (4, 8, 0), . . . (20, 0, 0), (0, 5, 2), . . .
(10, 0, 2), (5, 5, 1), . . . , (15, 0, 1), (0, 0, 4), (5, 0, 3) for 24 ways in all.

c. Each nickel listed in part (b) can be changed into 5 pennies, giving 175 ways in all.

3.7.15. a. We subtract the first equation from the second to get the diophantine equation 7y+49y = 56, which
has solutions y = 8 − 7t, z = t. Substituting these expressions into the first equation gives us x =
92 + 6t, y = 8− 7t, z = t.

b. We subtract the first equation from the second to get the diophantine equation 5y + 20z = 21. Since
(5, 20) = 5 - 21, there is no solution.

c. We subtract the first equation from the other two to get the system y +2z +3w = 200, and 3y +8z +
15w = 900. We subtract 3 times this first equation from the second to get 2z + 6w = 300, which has
solutions z = 150 − 3t, w = t. Substituting these expressions into y + 2z + 3w = 200 gives us y =
−100 + 3t, and substituting all three expressions into the first equation gives us x = 50− t.

3.7.16. Suppose that there x nickels, y dimes, and z quarters. Since there are 24 coins in the piggy bank we
know that x + y + z = 24. since there are two dollars in the bank, we know that 5x + 10y + 25z = 200.
Multiplying the first equation by 5 and subtracting it from the second yields 5y + 20z = 80. dividing
both sides by 5 gives y + 4z = 16. The solutions to the linear diophantine equation are y = 16− 4t, z = t
where t is a positive integer. There are 5 nonnegative solutions for 0 ≤ t ≤ 4. We have y = 16 and z = 0,
which gives x = 8, y = 12 and z = 1, which gives x = 11, y = 8 and z = 2, which gives x = 14, y = 4 and
z = 3, which gives x = 17, y = 0 and z = 4, which gives x = 20. Hence the solutions are 8 nickels, 16
dimes, and 0 quarters; 11 nickels, 12 dimes, and 1 quarter; 14 nickels, 8 dimes, and 2 quarters; 17 nickels,
4 dimes, and 3 quarters; and 20 nickels, 0 dimes, and 4 quarters.

3.7.17. Let x be the number of first-class tickets sold, y be the number of second-class tickets sold, and z be
the number of stand-by tickets sold. Then we have the system of diophantine equations 140x + 110y +
78z = 6548, x + y + z = 69. Substituting z = 69− x− y into the first equation yields 62x + 32y = 1166,
which has solutions x = 9+16t, y = 19− 31t. Then z = 41+15t. The only value of t that leaves all three
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quantities positive is t = 0, so the only solution is x = 9, y = 19, z = 41.

3.7.18. Suppose that there are x pennies, y dimes, and z quarters. Then x + y + z = 50 and x + 10y + 25z =
300. Subtracting the first equation from the second shows that 9y + 24z = 250. This linear diophantine
equation has no solutions since (9, 24) = 3 and 3 does not divide 250. Hence there is no way to have 50
coins, all pennies, dimes, and quarters, that are worth $ 3.

3.7.19. The quadrilateral with vertices (b, 0), (0, a), (b − 1,−1), and (−1, a − 1), has area a + b. Pick’s Theo-
rem, from elementary geometry, states that the area of a simple polygon whose vertices are lattice points
(points with integer coordinates) is given by 1

2x + y − 1, where x is the number of lattice points on the
boundary and y is the number of lattice points inside the polygon. Since (a, b) = 1, x = 4, and therefore,
by Pick’s Theorem, the quadrilateral contains a + b − 1 lattice points. Every point corresponds to a dif-
ferent value of n in the range ab − a − b < n < ab. Therefore every n in the range must get hit, so the
equation is solvable.

3.7.20. If x = −1, we can solve the equation ax+ by = ab−a− b for b and get b = a− 1. Since (a, ab−a− b) =
(b, ab − a − b) = 1, the general solution is x = −1 + bt, y = a − 1 − at. Then for a positive solution, we
must have x = −1 + bt ≥ 0 or t ≥ 1, but also, y = a− 1− at ≥ 0 or y ≤ (a− 1)/a < 1, a contradiction, so
there are no solutions.

3.7.21. See the solution to Exercise 19. The line ax + by = ab − a − b bisects the rectangle with vertices
(−1, a− 1), (−1,−1), (b− 1, a− 1), and (b− 1,−1) but contains no lattice points. Hence, half the interior
points are below the line and half are above. The half below correspond to n < ab− a− b and there are
(a− 1)(b− 1)/2 of them.

3.7.22. Let a and b be the values of the stamps, with a ≥ b. Since there are 33 postages that cannot be formed
Exercise 17 tells us that (a − 1)(b − 1)/2 = 33. Hence (a − 1)(b − 1) = 66. Since a and b are integers,
either a = 67 and b = 2, a = 34 and b = 3, a = 23 and b = 4, or a = 12 and b = 7. However postage of 46
cents cannot be formed, so there are no nonnegative solutions of ax + by = 46. Note that 0 · 67 + 23 · 2 =
46, 1 · 34 + 4 · 3 = 46, and 2 · 23 + 0 · 4 = 46, but there are no nonnegative solutions of 12x + 7y = 46, as
is easily shown. The values of the two stamps are 7 cents and 12 cents.

3.7.23. Let x, y and z be the number of cocks, hens and chickens respectively. The problem leads to the sys-
tem of diophantine equations x + y + z = 100, 5x + 3y + z/3 = 100. Substituting z = 100− x− y into the
second equation and clearing fractions yields 14x + 8y = 200, which has solutions x = 4t, y = 25− 7t. It
follows that z = 75+3t. The only values for t which make all three of these numbers nonnegative are t =
0, 1, 2, and 3. Thus the solutions to the problem are (x, y, z) = (0, 25, 75); (4, 18, 78); (8, 11, 81); (12, 4, 84.)

3.7.24. Suppose that 1
x + 1

y = 1
14 . Then 14x + 14y = xy. This implies that xy − 14x− 14y + 196 = 196 so that

(x− 14)(y − 14) = 196. It follows that x− 14 and y − 14 are divisors of 196. Consequently the values of
x− 14 and y− 14 must be 1 and 196, 2 and 98, 4 and 49, 7 and 28, 14 and 14, 28 and 7, 49 and 4, 98 and 2,
196 and 1, or the negatives of these values. Solving for x and y gives (x, y) = (15, 210), (16, 112), (18, 63),
(21, 42), (28, 28), (42, 21), (63, 18), (112, 16), (210, 15), (13,−182), (12,−84), (10,−35), (7,−14), (−14, 7),
(−35, 10), (−84, 12), or (−182, 13).



CHAPTER 4

Congruences

4.1. Introduction to Congruences
4.1.1. a. We have 2 | (13− 1) = 12, so 13 ≡ 1 (mod 2).

b. We have 5 | (22− 7) = 15, so 22 ≡ 7 (mod 5).

c. We have 13 | (91− 0) = 91, so 91 ≡ 0 (mod 13).

d. We have 7 | (69− 62) = 7, so 69 ≡ 62 (mod 7).

e. We have 3 | (−2− 1) = −3, so −1 ≡ 1 (mod 3).

f. We have 11 | (−3− 30) = −33, so −3 ≡ 30 (mod 11).

g. We have 40 | (111− (−9)) = 120, so 111 ≡ −9 (mod 40).

h. We have 37 | (666− 0) = 666, so that 666 ≡ 0 (mod 37).

4.1.2. a. We have 7 | (15− 1) = 14, so 15 ≡ 1 (mod 7).

b. We have 7 | (42− 0) = 42, so 42 ≡ 0 (mod 7).

c. We have 7 - (99− 2) = 97, so 99 6≡ 2 (mod 7).

d. We have 7 - (8− (−1)) = 9, so 8 6≡ −1 (mod 7).

e. We have 7 | (−9− 5) = −14, so −9 ≡ 5 (mod 7).

f. We have 7 | (699− (−1)) = 700, so 699 ≡ −1 (mod 7).

4.1.3. a. Since the positive divisors of 27 − 5 = 22 are 1, 2, 11, and 22 it follows that 27 ≡ 5 (mod m) if and
only if m = 1,m = 2,m = 11, or m = 22.

b. Since the positive divisors of 1000−1 = 999 are 1, 3, 9, 27, 37, 111, 333, and 999, it follows that 1000 ≡
1 (mod m) if and only if m is one of these eight integers.

c. Since the only positive divisors of 1331 − 0 = 1331 are 1, 11, 121, and 1331 it follows that 1331 ≡ 0
(mod m) if and only if m is one of these four integers.

4.1.4. Suppose that a is an even integer. Then a = 2k for some integer k. The a2 = 4k2. Consequently 4 | a2

so that a2 ≡ 0 (mod 4). Suppose that a is an odd integer. Then a = 2k + 1 for some integer k. Then a2 =
4k2 + 4k + 1 = 4(k2 + k) + 1, so that a2 − 1 = 4(k2 + k). It follows that a2 ≡ 1 (mod 4).

4.1.5. Suppose that a is odd. Then a = 2k + 1 for some integer k. Then a2 = (2k + 1)2 = 4k2 + 4k + 1 =
4k(k + 1) + 1. If k is even, then k = 2l where l is an integer. Then a2 = 8l(2l + 1) + 1. Hence a2 ≡ 1
(mod 8). If k is odd, then k = 2l + 1 when l is an integer. Then a2 = 4(2l + 1)(2l + 2) + 1 = 8(2l + 1)(l +

69
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1) + 1. Hence a2 ≡ 1 (mod 8). It follows that a2 ≡ 1 (mod 8) whenever a is odd.

4.1.6. a. 22 (mod 13) = 9, since 22 = (1)(13) + 9.

b. 100 (mod 13) = 9, since 100 = (7)(13) + 9.

c. 1001 (mod 13) = 0, since 1001 = (77)(13).

d. −1 (mod 13) = 12, since −1 = (−1)(13) + 12.

e. −100 (mod 13) = 4, since −100 = (−8)(13) + 4.

f. −1000 (mod 13) = 1, since −1000 = (−77)(13) + 1.

4.1.7. a. Since n! ≡ 0 (mod 2) if n ≥ 2, we have 1! + 2! + 3! + · · ·+ 100! ≡ 1 (mod 2).

b. We have n! ≡ 0 (mod 7) whenever n ≥ 7. Since 1! ≡ 1 (mod 7), 2! ≡ 2 (mod 7), 3! ≡ 6 (mod 7), 4! =
24 ≡ 3 (mod 7), 5! = 120 ≡ 1 (mod 7) and 6! = 720 ≡ 6 (mod 7), we have 1! + 2! + 3! + · · ·+ 100! ≡
1! + 2! + 3! + 4! + 5! + 6! ≡ 1 + 2 + 6 + 3 + 1 + 6 ≡ 5 (mod 7).

c. Since n! ≡ 0 (mod 12) whenever n ≥ 4, it follows that 1!+2!+3!+· · ·+100! ≡ 1+2+6 ≡ 9 (mod 12).

d. Since n! ≡ 0 (mod 25) whenever n ≥ 10, it follows that 1! + 2! + 3! + · · ·+ 100! ≡ 1! + 2! + 3! + 4! +
5! + 6! + 7! + 8! + 9! ≡ 1 + 2 + 6 + 24 + 20 + 20 + 15 + 20 + 5 ≡ 13 (mod 25).

4.1.8. Since a ≡ b (mod m), there exists an integer k1 such that a = b + k1m. Since n | m, there exists an
integer k2 such that m = k2n. Thus a = b + (k1k2)n, so a ≡ b (mod m).

4.1.9. Since a ≡ b (mod m), there exists an integer k such that a = b+km. Thus, ac = (b+km)c = bc+k(mc).
By Theorem 4.1, ac ≡ bc (mod mc).

4.1.10. Since a ≡ b (mod c), there exists an integer k such that a = b + kc. Let d1 = (a, c), so that a = d1n
and c = d1m. Then d1n = a = b + km = b + kd1n2, so b = d1(n − km). Thus d1 ≤ d2. A symmetrical
argument establishes that d2 ≤ d1, so d1 = d2.

4.1.11. a. We proceed by induction on n. It is clearly true for n = 1. For the inductive step we assume that∑n
j=1 aj ≡

∑n
j=1 bj (mod m) and that an+1 ≡ bn+1 (mod m). Now

∑n+1
j=1 aj = (

∑n
j=1 aj) + an+1 ≡

(
∑n

j=1 bj) + bn+1 =
∑n+1

j=1 bj (mod m) by Theorem 4.5(i). This completes the proof.

b. We use induction on n. For n = 1, the identity clearly holds. This completes the basis step. For
the inductive step we assume that

∏n
j=1 aj ≡

∏n
j=1 bj (mod m) and an+1 ≡ bn+1 (mod m). Then∏n+1

j=1 aj = an+1(
∏n

j=1 aj) ≡ bn+1(
∏n

j=1 bj) =
∏n+1

j=1 bj (mod m) by Theorem 4.5(iii). This com-
pletes the proof.

4.1.12. + 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

4.1.13. − 0 1 2 3 4 5
0 0 5 4 3 2 1
1 1 0 5 4 3 2
2 2 1 0 5 4 3
3 3 2 1 0 5 4
4 4 3 2 1 0 5
5 5 4 3 2 1 0
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4.1.14. ∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

4.1.15. a. Since 11 + 29 = 40 ≡ 4 (mod 12), the (12-hour) clock reads 4 o’clock 29 hours after reading 11
o’clock.

b. Since 2 + 100 = 102 ≡ 6 (mod 12), the (12-hour) clock reads 6 o’clock 100 hours after it reads 2
o’clock.

c. Since 6 − 50 = −44 ≡ 4 (mod 12), the (12-hour) clock reads 4 o’clock 50 hours before it reads 6
o’clock.

4.1.16. We find that 14 ≡ 34 ≡ 74 ≡ 94 ≡ 1 (mod 10), 24 ≡ 44 ≡ 64 ≡ 84 = 6 (mod 10), 54 ≡ 5 (mod 10), and
04 ≡ 0 (mod 10). It follows that the final decimal digit of a fourth power is either 0,1,5, or 6.

4.1.17. If a2 ≡ b2 (mod p) then p | (a2 − b2) = (a + b)(a− b). Since p is prime, either p | (a + b) or p | (a− b).
Hence either a ≡ b (mod p) or a ≡ −b (mod p).

4.1.18. Suppose that ak ≡ bk (mod m) and ak+1 ≡ bk+1 (mod m). Then multiplying both sides of the con-
gruence ak ≡ bk (mod m) by b gives b · ak ≡ bk+1 (mod m). Since ak+1 ≡ bk+1 (mod m), we see that
b · ak ≡ ak+1 (mod m). Hence b · ak − ak+1 = (b − a)ak ≡ 0 (mod m). Since (a,m) = 1 we see that
(ak,m) = 1 and m | (b− a). It follows that a ≡ b (mod m).

This result is not necessarily true when (a, m) 6= 1. Take m = a = 4 and b = 2. Then a2 = b2 (mod m)
and a3 ≡ b3 (mod m) but a 6≡ ab (mod m).

4.1.19. Note that 1 + 2 + 3 + · · · + (n + 1) = (n− 1)n/2. If n is odd, then (n − 1) is even, so (n − 1)n/2 is an
integer. Hence n | (1 + 2 + 3 + · · ·+ (n− 1)) if n is odd, and 1 + 2 + 3 + · · ·+ (n− 1) ≡ 0 (mod n). If n is
even, then n = 2k where k is an integer. Then (n − 1)n/2 = (n − 1)k. We can easily see that n does not
divide (n− 1)k since (n, n− 1) = 1 and k < n. It follows that 1 + 2 + · · ·+ (n− 1) is not congruent to 0
modulo n if n is even.

4.1.20. Note that 13 +23 +33 + · · ·+(n− 1)3 = ((n− 1)n)2/4. If n is odd then (n− 1) is even, so ((n− 1)n)2/4
is an integer. Thus the sum is a multiple of n, and is congruent to 0 modulo n. If n is a multiple of 4,
then n/4 is an integer, and the sum is again a multiple of n.

If n is even but not a multiple of 4, then n = 2k where k is odd, and (n − 1) is also odd. Thus ((n −
1)n)2/4 = ((n − 1)2k)2/4 = ((n − 1)k)2, which is odd and thus not congruent to 0 modulo n (which is
even).

4.1.21. 12 + 22 + · · · + (n − 1)2 ≡ 0 (mod n) if and only if n is relatively prime to 6. If (n, 6) = 1, then
12 + 22 + · · ·+ (n− 1)2 = n(n− 1)(2n− 1)/6 ≡ 0 · (n− 1)(2n− 1)/6 ≡ 0 (mod n), using Exercise 7 from
Section 1.2 and Theorem 4.3(iii). This works because 12 + 22 + · · ·+ (n− 1)2 is an integer and (n, 6) = 1
implies that (n− 1)(2n− 1)/6 is an integer, and so we are dealing with integer-only arithmetic. If how-
ever, 2 | n so that 2 | (n, 6) and if 12 + 22 + · · ·+ (n− 1)2 = n(n− 1)(2n− 1)/6 ≡ 0 (mod n), then nk =
n(n − 1)(2n − 1)/6 for some integer k by Theorem 4.1. It follows that 6k = (n − 1)(2n − 1). But 6k is
even, and (n− 1)(2n− 1) is odd since both n− 1 and 2n− 1 are odd. If 3 | n, and n(n− 1)(2n− 1)/6 ≡ 0
(mod n), then nk = n(n−1)(2n−1)/6 by Theorem 4.1. Hence, 6k = (n−1)(2n−1). But if we look at this
equality modulo 3, we see that 0 ≡ 6k = (n−1)(2n−1) ≡ (−1)(−1) = 1 (mod 3). Again, a contradiction.

4.1.22. When n = 1 we have 41 = 4 = 1+3 ·1 so the basis step holds. Now suppose that 4n ≡ 1+3n (mod 9).
Then 4n+1 = 4 · 4n ≡ 4(1 + 3n) ≡ 4 + 12n ≡ 4 + 3n ≡ 1 + 3(n + 1) (mod 9). This completes the proof by
mathematical induction.

4.1.23. If n = 1, then 5 = 51 = 1 + 4(1) (mod 16), so the basis step holds. For the inductive step, we as-
sume that 5n = 1 + 4n (mod 16). Now 5n+1 ≡ 5n5 ≡ (1 + 4n)5 (mod 16) by Theorem 4.3(iii). Further,
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(1 + 4n)5 ≡ 5 + 20n ≡ 5 + 4n (mod 16). Finally 5 + 4n = 1 + 4(n + 1). So, 5n+1 ≡ 1 + 4(n + 1) (mod 16).
This completes the proof.

4.1.24. We can take 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25 to form a complete system of residues modulo
13.

4.1.25. Note that if x ≡ 0 (mod 4) then x2 ≡ 0 (mod 4), if x ≡ 1 (mod 4) then x2 ≡ 1 (mod 4), if x ≡ 2
(mod 4) then x2 ≡ 4 ≡ 0 (mod 4), and if x ≡ 3 (mod 4) then x2 ≡ 9 ≡ 1 (mod 4). Hence x2 ≡ 0 or 1
(mod 4) whenever x is an integer. It follows that x2 + y2 ≡ 0, 1 or 2 (mod 4) whenever x and y are inte-
gers. We see that n is not the sum of two squares when n ≡ 3 (mod 4).

4.1.26. If x solves x2 = x (mod p), we know that p | x2 − x = x(x− 1). Thus, since p is prime, either p | x, in
which case x ≡ 0 (mod p), or p | (x− 1), in which case x ≡ 1 (mod p).

4.1.27. By Theorem 4.1, for some integer a, apk = x2 − x = x(x− 1). By the Fundamental Theorem of Arith-
metic, pk is a factor of x(x− 1). Since p cannot divide both x and x− 1, we know that pk | x or pk | x− 1.
Thus, x ≡ 0 or x ≡ 1 (mod pk).

4.1.28. a. Since 2 ≡ 2 (mod 47), 22 ≡ 4 (mod 47), 24 ≡ 16 (mod 47), 28 = 256 ≡ 21 (mod 47), and 216 ≡
212 ≡ 441 ≡ 18 (mod 47), 232 ≡ 182 ≡ 324 ≡ 42 (mod 47).

b. We have 247 = (232)(28)(24)(22)(21). Using the results of part (a), we have 247 ≡ (42)(21)(16)(4)(2) ≡
(882)(16)(8) ≡ (36)(128) ≡ (36)(34) ≡ 1224 ≡ 2 (mod 47).

c. Continuing our powers of 2, 264 ≡ 422 ≡ 1764 ≡ 25 (mod 47), and 2128 ≡ 252 ≡ 625 ≡ 14
(mod 47). Thus, since 2200 = (2128)(264)(28), we have 2200 ≡ (14)(25)(21) ≡ (350)(21) ≡ (21)(21) ≡
18 (mod 47).

4.1.29. First note that there are m1 possibilities for a1, m2 possibilities for a2, and in general mi possibilities
for ai. Thus there are m1m2 · · ·mk expressions of the form M1a1 + M2a2 + · · ·Mkak where a1, a2, . . . , ak

run through complete systems of residues modulo m1,m2, . . . , mk, respectively. Since this is exactly
the size of a complete system of residues modulo M , the result will follow if we can show distinctness
of each of these expressions modulo M . Suppose, by way of contradiction, that M1a1 + M2a2 + · · · +
Mkak ≡ M1a

′
1 + M2a

′
2 + · · ·+ Mka′k (mod M). Then M1a1 ≡ M1a

′
1 (mod m1), since m1 divides each of

M2, M3, . . . , Mk, and further a1 ≡ a′1 (mod m1) since (M1,m1) = 1. Similarly ai ≡ a′i (mod mi). Thus
a′i is in the same congruence class modulo mi as ai for all i. The result now follows.

4.1.30. Let r be the least positive residue of u + v, so u + v ≡ r (mod m), or equivalently, there exists an in-
teger k such that u + v = km + r. Since u and v are both positive and less than m, we also know that
u + v ≤ 2m so k is either 0 or 1. Following the hint, assume without loss of generality that u ≤ v. Case 1:
r < u. Then u + v > r, so u + v = m + r. Case 2: r > v. Then u + v = r. Note that r cannot be between u
and v since that would require one of u or v to be larger than m.

4.1.31. a. Let
√

n = a + r, where a is an integer, and 0 ≤ r < 1. We now consider two cases, when 0 ≤ r < 1
2

and when 1
2 ≤ r < 1. For the first case, T = [

√
n + 1

2 ] = a, and so t = T 2 − n = −(2a + r2). Thus
|t| = 2ar + r2 < 2a( 1

2 ) + ( 1
2 )2 = a + 1

4 . Since both T and n are integers, t is also an integer. It follows
that |t| ≤ [a + 1

4 ] = a = T . For the second case, when 1
2 ≤ r < 1, we find that T = [

√
n + 1

2 ] = a + 1
and t = 2a(1− r) + (1− r2). Since 1

2 ≤ r < 1, 0 < (1− r) ≤ 1
2 and 0 < 1− r2 < 1. It follows that t ≤

2a( 1
2 ) + (1− r2). Because t is an integer, we can say that t ≤ [a + (1− r2)] = a < T .

b. By the division algorithm, we see that if we divide x by T we get x = aT + b, where 0 ≤ b < T . If a
were negative, then x = aT + b ≤ (−1)T + b < 0; but we assumed x to be nonnegative. This shows
that 0 ≤ a. Suppose now that a > T . Then x = aT +b ≥ (T +1)T = T 2+T ≥ (

√
n− 1

2 )2+(
√

n− 1
2 ) =

n− 1
4 and, as x and n are integers, x ≥ n. This is a contradiction, which shows that a ≤ T . Similarly,

0 ≤ c ≤ T and 0 ≤ d < T .
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c. xy = (aT + b)(cT + d) = acT 2 + (ad + bc)T + bd ≡ ac(T 2 − n) + zT + bd ≡ act + zT + bd (mod n).

d. Use part (c), substituting eT + f for ac.

e. The first half is identical to part (b); the second half follows by substituting gT + h for z + et and
noting that T 2 ≡ t (mod n).

f. Certainly, ft and gt can be computed since all three numbers are less than T , which is less than√
n + 1. So (f + g)t is less than 2n < w. Similarly, we can compute j + bd without exceeding the

word size. And, finally, using the same arguments, we can compute hT + k without exceeding the
word size.

4.1.32. To compute bN modulo m, first express N in ternary (base 3) notation as N = (ak, ak − 1, . . . , a0), and
then find the least positive residues of b3j

, j = 1, 2, . . . , k by successively cubing and reducing modulo
m. Finally, multiply together the least positive residues, repeating each term b3j

aj times, reducing mod-
ulo m after each multiplication.

4.1.33. a. We have 310 ≡ (32)5 ≡ 95 ≡ (−2)5 ≡ −32 ≡ 1 (mod 11).

b. We have 212 ≡ (24)3 ≡ 163 ≡ 33 ≡ 27 ≡ 1 (mod 13).

c. We have 516 ≡ (52)8 ≡ 258 ≡ 88 ≡ (82)4 ≡ 644 ≡ (−1)4 ≡ 1 (mod 17).

d. We have 322 ≡ (33)7 ·3 ≡ 277 ·3 ≡ 47 ·3 ≡ (43)2 ·4·3 ≡ 642 ·12 ≡ (−5)2 ·12 ≡ 2·12 ≡ 24 ≡ 1 (mod 23).

e. The theorem is that ap−1 ≡ 1 (mod p) whenever p is prime and p does not divide a. This is Fermat’s
little theorem which will be proved in Chapter 5.

4.1.34. a. Since 2! ≡ 2 (mod 7), 3! ≡ 6 (mod 7), 4! = 24 ≡ 3 (mod 7), and 5! ≡ 5 · 3 (mod 7) ≡ 1 (mod 7), we
have 6! ≡ 6 (mod 7).

b. Since 2! ≡ 2 (mod 11), 3! ≡ 6 (mod 11), 4! ≡ 2 (mod 11), 5! ≡ 5 · 2 (mod 11) ≡ 10 (mod 11), 6! ≡
6 · 10 (mod 11) ≡ 5 (mod 11), 7! ≡ 7 · 5 (mod 11) ≡ 2 (mod 11), 8! ≡ 8 · 2 (mod 11) ≡ 5 (mod 11),
and 9! ≡ 9 · 5 (mod 11) ≡ 1 (mod 11), we have 10! ≡ 10 (mod 11).

c. Since 2! ≡ 2 (mod 13), 3! ≡ 6 (mod 13), 4! = 24 ≡ 11 (mod 13), 5! ≡ 5 · 11 (mod 13) ≡ 3 (mod 13),
6! ≡ 6 · 3 (mod 13) ≡ 5 (mod 13), 7! ≡ 7 · 5 (mod 13) ≡ 9 (mod 13), 8! ≡ 8 · 9 (mod 13) ≡ 7
(mod 13), 9! ≡ 9 · 7 (mod 13) ≡ 11 (mod 13), 10! ≡ 10 · 11 (mod 13) ≡ 6 (mod 13), and 11! ≡ 11 · 6
(mod 13) ≡ 1 (mod 13), we have 12! ≡ 12 (mod 13).

d. Since 2! ≡ 2 (mod 17), 3! ≡ 6 (mod 17), 4! = 24 ≡ 7 (mod 17), 5! ≡ 5 · 7 (mod 17) ≡ 1 (mod 17),
6! ≡ 6 (mod 17), 7! ≡ 7 · 6 (mod 17) ≡ 8 (mod 17), 8! ≡ 8 · 8 (mod 17) ≡ 13 (mod 17), 9! ≡
9 · 13 (mod 17) ≡ 15 (mod 17), 10! ≡ 10 · 15 (mod 17) ≡ 14 (mod 17), 11! ≡ 11 · 14 (mod 17) ≡
1 (mod 17), 12! ≡ 12 (mod 17), 13! ≡ 13 · 12 (mod 17) ≡ 3 (mod 17), 14! ≡ 14 · 3 (mod 17) ≡ 8
(mod 17), and 15! ≡ 15 · 8 (mod 17) ≡ 1 (mod 17), we have 16! ≡ 16 (mod 17).

e. The theorem is that whenever p is prime, (p − 1)! ≡ −1 (mod p). This is Wilson’s Theorem which
will be proven in Chapter 5.

4.1.35. Since fn−2 + fn−1 ≡ fn (mod m), if two consecutive numbers recur in the same order, then the se-
quence must be repeating both as n increases and as it decreases. But there are only m residues, and so
m2 ordered sequence of two residues. As the sequence is infinite, some two elements of the sequence
must recur by the pigeonhole principle. Thus the sequence of least positive residues of the Fibonacci
numbers repeats. It follows that if m divides some Fibonacci number, that is, if fn ≡ 0 (mod m), then
m divides infinitely many Fibonacci numbers. To see that m does divide some Fibonacci number, note
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that the sequence must contain a 0, namely f0 ≡ 0 (mod m).

4.1.36. We proceed by induction on the exponent k. We are given that m | ak − bk is true when k = 1. We as-
sume it is true for k = n ≥ 1 and show it must be true for n+1. So an+1− bn+1 = an(a)− bn(b−a+a) =
ana− bna− bn(b− a) = a(an − bn) + bn(a− b). Since m | (an − bn) by the induction hypothesis, and we
are given that m | (a− b), we know that m | (an+1 − bn+1), so an+1 ≡ bn+1 (mod m).

4.1.37. Let a and b be positive integers less than m. Then they have O(log m) digits (bits). Therefore by The-
orem 2.4, we can multiply them using O(log2 m) operations. Division by m takes O(log2 m) operations
by Theorem 2.7. Then, in all we have O(log2 m) operations.

4.1.38. Let N be the number of coconuts. From the division of the coconuts by the first man, giving one to
the monkey, we see that N ≡ 1 (mod 5), so that N = 5k0 + 1 for some positive integer k0.

From the division of the coconuts by the second man, giving one to the monkey, we see that N1 =
( 4
5 )(N − 1) = 4k0 ≡ 1 (mod 5), so that k0 ≡ 4 (mod 5), or equivalently, that N = 5(5k1 + 4) + 1 =

25k1 + 21, and N1 = 20k1 + 16, for some positive integer k1.
The division of the coconuts by the third man, giving one to the monkey, shows that N2 = ( 4

5 )(N1 −
1) = ( 4

5 )(20k1 +15) = 16k1 +12 ≡ 1 (mod 5), so that k1 ≡ 4 (mod 5), or equivalently N = 25(5k2 +4)+
21 = 125k2 + 121, and N2 = ( 4

5 )(100k2 + 95) = 80k2 + 76.
The division of the coconuts by the fourth man, giving one to the monkey, shows that N3 = ( 4

5 )(N2−
1) = ( 4

5 )(80k2 + 75) = 64k2 + 60 ≡ 1 (mod 5), so that k2 ≡ 4 (mod 5), or equivalently N = 125(5k3 +
4) + 121 = 625k3 + 621, and N3 = 64(5k3 + 4) + 60 = 320k3 + 316.

The division of the coconuts by the fifth man, giving one to the monkey, shows that N4 = ( 4
5 )(N3 −

1) = ( 4
5 )(320k3+315) = 256k3+252 ≡ 1 (mod 5), so that k3 ≡ 4 (mod 5), or equivalently N = 625(5k4+

4) + 621 = 3125k4 + 3121, and N4 = 256(5k4 + 4) + 252 = 1280k4 + 1276.
The last division of the coconuts into five equal piles, giving one to the monkey, shows that N5 =

( 4
5 )(N4− 1) = ( 4

5 )(1280k4 +1275) = 1024k4 +1020 ≡ 1 (mod 5), so that k4 ≡ 4 (mod 5), or equivalently,
that N = 3125(5k5 + 4) + 3121 = 15625k5 + 15621, for some integer k.

The least number of coconuts is given by the smallest positive integer of the form 15625k5 + 15621,
which is 15621 with k5 = 0.

4.1.39. Let Ni be the number of coconuts the ith man leaves for the next man and N0 = N . At each stage, the
ith man finds Ni−1 coconuts, gives k coconuts to the monkeys, takes (1/n)(Ni−1 − k) coconuts for him-
self and leaves the rest for the next man. This yields the recursive formula Ni = (Ni−1 − k)(n − 1)/n.
For convenience, let w = (n− 1)/n. If we iterate this formula a few times we get N1 = (N0 − k)w, N2 =
(N1−k)w = ((N0−k)w−k)w = N0w

2−kw2−kw, N3 = N0w
3−kw3−kw2−kw, . . .. The general pattern

Ni = N0w
i − kwi − kwi−1 − · · · − kw = N0w

i − kw(wi − 1)/(w− 1) may be proved by induction. When
the men rise in the morning they find Nn = N0w

n − kw(wn − 1)/(w − 1) coconuts, and we must have
Nn ≡ k (mod n), that is, Nn = N0w

n−kw(wn−1)/(w−1) = k+ tn for some integer t. Substituting w =
(n− 1)/n back in for w, solving for N0, and simplifying yields N = N0 = nn+1(t + k)/(n− 1)n− kn + k.
For N to be an integer, since (n, n− 1) = 1, we must have (t + k)/(n− 1)n an integer. Since we seek the
smallest positive value for N , we take t + k = (n− 1)n, so t = (n− 1)n − k. Substituting this value back
into the formula for N yields N = nn+1 − kn + k.

4.1.40. a. Let f(x) =
∑m

i=0 cix
i and g(x) =

∑m
i=0 bix

i, where the leading coefficients may be zero to keep
the limits of summation equal. Since f(x) ≡ g(x) (mod n), we have that ci ≡ b1 (mod n) for i =
0, 1, . . . , m. If a is any integer, by Theorem 4.3 part (iii), cia

i ≡ bia
i (mod n) for i = 0, 1, . . . ,m and

so by Theorem 4.4, part (i), f(x) =
∑m

i=0 cia
i ≡ ∑m

i=0 bia
i ≡ g(x) (mod n).

b. One counterexample is x3 ≡ x (mod 3), which is true for x = 0, 1 and 2, but not true as a poly-
nomial congruences, since the coefficient on x3 on the left side is 1 but on the right side, it is 0.
This example was constructed by taking a complete set of residues modulo 3, that is, {0, 1,−1} and
forming the product (x−0)(x−1)(x− (−1)) = x3−x. By construction, the value of this polynomial
must be congruent to 0 when ever we substitute any residue in for x.
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4.1.41. a. Let f1(x) =
∑m

i=0 aix
i, f2(x) =

∑m
i=1 bix

i, g1(x) =
∑m

i=1 cix
i, and g2(x) =

∑m
i=1 dix

i where the lead-
ing coefficients may be zero to keep the limits of summation the same for all polynomials. Then
ai ≡ ci (mod n) and bi ≡ di (mod n), for i = 0, 1, . . . ,m. Therefore by Theorem 4.5 part (i), ai +
bi ≡ ci + di (mod n) for i = 0, 1, . . . ,m. Since (f1 + f2)(x) =

∑m
i=1(ai + bi)xi and (g1 + g2)(x) =∑m

i=1(ci + di)xi, this shows the sums of the polynomials are congruent modulo n.

b. With the same set up as in part (a), the coefficient on xk in (f1f2)(x) is given by a0bk +a1bk−1 + · · ·+
akb0, and the corresponding coefficient in (g1g2)(x) is given by c0dk +c1dk−1 + · · ·+ckd0. Since each
ai ≡ ci (mod n) and bi ≡ di (mod n), by Theorem 4.5, the two expressions are congruent modulo
n, and so, therefore, are the polynomials.

4.1.42. Note that for i a positive integer, we have (xi − ai)/(x − a) = xi−1 + xi−2a + · · · + xai−2 + ai−1. Let
f(x) =

∑m
i=0 bix

i. Then (f(x)−f(a))/(x−a) =
∑m

i=1 bi(xi−ai)/(x−a) =
∑m

i=1 bi

∑i−1
j=0 ajxi−j−1 = g(x)

where g(x) is clearly a polynomial with integer coefficients, and f(x)− f(a) = (x− a)g(x), so the coeffi-
cients on both sides must be equal. Since we have f(a) ≡ 0 (mod n) as polynomials and f(x)− f(a) ≡
(x− a)g(x) (mod n), by Exercise 41, we may add these congruences to get f(x) ≡ (x− a)g(x) (mod n).

4.1.43. The basis step for induction on k is Exercise 42. Assume that f(x) ≡ h(x) (mod p) and f(x) = (x −
a1) · · · (x− ak−1)h(x), where h(x) is a polynomial with integer coefficients. Substituting ak for x in this
congruence gives us 0 ≡ (ak − a1) · · · (ak − a1)h(ak) (mod p). None of the factors ak − ai can be con-
gruent to zero modulo p, so we must have h(ak) ≡ 0 (mod p). Applying Exercise 42 to h(x) and ak

gives us h(x) ≡ (x − ak)g(x) (mod p) and substituting this in the congruence for f(x) yields f(x) ≡
(x− a1) · · · (x− ak)g(x) (mod p), which completes the induction step.

4.1.44. We use induction on n. If n = 1, then f(x) = b1x + b0 ≡ 0 (mod p). If f(x) has no roots, we’re done.
If a is a root, from Exercise 43, there exists a polynomial g(x) with integer coefficients such that f(x) =
b1x + b0 ≡ (x − a)g(x) (mod p). Then every coefficient of g(x) other than the constant term, must be
divisible by p. If the constant term of g(x) is also divisible by p, then we would have g(x) ≡ 0 (mod p)
and so f(x) ≡ 0 (mod p) as polynomials, which implies that every coefficient of f(x) is also divisible by
p, a contradiction. Therefore, the constant term g(0) of g(x) is not divisible by p. Then since g(0) ≡ g(x)
(mod p) as polynomials, we have f(x) ≡ (x− a)g(0) (mod p). Since the right side has only one root, the
left side can have only one root.

Now assume the proposition is true for polynomials of degree n− 1 and smaller, and suppose xn is
the largest power of x with coefficient not divisible by p. If f(x) has no roots, we are done. If a is a root,
then (f(x) − f(a))/(x − a) =

∑n
i=1 bi(xi − ai)/(x − a) =

∑m
i=1 bi

∑i−1
j=0 ajxi−j−1 = g(x), where g(x) is

a polynomial of degree at most n− 1 with with integer coefficients which, by the induction hypothesis,
can have at most d−1 roots. Then f(x) ≡ (x−a)g(x) (mod p) and f(x) can have at most n roots, namely
the roots of g plus a.

4.2. Linear Congruences
4.2.1. a. Since (2, 7) = 1 | 5, Theorem 4.10 tells us that there is one class of solutions. We solve the diophan-

tine equation 2x + 7y = 5, to get x ≡ 6 (mod 7).

b. Since (3, 9) = 3 | 6, Theorem 4.10 tells us that there are three classes of solutions. We solve the
diophantine equation 3x + 9y = 6, to get x = 2 + 3t. All solutions are thus congruent to 2, 5, or 8
modulo 9.

c. Since (19, 40) = 1 | 30, Theorem 4.10 tells us that there is one class of solutions. We solve the dio-
phantine equation 19x + 40y = 30, to get x ≡ 10 (mod 40).

d. All solutions are given by x ≡ 20 (mod 25).

e. All solutions are given by x ≡ 111 (mod 999).
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f. Since (980, 1600) = 20 | 1500, Theorem 4.10 tells us that there are twenty classes of solutions. All
solutions are given by x ≡ 75 + 80k (mod 1600) where k is an integer such that 0 ≤ k ≤ 19.

4.2.2. a. Suppose that 3x ≡ 2 (mod 7). Since (3, 2) = 1, by Theorem 4.10 there is a unique solution modulo
7 to this congruence. To solve 3x ≡ 2 (mod 7) first translate this to the equation 3x− 7y = 2 where
y is an integer. Using the Euclidean algorithm we find that −2 · 3 + 1 · 7 = 1. Multiplying both sides
by 2 gives −4 · 3 + 2 · 3 = 2. This implies that x ≡ −4 ≡ 3 (mod 7) is the unique solution modulo 7.

b. Suppose that 6x ≡ 3 (mod 9). Since (6,3)=3, by Theorem 4.10 there are exactly 3 incongruent solu-
tions modulo 9. To find these solutions, we first translate this congruence into the linear diophan-
tine equation 6x− 9y = 3. Using the Euclidean algorithm we find that −1 · 6 + 1 · 9 = 3. Hence all
solutions of 6x− 9y = 3 are given by x = −1 + ( 9

3 )t = −1 + 3t, y = −1− ( 6
3 )t = −1− 2t. We obtain

three incongruent solutions modulo 9 by taking the values of x for t = 0, 1, and 2. We obtain x =
−1 ≡ 8 (mod 9), x = −4 ≡ 5 (mod 9), and x = −7 ≡ 2 (mod 9).

c. Suppose that 17x ≡ 14 (mod 21). since (17, 14) = 1, by Theorem 4.10 there is exactly one solution
modulo 21. We find this by translating the congruence into the linear diophantine equation 17x −
21y = 14. Using the Euclidean algorithm we find that 5 · 17 − 4 · 21 = 1. Multiplying both sides
by 14 gives 70 · 17 − 56 · 21 = 14. Hence x = 70, y = 56 is a solution. This implies that the unique
solution modulo 21 is x = 70 ≡ 7 (mod 21).

d. Suppose that 15x ≡ 9 (mod 25). Then since (15,9)=3 but 3 does not divide 25, it follows by Theo-
rem 4.10 that there are no solutions to this congruence.

e. We check that (128, 1001) = 1 | 833, so that there is exactly one solution. Solving the diophantine
equation 128x + 1001y = 833 gives us x ≡ 812 (mod 1001).

f. We check that (987, 1597) = 1 | 610. Solving the diophantine equation 987x + 1597y = 610 gives us
x ≡ 1596 (mod 1597).

4.2.3. Since (28927591, 6789783) = 9163 | 2474010, Theorem 4.10 tells us that there are 9163 classes of solu-
tions. Reducing the congruence by dividing each side of the equation and the modulus by 9163, we look
at the congruence 741 ≡ 270 (mod 3157). The single class of solutions of this congruence is congruent to
1074. Thus, the 9163 solutions to the original congruence are given by x ≡ 1074+3157k (mod 28927591)
where k is an integer such that 0 ≤ k ≤ 9162.

4.2.4. a. Since a1 is the least positive residue of m modulo a, we have a1 = m − [m/a] a. Then a1x ≡ (m −
[m/a] a)x ≡ − [m/a] ax ≡ − [m/a] b (mod m) as desired.

b. We have a sequence of decreasing positive integers, which, by the well ordering property, must
have a least element, an. Then we can reduce m modulo an and get an an+1 which is smaller than
an. But an is the least positive element of the sequence, so an+1 = 0, which is to say an | m. How-
ever, since a1 = m − [m/a] a), we have that a common divisor of m and a1 also divides a. Since
(a,m) = 1, then we have (a1,m) = 1. By induction, (an,m) = 1, but we proved an | m, therefore,
an = 1.

c. We have a1 = 23− [23/6] 6 = 23− 3 · 6 = 5. Then the new congruence is 5x ≡ −7 · 3 ≡ 2 (mod 23).
Then a2 = 23 − [23/5] 5 = 23 − 4 · 5 = 3, and the next congruence is 3x ≡ −2 · 4 ≡ 15 (mod 23).
Then a3 = 23 − [23/3] 3 = 23 − 7 · 3 = 2, and the next congruence is 2x ≡ −15 · 7 ≡ 10 (mod 23).
Then a4 = 23− [23/2] 2 = 23− 11 · 2 = 1, and the final congruence is x ≡ −10 · 11 ≡ 5 (mod 23).

4.2.5. This is equivalent to saying that 11x ≡ 17 (mod 24). This has one solution modulo 24, by Theorem
4.10, x ≡ 19 (mod 24). So the satellite orbits the Earth every 19 hours.
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4.2.6. By Theorem 4.10 there is a solution of 12x ≡ c (mod 30) if and only if (12, 30) = 6 divides c. This
holds for c ≡ 0, 6, 12, 18, and 24 (mod 30). In each of these cases there are (12, 30) = 6 incongruent solu-
tions modulo 30.

4.2.7. We know by Theorem 4.10 that 154x ≡ c (mod 1001) has solutions if and only if (1001, 154) = 77 | c.
Also, by Theorem 4.10, we know that when there are solutions, there are exactly 77 of them.

4.2.8. a. We need to solve 2x ≡ 1 (mod 13). Which in turns requires us to solve the Diophantine equation
2x + 13y = 1, which we do by the Euclidean algorithm. We have 13 = 6 · 2 + 1, so 1 = 13 − 6 · 2.
Therefore, x ≡ −6 ≡ 7 (mod 13) and thus 2 = 7.

b. We need to solve 3x ≡ 1 (mod 13), or 3x + 13y = 1 We have 13 = 4 · 3 + 1, so 1 = 13− 4 · 3. There-
fore, x ≡ −4 ≡ 9 (mod 13) and thus 3 = 9.

c. We need to solve 5x ≡ 1 (mod 13), or 5x + 13y = 1 We have 13 = 2 · 5 + 3, 5 = 3 + 2, and 3 = 2 + 1,
so 1 = 3− 2 = (13− 2 · 5)− (5− 3) = 13− 3 · 5 + (13− 2 · 5) = 4 · 13− 5 · 5. Therefore, x ≡ −5 ≡ 8
(mod 13) and thus 5 = 8.

d. We need to solve 11x ≡ 1 (mod 13), or 11x + 13y = 1 We have 13 = 11 + 2 and 11 = 5 · 2 + 1, so 1 =
11− 5 · 2 = 11− 5(13− 11) = −5 · 13 + 6 · 11. Therefore, x ≡ 6 (mod 13) and thus 11 = 6.

4.2.9. a. To find an inverse of 4 modulo 17 we must solve the congruence 4x ≡ 1 (mod 17). Form the Eu-
clidean algorithm we find that 1 · 17− 4 · 4 = 1. Hence x = −4 ≡ 13 (mod 17) is a solution, so that
13 is an inverse of 4 modulo 17.

b. To find an inverse of 5 modulo 17 we must solve the congruence 5x ≡ 1 (mod 17). From the Eu-
clidean algorithm we find that −2 · 17 + 7 · 5 = 1. Hence x = 7 (mod 17) is a solution, so that 7 is an
inverse of 5 modulo 17.

c. To find an inverse of 7 modulo 17 we must solve the congruence 7x ≡ 1 (mod 17). From the Eu-
clidean algorithm we find that −2 · 17 + 5 · 7 = 1. Hence x = 5 (mod 17) is a solution, so that 5 is an
inverse of 7 modulo 17.

d. To find an inverse of 16 modulo 17 we must solve the congruence 16x ≡ 1 (mod 17). Since 16 ≡ −1
(mod 17), this implies that −x ≡ 1 (mod 17), or that x ≡ −1 ≡ 16 (mod 17). Hence x = 16 is an
inverse of 16 modulo 17.

4.2.10. a. The integers a with inverses modulo 14 are exactly those that are relatively prime to 14. Therefore,
only 1, 3, 5, 9, 11, and 13 have inverses modulo 14.

b. For each of the integers a relatively prime to 14, we solve the congruence ax ≡ 1 (mod 14). We have
that 1 and 13 ≡ −1 (mod 14) are their own inverses. The solution to 3x ≡ 1 (mod 14) is x = 5, so
3−1 = 5. Note then that 5−1 = 3. Likewise, −3 ≡ 11 and −5 ≡ 9 are inverses of each other modulo
14.

4.2.11. a. The integers a with inverses modulo 30 are exactly those that are relatively prime to 30. Therefore,
only 1, 7, 11, 13, 17, 19, 23, and 29 have inverses modulo 30.

b. Note that 1 and 29 are their own inverses. Solving the congruence 7x ≡ 1 (mod 30) yields x = 13,
so 7 and 13 are inverses of each other. And so are−7 ≡ 23 and−13 ≡ 17. Solving 11x ≡ 1 (mod 30)
yields x = 11, so 11 is its own inverse, and so is −11 ≡ 19.

4.2.12. Suppose that a and b are inverses of a and b modulo m, respectively. Then a · a ≡ b · b ≡ 1 (mod m).
We see that (ab) · (ab) = (aa)(bb) ≡ 1 · 1 ≡ 1 (mod m). It follows that ab is an inverse of ab modulo m.



78 4. CONGRUENCES

4.2.13. If ax + by ≡ c (mod m), then there exists an integer k such that ax + by −mk = c. Since d | ax + by −
mk, d | c. Thus there are no solutions when d - c. Now, assume that d | c and let a = da′, b = db′, c =
dc′, and m = dm′, so that (a′, b′, m′) = 1. Then we can divide the original congruence by d to get (*)
a′x + b′y ≡ c′ (mod m′), or a′x ≡ c′ − b′y (mod m′), which has solutions if and only if g = (a′,m′) |
c− b′y, which is equivalent to b′y ≡ c′ (mod g) having solutions. Since (a′, b′, m′) = 1, and (a′,m′) = g,
we must have (b′, g) = 1 and so the last congruence has only one incongruent solution y0 modulo g. But
the m′/g solutions, y0, y0 + g, y0 + 2g, . . . , y0 + (m′/g + 1)g are incongruent modulo m′. Each of these
yields g incongruent values of x in the congruence (*). Therefore, there are g(m′/g) = m′ incongruent
solutions to (*).

Now let (x1, y1) be one solution of the original congruence. Then the d values x1, x1 + m′, x1 +
2m′, . . . , x1 + (d − 1)m′ are congruent modulo m′ but incongruent modulo m. Likewise, the d values
y1, y1 +m′, y1 +2m′, . . . , y1 +(d−1)m′ are congruent modulo m′ but incongruent modulo m. So for each
solution of (*), we can generate d2 solutions of the original congruence. Since there are m′ solutions to
(*), we have d2m′ = dm solutions to the original congruence.

4.2.14. a. Using Exercise 13, we see that (2, 3, 7) = 1 and 1 | 1, so there are 1 · 7 solutions. We get them by let-
ting x take on the values 0, 1, 2, 3, 4, 5, and 6, and solving the congruence for y. We get, respectively,
y = 5, 2, 6, 3, 0, 4, and 1, modulo 7.

b. We have (2, 4, 8) = 2 and 2 | 6 so there are 2 ·8 = 16 incongruent solutions modulo 8. If y is even, the
congruence reduces to 2x ≡ 6 (mod 8) which has solutions x ≡ 3 or 7 (mod 8). This gives us the 8
solutions: (3, 0), (3, 2), (3, 4), (3, 6), (7, 0), (7, 2), (7, 4), and (7, 6). If y is odd, the congruence reduces
to 2x ≡ 2 (mod 8) which has solutions x ≡ 1 or 5 (mod 8). This gives us the other 8 solutions:
(1, 1), (1, 3), (1, 5), (1, 7), (5, 1), (5, 3), (5, 5), and (5, 7).

c. We have (6, 3, 9) = 3 and 3 | 0 so there are 3 · 9 = 27 solutions. We can divide the congruence by 3
and get 2x + y ≡ 0 (mod 3), which has solutions (0, 0), (1, 1), and (2, 2). Then to get all solutions to
the original congruence, we add 0, 3, or 6 to each component of the 3 pairs. This gives all 27 solu-
tions.

d. Since (10, 5, 15) = 5 and 5 - 9, there are no solutions.

4.2.15. Suppose that x2 ≡ 1 (mod pk) where p is an odd prime and k is a positive integer. Then x2 − 1 ≡
(x+1)(x− 1) ≡ 0 (mod pk). Hence pk | (x+1)(x− 1). Since (x+1)− (x− 1) = 2 and p is an odd prime,
we know that p divides at most one of (x−1) and (x+1). It follows that either pk | (x+1) or pk | (x−1),
so that p ≡ ±1 (mod pk).

4.2.16. Suppose that x2 ≡ 1 (mod 2k) where k > 2. It follows that x2 − 1 ≡ (x + 1)(x − 1) ≡ 0 (mod 2k).
Hence 2k | (x + 1)(x − 1). Note that (x + 1) − (x − 1) = 2, so that 2k−1 | x + 1 and 2 | x − 1 or 2k − 1 |
x − 1 and 2 | x + 1. It follows that x = t2k−1 + 1 or x = t2k−1 − 1 where t is an integer. We see that
there are four incongruent solutions modulo 2k, taking t = 0 or t = 1, namely x ≡ 1, 2k−1 + 1,−1, or
2k−1 − 1 (mod 2k). This can also be stated as x ≡ ± or ±(1 + 2k−1) (mod 2k), since x = 2k−1 − 1 ≡
(2k−1 − 2k)− 1 = −2k−1 − 1 (mod 2k).

When k = 1 we find that there is one solution of x2 ≡ 1 (mod 2) namely x ≡ 1 (mod 2). When k =
2 we find that there are two solutions of x2 ≡ 1 (mod 22) namely x ≡ ± (mod 22).

4.2.17. To find the inverse of a modulo m, we must solve the Diophantine equation ax + my = 1, which can
be done using the Euclidean algorithm. Using Corollary 2.5.1, we can find the greatest common divisor
in O(log3 m) bit operations. The back substitution to find x and y will take no more than O(log m) mul-
tiplications, each taking O(log2 m) operations. Therefore the total number of operations is O(log3 m) +
O(log m)O(log2 m) = O(log3 m).

4.2.18. (This is Lemma 9.1.) From Exercise 44 in Section 4.1, we know that the congruence has no more than
two solutions, so we seek to show that it can not have exactly one solution. Let y be a solution. Then
y2 ≡ (−y)2 ≡ a (mod p), so −y is also a solution. If y ≡ −y (mod p), then 2y ≡ 0 (mod p), so either p|2
or p|y. But p is odd, so it can not divide 2, and if p|y, then p|y2, and we have a ≡ y2 ≡ 0 (mod p) so that
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p|a, a contradiction. Therefore y and −y are incongruent.

4.3. The Chinese Remainder Theorem
4.3.1. The integers x that leave a remainder of one when divided by 2 or 3 are those integers x that are so-

lutions of x ≡ 1 (mod 2) and x ≡ 1 (mod 3). The solutions of these two simultaneous congruences are
those integers x such that x ≡ 1 (mod 6). These integers are the integers leaving a remainder of 1 when
divided by either 2 or 3.

4.3.2. We need an integer x ≡ 1 (mod 2), x ≡ 1 (mod 5), and x ≡ 0 (mod 3). The integers x that satisfy this
set of simultaneous congruences are given by x ≡ 1 · 15 · 1 + 1 · 6 · ·1 + 0 · 10 · 1 = 21 (mod 30), since 1 is
the inverse of 15 modulo 2, 1 is the inverse of 6 modulo 3, and 1 is the inverse of 10 modulo 3.

4.3.3. We want a solution to the congruences x ≡ 2 (mod 3), x ≡ 2 (mod 5), and x ≡ 0 (mod 4). Using the
iterative method described in the text (because our moduli aren’t relatively prime!), x = 4k, and so k ≡
2 (mod 5). Thus k = 3+5j ≡ 2 (mod 3). Finally, j = 1+3m. So x = 4k = 4(3+5j) = 12+20(1+3m) =
32 + 60m. The smallest possible such number is 32.

4.3.4. a. Using the Chinese remainder theorem, we have M = 11 · 17 = 187,M1 = 17,M2 = 11, y1 = 2, y2 =
14, and so x = 4 · 17 · 2 + 3 · 11 · 14 = 598 ≡ 37 (mod 187).

b. we have M = 30,M1 = 15,M2 = 10,M3 = 6, y1 = 1, y2 = 1, y3 = 1 and so x = 1 · 15 · 1 +
2 · 10 · 1 + 3 · 6 · 1 = 53 ≡ 23 (mod 30).

c. The easiest way is to see that 6 works by, inspection.
d. We have M = 554268,M1 = 50388, M2 = 46189,M3 = 42636,M4 = 32604, M5 = 29172, y1 = 7, y2 =

1, y3 = 3, y4 = 8, y5 = 11, and x = 4585143 ≡ 150999 (mod 554268).

4.3.5. We have m1 = 2,m2 = 3,m3 = 5,m4 = 7, and m5 = 11. Also M1 = 1115,M2 = 770,M3 = 462, M4 =
330, and M5 = 210. By the Chinese remainder theorem, x = M1y1 + 2M2y2 +
3M3y3 + 4M4y4 + 5M5y5, where Miyi ≡ (mod mi). We find that solutions are y1 = 1, y2 = 2, y3 =
3, y4 = 1, and y5 = 1. So, x ≡ 1523 (mod 2310).

4.3.6. The solutions are the integers congruent to 326741466757708 (mod 1014060069938916), found with
the aid of computational software.

4.3.7. Let b be the number of bananas. Then b ≡ 6 (mod 11) and b ≡ 0 (mod 17). This implies that b ≡
6 · 17 · 2 + 0 · 11 · 14 ≡ 204 ≡ 17 (mod 187). We also know that b > 11 · 7 + 6 = 83 since the equal piles
contain at least 7 bananas each. It follows that the least number of bananas in the pile is 204.

4.3.8. Let x be the number of miles the car has travelled. The odometer can only tell us that x ≡ 49335
(mod 100000). If we also know the value of c where x ≡ c (mod 7) and 0 ≤ c < 7 by the Chinese re-
mainder theorem we know the congruence satisfied by x modulo 100000 ·7 = 700000. As long as the car
has been driven less that 700000 this uniquely determines the number of miles driven. In particular, we
easily see that if x ≡ 6 (mod 7) then the car was driven 49335 miles, if x ≡ 4 (mod 7) then the car was
driven 149335 miles, and if x ≡ 2 (mod 7) then the car was driven 249335 miles.

4.3.9. The situation we have here is 0 ≤ x ≤ 1200, x ≡ 3 (mod 5), x ≡ 3 (mod 6), x ≡ 1 (mod 7), and x ≡
(mod 11). Using the iterative method described in the text, x = 11x0, 11x0 ≡ 1 (mod 7), x0 = 2+7x1, x =
11x0 = 22 + 77x1, 22 + 77x1 ≡ 3 (mod 6), x1 = 1 + 6x2, x = 99 + 462x2,
99 + 462x2 ≡ 3 (mod 5), x2 = 2 + 5x3, x = 1023 + 2310x3. The only solution satisfying 0 ≤ x ≤ 1200 is
x = 1023. It follows that 1023 troops remained.

4.3.10. We solve the system x ≡ 9 (mod 10), x ≡ 9 (mod 11), x ≡ 0 (mod 13) and get x = 559.
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4.3.11. We solve the system x ≡ 0 (mod 11), x ≡ 1 (mod 2), x ≡ 1 (mod 3), x ≡ 1 (mod 5), x ≡ 1 (mod 7),
to find that x ≡ 2101 (mod 2310).

4.3.12. We need to solve the system x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 3 (mod 4), x ≡ 4 (mod 5), x ≡ 5
(mod 6), x ≡ 0 (mod 7), but the moduli are not mutually relatively prime. Note that if x ≡ 5 (mod 6)
then it satisfies the first two congruences, so we can eliminate the 5th congruence. We solve the system
consisting of the last 4 remaining congruences and get 119. Note that this also solves the first congru-
ence, so we’re done.

4.3.13. We can construct a sequence of k consecutive integers each divisible by a square as follows. Con-
sider the system of congruences x ≡ 0 (mod p2

1), x ≡ −1 (mod p2
3), x ≡ −4 (mod p2

3), . . . , x ≡ −k + 1
(mod p2

k), where pk is the kth prime. By the Chinese remainder theorem there is a solution to this simul-
taneous system of congruence since the moduli are relatively prime. It follows that there is a positive
integer N that satisfies each of these congruences. Each of the k integers n,N + 1, . . . , N + k− 1 is divis-
ible by a square since p2

j divides N + j − 1 for j = 1, 2, . . . , k.

4.3.14. If every prime divisor of c divides b, then (c, a) = 1 and hence (a + b, c) = 1 and we have n = 1. Oth-
erwise, let n be the product of all primes dividing c that do not divide b. Then if a prime p divides c, it
divides exactly one of an and b, therefore, p doesn’t divide an + b, and we have (an + b, c) = 1.

4.3.15. Suppose that x is a solution to the system of congruences. Then x ≡ a1 (mod m1), so that x = a1 +
km1 for some integer k. We substitute this into the second congruence to get a1 + km1 ≡ a1 (mod m2)
or km1 ≡ (a2 − a1) (mod m2), which has a solution in k if and only if (m1,m2) | (a1, a2). Now as-
sume such a solution k0 exists. Then all incongruent solutions are given by k = k0 + m2t/(m1,m2),

where t is an integer. Then x = a1 + km1 = a1 +
(

k0 +
m2t

(m1,m2)

)
m1 = a1 + k0m1 +

m1m2

(m1,m2)
t. Note

that m1m2/(m1, m2) = [m1,m2] so that if we set x1 = a1 + k0m1, we have x = x1 + [m1,m2]t ≡ x1

(mod [m1,m2]), and so the solution is unique modulo [m1, m2].

4.3.16. a. Since x ≡ 4 (mod 6), we let x = 6k + 4 where k is an integer. Since x ≡ 13 (mod 15), it follows that
6k + 4 ≡ 13 (mod 15), so that 6k ≡ 9 (mod 15). Dividing this congruence by 3 and since (3,15)=3
and 15

3 = 5, we see that 2k ≡ 3 (mod 5), so that k ≡ 4 (mod 5), and k = 5l+4, where l is an integer.
Hence x ≡ 6(5l + 4) + 4 = 30l + 28. This implies that all solutions satisfy x ≡ 28 (mod 30) and it is
easy to see that all x satisfying this congruence are solutions.

b. Since x ≡ 7 (mod 10), we let x = 10k+7 where k is an integer. Since x ≡ 4 (mod 15), it follows that
10k + 7 ≡ 4 (mod 15), so that 10k ≡ 12 (mod 15). Since (2,15)=1 it follows that 5k ≡ 3 (mod 15).
Since (5,15)=5 and 5 does not divide 3, it follows that there are no solutions of this congruence and
consequently no solutions of the original congruence.

4.3.17. a. Using Exercise 15, there is one solution modulo [60,350]=2100 because (60, 350) = 10 | (80 − 10).
Because x ≡ 10 (mod 60), we know that x = 10 + 60k, where k is an integer. Continuing onward,
x = 10 + 60k ≡ 80 (mod 350), so 60k ≡ 70 (mod 350) and so k ≡ 7 (mod 350); thus k = 7 +
(350/(350, 60))j, where j is an integer. In conclusion, x = 10+60k = 10+60(7+35j) = 430+2100j.

b. Using Exercise 15, there is one solution modulo [910,1001]=2100 because (910, 1001) = 91 | (93− 2).
Because x ≡ 2 (mod 910), we know that x = 2 + 910k, where k is an integer. Continuing onward,
x = 2 + 910k ≡ 93 (mod 1001), so 910k ≡ 91 (mod 1001) and so k ≡ 10 (mod 1001); thus k =
10 + (1001/(1001, 910))j, where j is an integer. In conclusion, x = 2 + 910k = 2 + 910(10 + 11j) =
9102 + 10010j.

4.3.18. No, the first congruence implies x is odd, while the last one implies x is even.

4.3.19. The basis step r = 2 is given by Exercise 15. Suppose that the system of the first k congruences
has a unique solution A modulo M = [m1, . . . , mk] and (mi,mj)|aj − ai for 1 ≤ i < j ≤ k. Con-
sider the system x ≡ A (mod M), x ≡ ar+1 (mod mr+1). First suppose it has a solution B modulo
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[[m1,m2, . . . , mk],mk+1]. Then by Exercise 15, ([m1,m2, . . . ,mk],mr+1)|B−ak+1. Since mi|[m1, m2, . . . , mk]
for 1 ≤ i ≤ k, we have (mi, mk+1)|B − akr+1. That is, there exists an integer n such that (mi,mk+1)n =
B − ak+1. If we reduce this equation modulo mi, for 1 ≤ i ≤ k we have (0,mk+1)n ≡ mk+1 = ai − ak+1

(mod mi). If we reduce modulo mk+1 we have (mi, 0)n = min = 0 (mod mk+1). In either case we have
that (mi,mj)|aj − ai for 1 ≤ i < j ≤ k + 1. Conversely, suppose we have the conditions (mi,mj)|aj − ai

for 1 ≤ i < j ≤ k + 1. Then as we have just shown, ([m1, m2, . . . , mk],mk+1)|A− ak+1. Therefore, by ex-
ercise 15, there is a unique solution B to the first k + 1 congruences. This completes the induction step.

4.3.20. a. We use the iterative method of Example 3.17, as suggested in Exercises 15 and 19. We have [6, 10, 15] =
30, (10, 6) = 2 | (3 − 5), (15, 6) = 3 | (8 − 5), and (15, 10) = 5 | (8 − 3), so there exists a unique so-
lution modulo 30, by Exercise 19. The first congruence gives us x = 5 + 6t. Plugging this in the
second congruence gives 5 + 6t ≡ 3 (mod 10) which has solution t ≡ 3 (mod 5). So t = 3 + 5s and
x = 5 + 6(3 + 5s) = 23 + 30s, which, as a congruence, is x ≡ 23 (mod 30).

b. We have [14, 21, 30] = 210, and the conditions of Exercise 19 are met, so a unique solution exists
modulo 210. The first congruence gives x = 2 + 14t, so 2 + 14t ≡ 16 (mod 21) or t ≡ 1 (mod 3) or
t = 1 + 3s and hence, x = 16 + 42s. Then 16 + 42s ≡ 10 (mod 30) or s = 2 + 5v and we have x =
16 + 42(2 + 5v) = 100 + 210v ≡ 100 (mod 210).

c. Since (25, 15) = 5 and 5 - (10− 8), there is no solution.
d. We have x ≡ 44 (mod 840).

e. Since (9, 12) = 3 and 3 - (7− 3) there is no solution.

4.3.21. This is equivalent to the system: x ≡ 1 (mod 2), x ≡ 1 (mod 3), x ≡ 1 (mod 5), x ≡ 1 (mod 7), x ≡ 0
(mod 11). So, using the iterative method described in the text, x = 11k1 ≡ 7 (mod 7), and we see that
k1 = 2 + 7k2. Now, x = 11(2 + 7k2) ≡ 1 (mod 5) and k2 = 2 + 5k3. Now, x = 176 + 385k3 ≡ 1 (mod 3)
and k3 = 2 + 3k4. Now, x = 946 + 1155k4 ≡ 1 (mod 2) and k4 = 1 + 2k5. So x = 2101 + 2310k5. The
smallest such number is 2101.

4.3.22. Let x be the number of coins. The problem yields the system of congruences x ≡ 3 (mod 17), x ≡ 10
(mod 16), x ≡ 0 (mod 15). By the Chinese remainder theorem, x = 3930.

4.3.23. Let x be the number of grams of rice each farmer took to market. The problem yields the system of
congruences x ≡ 32 (mod 83), x ≡ 70 (mod 110), x ≡ 30 (mod 135). In order to apply the Chinese re-
mainder theorem, we replace the modulus 110 by 22. The solution is then given by x = 24600. This
solution remains consistent modulo 110. Thus the original amount of rice was 3 · 24600 = 73800.

4.3.24. Let x = 784 and y = 813. We choose m1 = 95,m2 = 97, and m3 = 99 for our moduli, so that M =
912285. This leads to the systems

x ≡ 24 (mod 95) y ≡ 53 (mod 95)
x ≡ 8 (mod 97) y ≡ 37 (mod 97)
x ≡ 91 (mod 99) y ≡ 21 (mod 99).

Using the Chinese remainder theorem to solve the systems
x + y ≡ 24 + 53 ≡ 77 (mod 95) xy ≡ 24 · 53 ≡ 37 (mod 95)
x + y ≡ 8 + 37 ≡ 45 (mod 97) xy ≡ 8 · 37 ≡ 5 (mod 97)
x + y ≡ 91 + 21 ≡ 13 (mod 99) xy ≡ 91 · 21 ≡ 30 (mod 99).

yields x + y = 1597 and xy = 637392 respectively.

4.3.25. Suppose that x is a base 10 automorph with four digits. Then x2 ≡ x (mod 104) since the last four
digits of x and x2 must agree. It follows that x2 − x = x(x− 1) ≡ 0 (mod 104). This is equivalent to the
two congruences x(x − 1) ≡ 0 (mod 24) and x(x − 1) ≡ 0 (mod 54). We can conclude that either x ≡ 0
(mod 24) or x ≡ 1 (mod 24), since 24 must divide either x or x − 1 since x and x − 1 have no common
factors. Similarly, either x ≡ 0 (mod 24) or x ≡ 1 (mod 54). It follows that x satisfies one of four simul-
taneous congruences: x ≡ 0 (mod 24) and x ≡ 0 (mod 54); x ≡ 0 (mod 24) and x ≡ 1 (mod 54); x ≡
1 (mod 24) and x ≡ 0 (mod 54); or x ≡ 1 (mod 24) and x ≡ (mod 54). Using the Chinese remainder
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theorem for each of these sets of congruences gives x ≡ 0 (mod 10000), x ≡ 625 (mod 10000), x ≡ 9376
(mod 10000), and x ≡ 1 (mod 10000). The base 10 automorphs with four digits, allowing initial digits
of 0 are 0000,0001,0625, and 9376.

4.3.26. Following the reasoning in the solution to Exercise 25, we have, for each prime dividing b, that x ≡ 0
(mod pa1

i ) or x ≡ 1 (mod pa1
i ). Thus a unique solution is given for each way of choosing a system of k

congruences, that is, for each k, we choose whether x ≡ 0, or 1 (mod pa1
i ). This gives us 2k automorphs.

4.3.27. We need to solve the system x ≡ 23 + 2 (mod 4 · 23), x ≡ 28 + 1 (mod 4 · 28), x ≡ 33 (mod 4 · 33),
where we have added 2 and 1 to make the system solvable under the conditions of Exercise 19. The so-
lution to this system is x ≡ 4257 (mod 85008).

4.3.28. We need to solve the system x ≡ 3 ·23 (mod 4 ·23), x ≡ 3 ·28−1 (mod 4 ·28), x ≡ 3 ·33+2 (mod 4 ·33),
where we have added −1 and 2 to make the system solvable under the conditions of Exercise 19. The
solution to this system is x ≡ 16997 (mod 85008).

4.3.29. We need to solve the system x ≡ 0 (mod 4 · 23), x ≡ 0 (mod 4 · 28), x ≡ 0 (mod 4 · 33). The solution
to this system is x ≡ 0 (mod 85008).Every 85008 quarter-days, starting at 0.

4.3.30. We have x ≡ 0 (mod 2) if x ≡ 0, 2, 4, 6, 8 or 10 (mod 12), x ≡ 0 (mod 3) if x ≡ 0, 3, 6, or 9 (mod 12), x ≡
1 (mod 4) if x ≡ 1, 5, or 9 (mod 12), x ≡ 1 (mod 6) if x ≡ 1 or 7 (mod 12). Since the only integers not
covered by these four congruences are those x with x ≡ 11 (mod 12), adding this congruence modulo
12 to the other four congruences gives a covering set of congruences.

4.3.31. If the set of distinct congruences cover the integers modulo the least common multiple of the moduli,
then that set will cover all integers. Examine the integers modulo 210, the l.c.m. of the moduli in this set
of congruences. The first four congruences take care of all numbers containing a prime divisor of 2, 3,
5, or 7. The remaining numbers can be examined one at a time, and each can be seen to satisfy one (or
more) of the congruences.

4.3.32. The congruence x2 ≡ 1 (mod m) is equivalent to the system x2 ≡ 1 (mod 2a0), x2 ≡ 1 (mod pa1
1 ), . . . ,

x2 ≡ 1 (mod par
r ). Each of the odd prime congruences has 2 solutions by Exercise 15 of Section 4.2. The

first congruence has e solutions by Exercise 16 of Section 4.2. Therefore, there are 2r+e systems of the
form x ≡ b0 (mod 2a0), x ≡ b1 (mod pa1

1 ), . . . , x ≡ br (mod par
r ), where the bi’s are the solutions to the

congruences above. Each of these systems has a unique solution modulo m, so we have a total of 2r+e

solutions.

4.3.33. Let x be the length in inches of the dining room. Then x ≡ 3 (mod 5), x ≡ 3 (mod 7), and x ≡ 3
(mod 9). Since 5,7,and 9 are pairwise relatively prime, the Chinese remainder theorem tells us that there
is a unique solution to this system of congruences modulo 5·7·9 = 315. This solution is immediately seen
to be x ≡ 3 (mod 315). Since x is a length it is positive. Hence possible values for x are 3,318,633,948,
and so on. Since x is the length of a room in inches, the possibility that x = 3 is absurd, and it is most
likely that x = 318, so that the room is 26 feet and 6 inches long. This is a big dining room. Of course, it
is possible that the dining room is 633 inches, or 52 feet and 9 inches long. However, unless the house is
huge this, and larger possible answers, are extremely unlikely.

4.3.34. Trying all the integers from 0 to 8 in the congruence x2 + 6x − 31 ≡ 0 (mod 9) yields x ≡ 3 or 8
(mod 9). Trying all the integers from 0 to 7 in the congruence x2 + 6x− 31 ≡ 0 (mod 8) yields x ≡ 1 or 5
(mod 8). The various combinations of congruences give us 4 systems to solve. x ≡ 3 (mod 9) and x ≡ 1
(mod 8) yields x ≡ 49 (mod 72). The other 3 solutions are 13, 17, and 53 modulo 72.

4.3.35. Examining x2 + 18x − 823 ≡ 0 (mod 1800) modulo 8, we see that x2 + 18x − 823 ≡ x2 + 2x + 1 =
(x + 1)2 ≡ 0 (mod 8) has solutions x ≡ 3 (mod 8) and x ≡ 7 (mod 8). Examining x2 + 18x − 823 ≡
0 (mod 1800) modulo 9, we see that x2 + 18x − 823 ≡ x2 + 5 ≡ 0 has solutions x ≡ 2 (mod 9) and
x ≡ 7 (mod 9). Examining x2 + 18x − 823 ≡ 0 (mod 1800) modulo 25, we see that x2 + 18x − 823 ≡
x2 +18x+77 = (x+11)(x+7) ≡ 0 (mod 25). This has solutions x ≡ 18 (mod 25), and x ≡ 14 (mod 14).
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Thus there are 23 = 8 systems to examine. We may find, by the iterative method discussed in the text,
that the solutions are given by x = 225a1 + 1000a2 + 576a3 + 1800k, where k is an integer and a1 is 3 or
7, a2 is 2 or 7, and a3 is 14 or 18.

4.3.36. Let pk represent the kth prime. Then the set {p1, p2, . . . , pR, pR+1, . . . , p2R} of numbers is mutually rel-
atively prime, since all members are prime. Let P be the product of the elements in the set. Then by the
Chinese remainder theorem, there is a unique solution x modulo P to the system of congruences x ≡ 1
(mod p1), x ≡ 2 (mod p2), . . . , x ≡ R (mod PR), x ≡ −1 (mod pR+1), x ≡ −2 (mod pR+2), . . . , x ≡ −R
(mod p2R). Then for j = 1, 2, . . . , R, we have pj |x − j and pR+j |x + j, so if x is larger than p2R, then all
of the integers from x − R to x + R are composite, except perhaps for x itself. Now consider the arith-
metic progression x + Pn. All of these integers satisfy the system of congruences above. For each j =
1, 2, . . . , R, we have (x, P ) = 1, since for each of the primes pj dividing P , we have x ≡ j (mod pj) and
1 ≤ j < pj , so pj - x and x ≡ −j (mod pR+j) and −pR+j < −j ≤ −1, so pR+j - x, and hence x and P can
have no common factors. Therefore, by Dirichlet’s theorem on primes in arithmetic progression, there
are infinitely many primes in the progression x + Pn, each of which satisfy the system of congruences,
and hence are R-reclusive primes.

4.4. Solving Polynomial Congruences
4.4.1. a. By testing each of the integers 0, 1, . . . , 6, we see that 12 + 4(1) + 2 ≡ 0 (mod 7) and 22 + 4(2) + 2 ≡

0 (mod 7). So the solutions are the integers x ≡ 1 or 2 (mod 7).

b. Let f(x) = x2 + 4x + 2. Then f ′(x) = 2x + 4. Since f ′(1) ≡ 6 6≡ 0 (mod 7), we can apply case (i)
of Hensel’s lemma. The solutions x ≡ 1 (mod 7) lift uniquely to solutions x ≡ 1 + 7t (mod 49),
where t ≡ −f ′(1)f(1)/7 ≡ −6 · 7/7 ≡ 1 (mod 7). So x ≡ 8 (mod 49). Similarly, since f ′(2) ≡ 1 6≡ 0
(mod 7), the solutions x ≡ 2 (mod 7) lift uniquely to x ≡ 2 + 7t (mod 49), where t = −8f(2)/7 ≡ 5
(mod 7). So x ≡ 2 + 7(5) ≡ 37 (mod 49). The solutions are the integers x ≡ 8 or 37 (mod 39).

c. Since f ′(8) ≡ 6 (mod 7), the solutions x ≡ 8 (mod 49) lift uniquely to solutions x ≡ 8 + 49t where
t ≡ −6f(8)/49 ≡ 2 (mod 7). So x ≡ 8+49(2) ≡ 106 (mod 343). Similarly, since f ′(37) ≡ 1 (mod 7),
the solutions x ≡ 37 (mod 49) lift uniquely to solutions x ≡ 37 + 49t where t ≡ −f ′(37)f(37)/49 ≡
4 (mod 7). So x ≡ 37 + 49(4) ≡ 233 (mod 343). The solutions are the integers x ≡ 106 or 233
(mod 343).

4.4.2. a. Let f(x) = x3 + 8x2−x− 1. By inspection, we find that the only solutions to f(x) ≡ 0 (mod 11) are
the integers x ≡ 4 or 5 (mod 11).

b. From part (a), f ′(x) = 3x2 + 16x − 1, so f ′(4) = 111 ≡ 1 (mod 11). Then x ≡ 4 (mod 11) lifts
uniquely to a solution r2 ≡ 4 − f(4)f ′(4) ≡ 59 (mod 121). On the other hand, f ′(5) = 154 ≡ 0
(mod 11). Since f(5) = 319 6≡ 0 (mod 121), we know, by part (iii) of Hensel’s lemma, that 5 does
not lift to any solution modulo 121. Thus, the only solution is x ≡ 59 (mod 121).

c. From part b, f ′(4) = 111 ≡ 1 (mod 11) and 4 lifted to the solution 59 modulo 121. This solution
lifts to r3 ≡ 59− f(59)f ′(59) ≡ 59− 233167 · 1 ≡ 1148 (mod 1331). This is the only solution.

4.4.3. Let f(x) = x2 + x + 47. By inspection, the solutions to f(x) ≡ x2 + x + 5 ≡ 0 (mod 7) are r ≡ 1 or 5
(mod 7). Since f ′(1) ≡ 3 (mod 7), we know, by Corollary 4.14.1, that r ≡ 1 lifts successively to unique
solutions modulo each power of 7. Note that f ′(1) = 3 ≡ 5 (mod 7). Then, with notation as in Corollary
4.14.1, r2 = 1− f(1) · 5 ≡ 1− 49 · 5 ≡ 1 (mod 49), and r3 = 1− 49 · 5 ≡ 99 (mod 343), and finally, r4 =
99 − f(99) · 5 ≡ 785 (mod 2401). Similarly, since f ′(5) ≡ 4 (mod 7), we know, by Corollary 4.14.1, that
r ≡ 5 lifts successively to unique solutions modulo each power of 7. Note that f ′(5) = 4 ≡ 2 (mod 7).
Then, with notation as in Corollary 4.14.1, r2 = 5− f(5) · 2 ≡ 47 (mod 49), and r3 = 47− f(47) · 2 ≡ 243
(mod 343), and finally, r4 = 243− f(243) · 2 ≡ 1615 (mod 2401). Therefore the solutions are x ≡ 785 or
1615 (mod 2401).
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4.4.4. Let f(x) = x2 + x + 34. By inspection, the only solution of f(x) ≡ 0 (mod 3) is r ≡ 1 (mod 3). Since
f ′(1) = 3 ≡ 0 (mod 3), we check that f(1) ≡ 36 6≡ 0 (mod 81), so by part (iii) of Hensel’s lemma, there
are no solutions to f(x) ≡ 0 (mod 81).

4.4.5. Let f(x) = 13x7 − 42x − 649 and observe that 1323 = 3372. We start by solving the congruence mod-
ulo 3 and lifting to modulo 27. First f(x) ≡ x7 − 1 ≡ 0 (mod 3), which has only the solution r ≡ 1
(mod 3). Since f ′(1) = 13 · 7 · 16 − 42 ≡ 1 (mod 3), this solution lifts to unique solutions modulo 9 and
27. Following Corollary 4.14.1, we have r2 = 1 + f(1)f ′(1) = 1 − (13 − 42 − 649)(1) ≡ 4 (mod 9), and
r3 = 4 − f(4)(1) ≡ 22 (mod 27). Next we solve the congruence modulo 7 and lift to 49. Then f(x) ≡
−x7 + 2 ≡ 0 (mod 7) has only the solution r ≡ 2 (mod 7). Note that f ′(2) = 5782 ≡ 0 (mod 7) and
that f(2) = 931 ≡ 0 (mod 7), so r = 2 lifts to 7 solutions modulo 49, namely 2, 9, 16, 23, 30, 37, and
44. Finally, we pair the solution for 27 with each of the solutions for 49 to produce solutions for 1323.
Solving the system x ≡ 22 (mod 27), x ≡ 2 (mod 49) yields x ≡ 1129 (mod 1323). Solving the system
x ≡ 22 (mod 27), x ≡ 9 (mod 49) yields x ≡ 940 (mod 1323). Solving the system x ≡ 22 (mod 27), x ≡
16 (mod 49) yields x ≡ 751 (mod 1323). Solving the system x ≡ 22 (mod 27), x ≡ 23 (mod 49) yields
x ≡ 562 (mod 1323). Solving the system x ≡ 22 (mod 27), x ≡ 30 (mod 49) yields x ≡ 373 (mod 1323).
Solving the system x ≡ 22 (mod 27), x ≡ 37 (mod 49) yields x ≡ 184 (mod 1323). Solving the system
x ≡ 22 (mod 27), x ≡ 44 (mod 49) yields x ≡ 1318 (mod 1323). So the incongruent solutions are 184,
373, 562, 751, 940, 1129, and 1318.

4.4.6. Let f(x) = x8 − x4 + 1001 and note that 539 = 7211. Solving f(x) ≡ x8 − x4 ≡ 0 (mod 7) yields r ≡
0, 1, or −1 (mod 7). Since f ′(0) ≡ 0, but f(0) ≡ 21 (mod 49), we know that 0 doesn’t lift to a solution of
f(x) ≡ 0 (mod 49). On the other hand f ′(1) ≡ 4 (mod 7), so 1 lifts to r2 = 1− f(1)f ′(1) ≡ 1− 1001 · 2 ≡
8 (mod 49). Next, note that f ′(−1) ≡ 3 (mod 7), so −1 lifts to r2 = −1− f(−1)f ′(−1) ≡ −1− 1001 · 5 ≡
41 (mod 49). Now we turn to the prime 11. By inspection, the solutions to f(x) ≡ 0 (mod 11) are x ≡
0, 1 or −1 (mod 11). We now pair each solution modulo 49 with each solution modulo 11 to obtain 6
systems of congruences. Solving the system x ≡ 8 (mod 49), x ≡ 0 (mod 11) yields x ≡ 253 (mod 539).
Solving the system x ≡ 8 (mod 49), x ≡ 1 (mod 11) yields x ≡ 155 (mod 539). Solving the system x ≡
8 (mod 49), x ≡ −1 (mod 11) yields x ≡ 351 (mod 539). Solving the system x ≡ 41 (mod 49), x ≡ 0
(mod 11) yields x ≡ 286 (mod 539). Solving the system x ≡ 41 (mod 49), x ≡ 1 (mod 11) yields x ≡
188 (mod 539). Solving the system x ≡ 41 (mod 49), x ≡ −1 (mod 11) yields x ≡ 384 (mod 539). So
the incongruent solutions modulo 539 are 155, 188, 253, 286, 351, 384.

4.4.7. Let f(x) = x4 +2x+36 and note that 4375 = 547. By inspection, the only solution to f(x) ≡ x4 +2x+
1 ≡ 0 (mod 5) is r ≡ −1 (mod 5). Since f ′(−1) = 4(−1)3+2 ≡ 3 6≡ 0 (mod 5), we know that r = −1 lifts
uniquely to solutions modulo 5k. Applying Corollary 4.14.1, we have r2 = (−1)− f(−1) · 3 ≡ −1− 35 ·
2 ≡ 4 (mod 25), and r3 = 4 − f(4)2 ≡ 29 (mod 125) and r4 = 29 − f(29)2 ≡ 279 (mod 625). Again, by
inspection, we solve f(x) ≡ x4 + 2x + 1 ≡ 0 (mod 7) and obtain the two solutions x ≡ 2 or −1 (mod 7).
Finally we solve the two systems x ≡ 279 (mod 625), x ≡ 2 (mod 7) and x ≡ 279 (mod 625), x ≡ −1
(mod 7) to get the two solutions 3404 and 279 (mod 4375), respectively.

4.4.8. Let f(x) = x6 − 2x5 − 35 and note that 6125 = 5372. By inspection we solve f(x) ≡ 0 (mod 5) and
obtain the two solutions x ≡ 0 or 2 (mod 5). Since f ′(0) ≡ 0 (mod 7) and f(0) = −35 6≡ 0 (mod 25),
we know that the solution x ≡ 0 (mod 5) does not lift to solutions modulo 5k. However, since f ′(2) ≡ 2
(mod 5), we know that x ≡ 2 lifts to a unique solution modulo 5k. By Corollary 4.14.1, r2 = 2−f(2) ·2 =
2 + 35 · 3 ≡ 7 (mod 25) and r3 = 7 − f(7)3 ≡ 7 (mod 125). Again, by inspection we solve f(x) ≡
0 (mod 7) to obtain the solutions x ≡ 0 or 2 (mod 7). Since f ′(0) ≡ 0 (mod 7) and f(0) = −35 6≡ 0
(mod 49), we know that the solution x ≡ 0 (mod 7) does not lift to any solutions modulo 49. On the
other hand, since f ′(2) ≡ 4 (mod 7), we know that x ≡ 2 lifts to a unique solution modulo 49. By Corol-
lary 4.14.1, r2 = 2 − f(2) · 4 = 2 + 35 · 2 ≡ 23 (mod 49). Solving the system x ≡ 7 (mod 125), x ≡ 23
(mod 49) yields the solution x ≡ 3257 (mod 6125).

4.4.9. Let f(x) = 5x3 + x2 + x + 1. By inspection, the solution of the congruence f(x) ≡ 0 (mod 2) is x ≡ 1
(mod 2). Note that f ′(x) = 15x2 + 2x + 1, so f ′(1) ≡ 0 (mod 2). Since f(1) = 8 ≡ 0 (mod 4), we know
that x = 1 lifts to two solutions x ≡ 1 or 3 (mod 4). Since f(3) ≡ 4 (mod 8), but f ′(3) ≡ 0 (mod 2),
we know that 3 does not lift to solutions modulo 8. However, since f ′(1) ≡ 0 (mod 2) and f(1) ≡ 0
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(mod 8), we know that 1 lifts to the two solutions 1 and 5 (mod 8). Since f(1) ≡ 8 6≡ 0 (mod 16), we
know that 1 does not lift further. Since f(5) ≡ 0 (mod 16), we know that 5 lifts to solutions 5 and 13
(mod 16). Since f(5) ≡ 16 6≡ 0 (mod 32), we know that 5 does not lift further. Since f(13) ≡ 0 (mod 32),
we know that 13 lifts to solutions 13 and 29 (mod 32). Since f(13) ≡ 32 6≡ 0 (mod 64), we know that 13
does not lift further. Since f(29) ≡ 0 (mod 32), we know that 29 lifts to solutions 29 and 61 (mod 64).
So there are only two incongruent solutions.

4.4.10. Let f(x) = x5 + x− 6 and note that 144 = 2432. Both 0 and 1 are solutions to f(x) ≡ 0 (mod 2). Since
f ′(0) ≡ 1 (mod 2) we know that 0 lifts to a unique solution modulo 16. Since f ′(1) ≡ 0 (mod 2) and
f(1) = −4 ≡ 0 (mod 4), we know that 1 lifts to solutions 1 and 3 (mod 4). Since f(1) ≡ 4 (mod 8), 1
lifts no further. Since f(3) ≡ 0 (mod 8), 3 lifts to solutions 3 and 7 (mod 8). Since f(7) ≡ 8 (mod 16),
we know that 7 lifts no further. Since f(3) ≡ 0 (mod 16) we know that 3 lifts to solutions 3 and 11
(mod 16). Thus there must be a total of 3 solutions modulo 16. By inspection, there is only one solution
to f(x) ≡ 0 (mod 3), namely x ≡ 0. Since f ′(0) ≡ 1 (mod 3), we know that 0 lifts uniquely to a solution
modulo 9. Finally, since there are 3 solutions modulo 16 and 1 solution modulo 9, we must have 3 · 1 =
3 solutions modulo 16 · 9 = 144.

4.4.11. Since (a, p) = 1, we know that a has an inverse b modulo p. Let f(x) = ax − 1. Then x ≡ b (mod p)
is the unique solution to f(x) ≡ 0 (mod p). Since f ′(x) = a 6≡ 0 (mod p), we know that r ≡ b lifts
uniquely to solutions modulo pk for all natural numbers k. By Corollary 4.14.1, we have that rk =
rk−1−f(rk−1)f ′(b) = rk−1− (ark−1−1)a = rk−1− (ark−1−1)b = rk−1(1−ab)+b. This gives a recursive
formula for lifting b to a solution modulo pk for any k.

4.4.12. a. Since a ≡ b (mod pk−j), b = a + tpk−j for some integer t. By Lemma 4.6, we have f(b) =
f(a + tpk−j) = f(a) + f ′(a)tpk−j + (f ′′(a)/2)t2p2k−2j + · · · . So we have f(b) ≡ f(a) + f ′(a)tpk−j

(mod p2k−2j). Since 2k − 2j > k, and pk | f(a) and pj | f ′(a), f(b) ≡ 0 ≡ f(a) (mod pk). Say that
f(a) = xpk, f(b) = ypk, and f ′(a) = zpj , where (z, p) = 1. Then from the original congruence,
f(b) ≡ f(a) + f ′(a)tpk−j (mod pk+1), so that dividing through by pk yields y − x ≡ zt (mod p).
This last is a linear congruence with (z, p) = 1, so there is a unique solution modulo p for t. That is,
there is a unique value of t modulo p such that f(a + tpk−j) ≡ 0 (mod pk+1.) Again from the origi-
nal congruence, we have f(b)− f(a) ≡ f ′(a)tpk−j (mod p2k−2j) and from a symmetrical argument
we have f(b) − f(a) ≡ f ′(b)tpk−j (mod p2k−2j), whence f ′(a)tpk−j ≡ f ′(b)tpk−j (mod pk+1). Di-
viding through by pk gives us zt ≡ (f ′(b)/pj)t (mod p). Since (x, p) = 1, we must have pj ‖ f ′(b).

b. From part (a), for each solution a of f(x) ≡ 0 (mod pk) There is a unique value of t modulo p such
that a+ tpk−j is a solution to f(x) ≡ 0 (mod pk+1). That is, each solution a (mod pk) lifts uniquely
to a solution b (mod pk+1).

4.4.13. By inspection the only solution of f(x) = x2 + x + 223 ≡ 0 (mod 3) is x ≡ 1 (mod 3). Since
f ′(1) = 2 · 1 + 1 = 3 ≡ 0 (mod 3) and f(1) = 225 ≡ 0 (mod 9), we have by Theorem 4.14 that
1, 4, and 7 are the only solutions modulo 9. Since f(1) = 225 ≡ 9 (mod 27), this solutions doesn’t
lift. Since f(4) = 243 ≡ 0 (mod 27), this solution lifts to three solutions 4, 13, and 22 (mod 27). Since
f(7) = 279 ≡ 9 (mod 7), this solution doesn’t lift. So the only solutions modulo 27 are 4, 13, and
22. Next f(4) ≡ f(13) ≡ f(22) ≡ 0 (mod 81), so each of these solutions lifts to three solutions
modulo 81, namely 4, 31, 58, 13, 40, 67, 22, 49, and 76. Of these, f(13) ≡ f(40) ≡ f(67) ≡ 163 6≡
0 (mod 35) and so these do not lift to solutions. But f(4) ≡ f(31) ≡ f(58) ≡ f(22) ≡ f(49) ≡
f(76) ≡ 0 (mod 35). Therefore, each of these 6 solutions lifts to three solutions modulo 35, namely x ≡
166, 112, 238, 193, 85, 130, 58, 103, 211, 31, 76, 157, 184, 49, 4, 139, 220 or 22 (mod 35). It is easy to check
that each of these solutions satisfies the hypotheses of Exercise 12 with p = 3, k = 5 and j = 2. E.g.,
f(166) ≡ 0 (mod 35) and 32 ‖ f ′(166) = 333 = 32 · 37. Therefore each of these solutions lifts uniquely to
solutions modulo 3n for n ≥ 5. So there are exactly 18 solutions modulo 3n for n ≥ 5.
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4.5. Systems of Linear Congruences
4.5.1. a. Multiplying the first congruence by 2 gives 2x + 4y = 2 (mod 5). Subtracting the second congru-

ence 2x + y ≡ 1 (mod 5) from this gives 3y ≡ 1 (mod 5). Since 2 is the inverse of 3 modulo 5 we
have y ≡ 2 (mod 5). Inserting this into the congruence x+2y ≡ 1 (mod 5) gives x+4 ≡ 1 (mod 5).
Hence x ≡ −3 ≡ 2 (mod 5). The unique solution modulo 5 is x ≡ 2 (mod 5) and x ≡ 2 (mod 5).

b. Multiplying the first congruence by 3 gives 3x + 9y ≡ 3 (mod 5). Subtracting the second congru-
ence 3x + 4y ≡ 2 (mod 5) from this gives 5y ≡ 1 (mod 5) which is impossible. Hence this system
has no solutions.

c. Multiplying the second congruence by 2 gives 4x + 6y ≡ 2 (mod 5). Subtracting the first congru-
ence from this gives 5y ≡ 0 (mod 5). The solutions to this are all values of y, that is, y ≡ 0, 1, 2, 3,
or 4 (mod 5). This implies that 4x ≡ 2, 1, 0, 4, or 3 (mod 5), respectively, or that x ≡ 3, 4, 0, 1 or
2 (mod 5), respectively. The solutions are x ≡ 3 (mod 5), y ≡ 0 (mod 5); x ≡ 4 (mod 5), y ≡ 1
(mod 5);x ≡ 0 (mod 5), y ≡ 2 (mod 5); x ≡ 1 (mod 5), y ≡ 3 (mod 5); and x ≡ 2 (mod 5), y ≡ 4
(mod 5).

4.5.2. a. Subtracting twice the second congruence from the first gives us−7y ≡ −7 (mod 7), which is 0y ≡ 0
(mod 7). Therefore, y can take on any residue modulo 7. When y = 0, we have x ≡ 6 (mod 7), from
the second congruence, so the first solution is (6, 0). When y = 1, the second congruence gives us
x + 5 ≡ 6 (mod 7), so (1, 1) is another solution. Continuing in this fashion, get the seven solutions:
(6, 0), (1, 1), (3, 2), (5, 3), (0, 4), (2, 5), and (4, 6).

b. Subtracting twice the first congruence from the second yields−7x ≡ −6 (mod 7), which reduces to
0 ≡ 1 (mod 7), which is false. Therefore there is no solution.

4.5.3. If we use one congruence to eliminate a variable from the other congruence, we are left with linear
congruence of the form ax ≡ b (mod p). If (a, p) = 1, then this congruence has a unique solution, but if
p | a, we have 0 ≡ b (mod p), which has 0 solutions if b is not 0 modulo p and p solutions if b is 0 modulo
p. So there are 0, 1, or p solutions for this variable. Similarly, There are 0, 1, or p solutions for the other
variable. Multiplying all the possible combinations gives us 0, 1, p, or p2 solutions for the system.

4.5.4. Multiplying the matrices in the usual fashion and reducing each entry modulo 5 gives
(

0 1
2 3

)

4.5.5. The basis step, where k = 1, is clear by assumption. For the inductive hypothesis assume that A ≡ B
(mod m) and Ak ≡ Bk (mod m). Then, A ·Ak ≡ A · Bk (mod m) by Theorem 4.16. Further, Ak+1 =
A ·Ak ≡ A ·Bk ≡ B ·Bk = Bk+1 (mod m) by simple substitution. This completes the inductive proof.

4.5.6. We have
(

4 11
1 22

)2

=
(

27 26
26 495

)
≡

(
1 0
0 1

)
(mod 26). Hence this matrix is involutory (mod 26).

4.5.7. Note that 1 = det(I) = det(A2) = (det(A))2 (mod m). So, (det(A))2−1 = (det(A)+1)(det(A)−1) ≡
0 (mod m). It follows that det(A) = ±1.

4.5.8. a. (We use Theorem 4.17 in each part to find the inverse of a 2x2 matrix modulo 5.)
Since the determinant of this matrix is −1, and −1 is an inverse of −1 modulo 5, an inverse of

this matrix modulo 5 is −1
(

0 −1
−1 0

)
=

(
0 1
1 0

)
.

b. Since the determinant of this matrix is −2, and 2 is an inverse of −2 modulo 5, an inverse of this

matrix modulo 5 is 2
(

4 −2
−3 1

)
=

(
3 1
4 2

)
.

c. Since the determinant of this matrix is 2, and 3 is an inverse of 2 modulo 5, an inverse of this matrix

modulo 5 is 3
(

2 −2
−1 2

)
=

(
1 4
2 1

)
.
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4.5.9. a. Let A be the matrix. We have detA = −2 which has inverse 3 modulo 7. Then

A = 3 · adj A = 3



−1 −1 1
−1 1 −1
1 −1 −1


 =




4 4 3
4 3 4
3 4 4


 .

b. Let A be the matrix. We have detA = 3 which has inverse 5 modulo 7. Then

A = 5 · adj A = 5



−1 0 4
−1 3 −2
2 −2 0


 =




2 0 6
2 1 4
3 4 0


 .

c. Let A be the matrix. We have detA = 4 which has inverse 2 modulo 7. Then

A = 2 · adj A = 2




−1 −1 −1 2
−1 −1 2 −1
−1 2 −1 −1
2 −1 −1 −1


 =




5 5 5 4
5 5 4 5
5 4 5 5
4 5 5 5


 .

4.5.10. a. Using the inverse from Problem 9(a) we have




4 4 3
4 3 4
3 4 4







1
2
3


 ≡




0
1
2


 (mod 7).

b. Using the inverse from Problem 9(b) we have




2 0 6
2 1 4
3 4 0







1
1
1


 ≡




1
0
0


 (mod 7).

c. Using the inverse from Problem 9(c) we have




5 5 5 4
5 5 4 5
5 4 5 5
4 5 5 5







1
1
1
1


 ≡




5
5
5
5


 (mod 7).

4.5.11. a. Multiplying the first congruence by 2 gives 2x + 2y + 2z ≡ 2 (mod 5). Subtracting this from the
second congruence gives 2y + z ≡ 4 (mod 5). There are five possible values for z modulo 5, and
since (2, 5) = 1, each of these leads to a unique value of y modulo 5, and substituting these val-
ues of y and z modulo 5 into the first congruence we obtain a unique value of x modulo 5. Hence
there are exactly 5 incongruent solutions modulo 5. There are x ≡ 4 (mod 5), y ≡ 2 (mod 5), z ≡
0 (mod 5); x ≡ 1 (mod 5), y ≡ 4 (mod 5), z ≡ 1 (mod 5);x ≡ 3 (mod 5), y ≡ 1 (mod 5), z ≡ 2
(mod 5);x ≡ 0 (mod 5), y ≡ 3 (mod 5), z ≡ 3 (mod 5); and x ≡ 2 (mod 5), y ≡ 0 (mod 5), z ≡ 4
(mod 5).

b. Subtracting the last congruence from the first gives 3y ≡ 3 (mod 5), so y ≡ 4 (mod 5). Let z take
on the values 0, 1, 2, 3, and 4 and solve the last congruence for x to get 3, 0, 2, 4, and 1, respectively.
This represents the 5 incongruent solutions.

c. Since the coefficient matrix for x and y is
(

1 1
2 4

)
, which had determinant 2 6≡ 0 (mod 5), we

can find a unique solution in x and y for any of the 5 possible values for z. Therefore, there are 5
incongruent solutions.

d. Since the determinant of the coefficient matrix is 4 6≡ 0 (mod 5) there is a unique solution to the
system.

4.5.12. Cramer’s rule will work for congruences just like for systems of equations. The determinant of the
coefficient matrix must be relatively prime to the modulus.

4.5.13. In Gaussian elimination, the chief operation is to subtract a multiple of one equation or row from an-
other, in order to put a 0 in a desirable place. Given that an entry a must be changed to 0 by subtracting
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a multiple of b, we proceed as follows: Let b be the inverse for b (mod k). Then a− (ab)b = 0, and elimi-
nation proceeds as for real numbers. If b doesn’t exist, and one cannot swap rows to get an invertible b,
then the system is underdetermined.

4.5.14. Let k and l be integers in the range 0, 1, . . . , n2−1, and suppose that they are put into the same position
(i, j). Then a+ck+e[k/n] ≡ a+cl+e[l/n] (mod n) and b+dk+f [k/n] ≡ b+dl+f [l/n] (mod n). This sys-
tem reduces to c(k − l) + e([k/n] − [l/n]) ≡ 0 (mod n), c(k − l) +
e([k/n] − [l/n]) ≡ 0 (mod n), which we can solve for k − l and [k/n] − [l/n]. The coefficient matrix is(

c e
d f

)
, with determinant cf − de, which is relatively prime to n. Therefore the system has a unique

solution modulo n, and this solution is obviously (0, 0). Thus we have k ≡ l (mod n) and [k/m] ≡ [l/n]
(mod n). This last congruence, along with the fact that 0 ≤ k, l ≤ n2 − 1, implies that | k − l |< n. Then,
since k ≡ l (mod n), we have that k = l, as desired.

4.5.15. Consider summing the ith row. Let k = xn + y, where 0 ≤ y < n. Then x and y must satisfy the Dio-
phantine equation i ≡ a + cy + ex (mod n), if k is in the ith row. Then x− ct and y + et is also a solution
for any integer t. By Exercise 14, there must be n positive solutions which yield n numbers k between 0
and n2. Let s, s + 1, . . . , s + n − 1 be the values for t that give these solutions. Then the sum of the ith
row is

∑n−1
r=0 (n(x− c(s + r)) + y + e(s + r)) = n(n + 1), which is independent of i.

4.5.16. If an integer l from the range 0, 1, . . . , n2 − 1 is entered according to Exercise 14, and it is in a particu-
lar positive diagonal, then we must have c + cl + e[l/n] + b + dl + f [l/n] ≡ k (mod n), or (c + d)l + (e +
f)[l/n] ≡ (a + b − k) (mod n). Let l = x, y = [l/x], and s = (a + b − k). Since (c + d, n) = (e + f, n) =
1, if we choose x from the range 0, 1, . . . , n − 1, there will be a unique solution for y modulo n, namely
y ≡ (s − (c + d)x)(e + f). Then l = yn + x. Let x run through it’s possible values, and sum to get∑n−1

x=0 yn+x =
∑n−1

x=0(s− (c+d)x)(e + f)n+x =
∑n−1

x=0 s(e + f)n+(1− (c+d))(e + f)x = n2s(e + f)+
(1 − (c + d))(e + f)(n − 2)(n − 1)/2. This is the sum of one positive diagonal. Since it does not depend
on l, the sum must be the same for all diagonals. The argument for negative diagonals is identical.

4.6. Factoring Using the Pollard Rho Method
4.6.1. a. We compute x1 = 22 + 1 = 5 and x2 = 52 + 1 = 26. Then (26− 5, 133) = (21, 133) = 7, so we have

133 = 7 · 19.

b. x1 = 5, x2 = 26, x3 = 677, x4 = 565, x5 = 574, x6 = 124, x7 = 1109, x8 = 456, x9 = 1051, x10 =
21, x11 = 442, x12 = 369, x13 = 616, and x14 = 166. Then (x2i − xi, 1189) = 1 for i = 1, 2, . . . , 6, but
(x14 − x7, 1189) = 41, and we have 1189 = 29 · 41.

c. We need to compute up to x7 = 1273 and x14 = 535. Then we have (535− 1273, 1927) = 41, and so
1927 = 41 · 47.

d. We need to compute up to x4 = 2994 and x8 = 6973. Then we have (6973− 2994, 8131) = 173, and
so 8131 = 47 · 173.

e. We need to compute up to x7 = 24380 and x14 = 12066. Then we have (12066 − 24380, 36287) =
131, and so 36287 = 131 · 277.

f. We need to compute up to x8 = 18842 and x16 = 7329. Then we have (7329 − 18842, 48227) = 29,
and so 48227 = 29 · 1663.

4.6.2. a. We have x0 = 2, x1 = 22 + 1 = 5, x2 = 52 + 1 = 26, x3 = 262 + 1 = 677x4 = 6772 + 1 = 458330 ≡
620 (mod 1387), x5 = 202, x6 = 582, and so on. Then (x2 − x1, 1387) = (26 − 5, 1387) = 1, (x4 −
x2, 1387) = (620− 26, 1387) = 1, (x6 − x3, 1387) = (582− 677, 1387) = 19, so 19 | 1387.
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b. We have x0 = 3, x1 = 10, x2 = 101, x3 = 493, x4 = 325, x5 = 214, x6 = 26, x7 = 677, x8 = 620, x9 =
202, x10 = 582, x11 = 297, x12 = 829, and so on. Then (x2 − x1, 1387) = (101 − 10, 1387) = 1, (x4 −
x2, 1387) = (325 − 101, 1387) = 1, (x6 − x3, 1387) = (26 − 493, 1387) = 1, (x8 − x4, 1387) = (620 −
325, 1387) = 1, (x10 − x5, 1387) = (582− 214, 1387) = 1, (x12 − x6, 1387) = (829− 26, 1387) = 73,, so
73 | 1387.

c. We have x0 = 2, x1 = 3, x2 = 8, x3 = 63, x4 = 1194, x5 = 1186, x6 = 177, and so on. Then (x2 −
x1, 1387) = (8 − 3, 1387) = 1, (x4 − x2, 1387) = (1194 − 8, 1387) = 1, (x6 − x3, 1387) = (177 −
63, 1387) = 19, so 19 | 1387.

d. We have x0 = 2, x1 = 11, x2 = 1343, x3 = 767, x4 = 978, and so on. Then (x2 − x1, 1387) = (1343−
11, 1387) = 1, (x4 − x2, 1387) = (978− 1343, 1387) = 73, so 73 | 1387.

4.6.3. Numbers generated by linear functions where a > 1 will not be random in the sense that x2s − xk =
ax2s−1 + b− (axs−1 + b) = a(x2s−1 − xs−1) is a multiple of a for all s. If a = 1, then x2s − xs = x0 + sb.
In this case, if x0 6= 0, then we will not notice if a factor of b that is not a factor of x0 is a divisor of n.





CHAPTER 5

Applications of Congruences

5.1. Divisibility Tests
5.1.1. a. Since 2 | 4, 4 | 84, 8 | 984, 16 | 1984, 64 | 201984, 128 | 201984, 256 | 201984, but 512 does not divide

201984, it follows that 256 = 28 is the highest power of 2 that divides 201984.

b. Since 2 | 8, 4 | 8, 8 | 408, 16 | 3408, but 32 does not divide 23408, it follows that 16 = 24 is the highest
power of 2 that divides 1423408.

c. Since 2 | 4, 4 | 44, 8 | 744, 16 | 5744, 32 | 75744, 64 | 375744, 128 | 9375744, 256 | 89375744, 512 |
89375744, 1024 | 89375744, but 2048 does not divide 89375744, it follows that 1024 = 210 is the high-
est power of 2 that divides 8937544.

d. Since 2 | 6 but 4 does not divide 46, it follows that 2 = 21 is the highest power of 2 that divides
41578912246.

5.1.2. a. Since 5 | 0, 25 | 50, 125 | 250 but 625 does not divide 2250, it follows that 125 = 53 is the highest
power of 5 that divides 112250.

b. Since 5 | 5, 25 | 25, 125 | 625, 625 | 625, but 3125 does not divide 60625, it follows that 625 = 54 is the
highest power of 5 that divides 4860625.

c. Since 5 | 0 but 25 does not divide 90, it follows that 5 = 51 is the highest power of 5 that divides
235555790.

d. Since 5 | 5, 25 | 25, 125 | 125, 625 | 3125, 3125 | 53125, 15625 | 953125, 78125 | 6953125, 390625 |
26953125, 1953125 | 126953125, but 9765625 does not divide 8126953125 it follows that 1953125 =
59 is the highest power of 5 that divides 48126953125.

5.1.3. a. The sum of the digits of 18381 is 1 + 8 + 3 + 8 + 1 = 21. Since this sum is divisible by 3 but not by
9, 18381 is divisible by 3, but not by 9.

b. The sum of the digits of 65412351 is 6 + 5 + 4 + 1 + 2 + 3 + 5 + 1 = 27. Since this sum is divisible by
3 and by 9 it follows that 65412351 is divisible by both 3 and 9.

c. The sum of the digits of 987654321 is 9+8+7+6+5+4+3+2+1 = 45. since this sum is divisible
by 3 and by 9 it follows that 987654321 is divisible by both 3 and 9.

d. The sum of the digits of 78918239735 is 7 + 8 + 9 + 1 + 8 + 2 + 3 + 9 + 7 + 3 + 5 = 62. Since this sum
is not divisible by 3, 78918239735 is divisible by neither 3 nor 9.

5.1.4. a. We have 1− 0 + 7− 6 + 3− 7 + 3− 2 = −1, so 11 - 10763732.

b. We have 1− 0 + 8− 6 + 3− 2 + 0− 0 + 1− 5 = 0, so 11 | 1086320015.

c. We have 6− 7 + 4− 3 + 1− 0 + 9− 7 + 6− 3 + 7− 5 = 8, so 11 - 674310976375.
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d. We have 8− 9 + 2− 4 + 3− 1 + 0− 0 + 6− 4 + 5− 3 + 7 = 10, so 11 - 8924310064537.

5.1.5. By Theorem 5.1, the power of 2 dividing a number is equal to the number of zeros at the end of its
binary expression. a. 21 = 2 b. 20 = 1 c. 26 = 64 d. 20 = 1

5.1.6. a. Since 3 | (2+1), we use Theorem 5.3. We have 1−0+1−1+1−1+1−1+0 = 1, so 3 - (101111110)2.

b. We have 1− 0 + 1− 0 + 0− 0 + 0− 0 + 1− 1 = (10)2, so 3 - (1010000011)2.

c. We have 1− 1 + 1− 0 + 0− 0 + 0− 0 + 0 = 1, so 3 - (111000000)2.

d. We have 1− 0 + 1− 1 + 0− 1 + 1− 1 + 0− 1 = −1, so 3 - (1011011101)2.

5.1.7. a. Using Theorem 5.2, we need only examine the sum of the digits. We have 1+2+1+0+1+2+2 =
9. As 2 does not divide 9, 2 does not divide (1210122)3.

b. Since 2 does not divide 2 + 1 + 1 + 1 + 0 + 2 + 1 + 0 + 1 = 9, 2 does not divide (211102101)3.

c. Since 2 divides 1 + 1 + 1 + 2 + 2 + 0 + 1 + 1 + 1 + 2 = 12, then 2 | (1112201112)3.

d. Since 2 divides 1 + 0 + 1 + 2 + 2 + 2 + 2 + 2 + 0 + 1 + 1 + 1 + 0 + 1 = 16, then 2 | (10122222011101)3.

5.1.8. a. Since 4 | (3 + 1), we use Theorem 5.2. We have 1 + 2 + 1 + 0 + 1 + 2 + 2 = 9, so 4 - (1210122)3.

b. We have 2 + 1 + 1 + 1 + 0 + 2 + 1 + 0 + 1 = 9, so 4 - (211102101)3.

c. We have 1 + 1 + 1 + 2 + 2 + 0 + 1 + 1 + 1 + 2 = 12, so 4 | (1112201112)3.

d. We have 1 + 0 + 1 + 2 + 2 + 2 + 2 + 2 + 0 + 1 + 1 + 1 + 0 + 1 = 16, so 4 | (10122222011101)3.

5.1.9. a. As both 3 and 5 divide 16− 1, Theorem 5.2 tells us that we need only examine the sum of the base
16 digits.
3 + E + A + 2 + 3 + 5 = 3 + 14 + 10 + 2 + 3 + 5 = 37. As neither 3 nor 5 divides 7, neither 3 nor 5
divides (3EA235)16.

b. Since A + B + C + D + E + F = 10 + 11 + 12 + 13 + 14 + 15 = 75 is divisible by 3 and 5, we see that
both 3 and 5 divide (ABCDEF )16.

c. Since neither 3 nor 5 divides 15 + 1 + 1 + 7 + 9 + 2 + 1 + 1 + 7 + 3 = 47, neither 3 nor 5 divides
(F117921173)16.

d. Since 5 divides 1 + 0 + 10 + 11 + 9 + 8 + 7 + 3 + 0 + 1 + 15 = 65, but 3 does not, we have that 5
divides (10AB987301F )16, but 3 does not.

5.1.10. a. Since 17 | (16 + 1), we use Theorem 5.3. We have 3− E + A− 2 + 3− 5 = −5, so 17 - (3EA235)16.

b. We have A−B + C −D + E − F = −3, so 17 - (ABCDEF )16.

c. We have F − 1 + 1− 7 + 9− 2 + 1− 1 + 7− 3 = 19, so 17 - (f117921173)16.

d. We have 1 + 0−A + B − 9 + 8− 7 + 3− 0 + 1 = −2, so 17 - (10AB987301)16.

5.1.11. The sum of the digits of a repunit with n 1’s in its decimal expansion is n. This repunit is divisible by
3 if and only if n is divisible by 3 and is divisible by 9 if and only if n is divisible by 9.
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5.1.12. The alternating sum of the digits of a repunit with n digits is 0 if n is even and 1 if n is odd. Hence the
repunit with n digits is divisible by 11 if and only if n is even.

5.1.13. The alternating sum of blocks of three digits of an n-digit repunit is 0 if n ≡ 0 (mod 6), 1 if n ≡
1 (mod 6), 11 if n ≡ 2 (mod 6), 111 if n ≡ 3 (mod 6), 110 if n ≡ 4 (mod 6), 100 if n ≡ 5 (mod 6). Hence
a repunit with n decimal digits is divisible by 1001 if and only if n ≡ 0 (mod 6). Since 7 divides this
alternating sum if and only if n ≡ 0 (mod 6), these are exactly the values of n for which this requnit is
divisible by 7. Exactly the same reasoning and conclusion holds for divisibility by 13.

5.1.14. The repunit with 2 digits, 11, is prime, while the repunit with 1 digit, 1, is not prime. By Exercise 11
we know that the repunits with 3,6, and 9 digits are divisible by 3. By Exercise 12 we know that the re-
punits with 4,6,and 8 digits are divisible by 11. this leaves the repunits with 5 digits and 7 digits. But we
find that 41 | 11111 and 239 | 1111111. Hence 11 is the only repunit with less that 10 digits that is prime.

5.1.15. Let d be a divisor of b − 1. By Theorem 5.2, a number is divisible by d if and only if the sum of its
digits is a multiple of d. Since the sum of the digits of a repunit is equal to the number of digits it has, a
repunit is divisible by d if and only if it has a multiple of d digits.

5.1.16. Let d | (b + 1). by Theorem 5.3, d will divide a repunit of n digits if and only if the alternating sum of
the digits is divisible by d. But the only possible alternating sums of repunits are 0 if n is even and 1 if n
is odd. So a factor of b + 1 divides a repunit if and only if the repunit has an even number of digits.

5.1.17. A palindromic integer with 2k digits has the form (akak−1 . . . a1a1a2 . . . ak)10. Using the test for divis-
ibility by 11 developed in this section, we find that ak − ak−1 + · · · ± a1 ∓ a1 ± a2 ∓ · · · − ak = 0 ≡ 0
(mod 11) and so (akak−1 . . . a1a1a2 . . . ak)10 is divisible by 11.

5.1.18. Let a = (a1a2 . . . anan . . . a1)7 be a base 7 palindromic integer with an even number of digits. Since 8 |
(7 + 1), by Theorem 5.3, 8 will divide a if and only if 8 divides a1 − a2 + · · · + (−1)nan + (−1)n+1an +
(−1)n+2an−1 + . . .− a1 = 0 which it does.

5.1.19. Let akak−1 . . . a1a0 be the decimal representation of an integer. Then akak−1 . . . a1a0 = a0a1a2 +
103a3a4a5 + 103(103a6a7a8) + · · · . So, akak−1 . . . a1a0 ≡ a0a1a2 + a3a4a5 + a6a7a8 + · · · (mod 37). Thus
akak−1 . . . a1a0 is divisible by 37 if and only if a0a1a2 + a3a4a5 + a6a7a8 + · · · is also. Hence, 443692 is
divisible by 37 if and only if 443 + 692 = 1135 is. And 1134 is divisible by 37 if and only if 1 + 135 = 136
is. But 136 is not, and so 37 does not divide 443692. Further, 11092785 is divisible by 37 if and only if
11 + 092 + 785 = 888 is. We know that 888 = 24 · 37, so 11092785 is a multiple of 37.

5.1.20. Group the digits of the integer into blocks of 2, starting at right. Now consider the number as a base
b2 integer, with each block of 2 representing a digit. Then by Theorem 5.3, n will divide the integer if
and only if n divides the alternating sum of the blocks of 2.

5.1.21. a. Applying Exercise 20, we have (1)2 − (01)2 + (11)2 − (01)2 + (10)2 = (100)2 = 4, Since 4 is not di-
visible by 5 = 22 + 1, neither is (101110110)2.

b. Applying Exercise 20, we have −(12)3 + (10)3 − (01)3 + (22)3 = (12)3 = 5. Since 2 - 12 but 5 | 12,
only 5 divides (12100122)3.

c. Applying Exercise 20, we have (3)8 − (64)8 + (70)8 − (12)8 + (44)8 = (41)8 = 33 which is divisible
by neither 5 nor 13. Hence neither divides the number.

d. Applying Exercise 20, we have 5 − 83 + 70 − 41 + 32 − 02 + 19 = 0 which is divisible by 101, and
therefore, so is (5837041320219)10.

5.1.22. We have that 88 | (x42y)10, so 8 | (x42y). Then we must have 8 | 42y, so y = 4. Also, 11 | (x424) and
so 11 | (x− 4 + 2− 4) = x− 6. Therefore, x = 6, and the price of each chicken was $64.24/88 = $0.73.
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5.1.23. First, note that 89878 ≡ 8 + 9 + 8 + 7 + 8 ≡ 4 (mod 9), 58965 ≡ 5 + 8 + 9 + 6 + 5 ≡ 6 (mod 9), and
5299?56270 ≡ 5 + 2 + 9 + 9+? + 5 + 6 + 2 + 7 + 0 ≡ ? (mod 9). So, 89878 · 58965 ≡ 4 · 6 ≡ 6 ≡ ?
(mod 9). Thus, as the question mark represents a single decimal digit congruent to 6, the question mark
represents the digit 6.

5.1.24. a. We have 8 + 7 + 5 + 9 + 6 + 1 = 33, 2 + 7 + 5 + 3 = 17, and 2 + 4 + 1 + 0 + 5 + 2 + 0 + 6 + 3 + 3 =
26, but 37 6≡ 26 (mod 9), so there is an error in the multiplication.

b. We have 1+4+7+9+8 ≡ 2 (mod 9), 2+3+5+6+7 ≡ 5 (mod 9), and 3+4+8+5+3+2+3+6+7 ≡
5 (mod 9), but 2 · 5 6≡ 5 (mod 9), so there is an error.

c. We have 2 + 4 + 7 + 8 + 9 ≡ 3 (mod 9), 4 + 3 + 7 + 1 + 7 ≡ 4 (mod 9), and 1 + 0 + 9 + 2 + 7 + 0 + 0 +
7 + 1 + 30 ≡ 3 (mod 9), and 3 · 4 ≡ 12 ≡ 3 (mod 9) so the multiplication may be correct. (Actually
it’s not! See Exercises 25 and 26.)

5.1.25. Casting out nines is not infallible. To see this, note that 19 ≡ 2 · 5 (mod 9), but 19 6= 2 · 5. The cause
of this problem is that 0 ≡ 9 (mod 9), and so any 0 may be replace by a 9, or vice versa, and the congru-
ence c ≡ ab (mod 9) will still hold, whereas in general, the equality c = ab will not hold.

5.1.26. a. The sum of blocks of two digits, starting at the right, are congruent to the integer modulo 99. Then
we have 87+59+61 ≡ 9 (mod 99), 27+53 ≡ 80 (mod 99), and 24+10+52+06+33 ≡ 26 (mod 99),
but 9 · 80 ≡ 27 6≡ 26 (mod 99), so the error is detected.

b. We have 01 + 47 + 89 ≡ 38 (mod 99), 02 + 35 + 67 ≡ 5 (mod 99), and 03 + 48 + 53 + 23 + 67 ≡ 95
(mod 99) but 38 · 5 ≡ 91 6≡ 95 (mod 99), so the error is detected.

c. We have 2 + 47 + 89 ≡ 39 (mod 99), 04 + 37 + 17 ≡ 58 (mod 99), and 10 + 92 + 70 + 07 + 13 ≡ 93
(mod 99), but 39 · 58 ≡ 84 6≡ 93 (mod 99), so the error is detected.

5.2. The Perpetual Calendar
5.2.1. Happy Birthday!

5.2.2. a. October 12, 1492 would be October 2, 1492 in the Gregorian Calendar. So k = 2,m = 8, C = 14, Y =
92. Then W = 2 + [2.6 · 8 + 0.2]− 2 · 14 + 92 + [92/4] + [14/4] ≡ 0 (mod 7). Hence October 12, 1492
was a Sunday.

b. May 6, 1692 would be April 26, 1692 in the Gregorian Calendar. So k = 26,m = 2, C = 16, Y = 92.
Then W = 26 + [2.6 · 2− 0.2]− 2 · 16 + 92 + [92/4] + [16/4] ≡ 6 (mod 7). Hence May 6, 1692 was a
Saturday.

c. June 15,1752 would be June 5,1752 in the Gregorian Calendar. So k = 15,m = 2, C = 17, Y = 52.
Then W = 15 + [2.6 · 4− 0.2]− 2 · 17 + 52 + [52/4] + [17/4] ≡ 4 (mod 7). Hence June 15,1752 was a
Thursday.

d. For July 4, 1776 we have k = 4,m = 5, C = 17, and Y = 76. This implies that W = 4 + [2.6 · 5 −
0.2]− 2 · 17 + 76 + [76/4] + [19/4] = 4 + 12− 34 + 76 + 19 + 4 = 81 ≡ 4 (mod 7). Hence July 4, 1776
was a Thursday.

e. For March 30, 1867 we have k = 30,m = 1, C = 18, and Y = 67. This implies that W ≡ 30 + [2.6 ·
1− 0.2]− 2 · 18 + 67 + [18/4] + [67/4] = 30 + 2− 36 + 67 + 4 + 16 = 83 ≡ 6 (mod 7). Hence March
30, 1867 was a Saturday.

f. For March 17, 1888 we have k = 17,m = 1, C = 18, and Y = 88. This implies that W ≡ 17 + [2.6 ·
1− 0.2]− 2 · 18 + 88 + [18/4] + [88/4] = 17 + 2− 36 + 88 + 4 + 22 = 97 ≡ 6 (mod 7). Hence March
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17, 1888 was a Saturday.

g. For February 15, 1898 we have k = 15,m = 12, C = 18, and Y = 97. This implies that W ≡ 15 +
[2.6 · 12− 0.2]− 2 · 18 + 97 + [18/4] + [98/4] = 15 + 31− 36 + 97 + 4 + 24 = 135 ≡ 2 (mod 7). Hence
February 15, 1898 was a Tuesday.

h. For July 2, 1925 we have k = 2,m = 5, C = 19, and Y = 25. This implies that W ≡ 2 + [2.6 · 5 −
0.2]− 2 · 19 + 25 + [19/4] + [25/4] = 2 + 12− 38 + 25 + 4 + 6 = 11 ≡ 4 (mod 7). Hence July 2, 1925
was a Thursday.

i. For July 16, 1945 we have k = 16,m = 5, C = 19, and Y = 45. This implies that W ≡ 16 + [2.6 · 5−
0.2] − 2 · 19 + 45 + [19/4] + [45/4] = 16 + 12 − 38 + 45 + 4 + 11 = 50 ≡ 1 (mod 7). Hence July 16,
1945 was a Monday.

j. For July 20, 1969 we have k = 20,m = 5, C = 19, and Y = 69. this implies that W ≡ 20 + [2.6 · 5−
0.2] − 2 · 19 + 69 + [19/4] + [69/4] = 20 + 12 − 38 + 69 + 4 + 17 = 84 ≡ 0 (mod 7). Hence July 20,
1969 was a Sunday.

k. For August 9, 1974 we have k = 9,m = 6, C = 19, and Y = 74. This implies that W ≡ 9 + [2.6 · 6−
0.2]− 2 · 19 + 74 + [19/4] + [74/4] = 9 + 15− 38 + 74 + 4 + 18 = 82 ≡ 5 (mod 7). Hence August 9,
1974 was a Friday.

l. For March 28, 1979 we have k = 28,m = 1, C = 19, and Y = 79. This implies that W ≡ 28 + [2.6 ·
1− 0.2]− 2 · 19 + 79 + [19/4] + [79/4] = 28 + 2− 38 + 79 + 4 + 19 = 94 ≡ 3 (mod 7). Hence March
28, 1979 was a Wednesday.

m. For June 5, 2013 we have k = 5,m = 4, C = 20, and Y = 13. this implies that W ≡ 5 + [2.6 · 4 −
0.2]− 2 · 20 + 13 + [20/4] + [13/4] = 5 + 10− 40 + 13 + 5 + 3 = −4 ≡ 3 (mod 7). Hence June 5, 2013
will be a Wednesday.

n. For December 25, 1991, we have k = 25,m = 10, C = 19, Y = 91. Then W = 25 + [2.6 · 10 − 0.2] −
2 · 19 + 91 + [91/4] + [19/4] ≡ 3 (mod 7). So December 25, 1991 was a Wednesday.

o. For June 5, 2013 we have k = 5,m = 4, C = 20, and Y = 27. this implies that W ≡ 5+[2.6 ·4−0.2]−
2·20+27+[27/4]+[20/4] = 5+10−40+13+6+5 = 6 (mod 7). Hence June 5, 2027 will be a Saturday.

5.2.3. For this problem, we let k = 13, C = 20, Y = 20, and W = 5. Now, [2.6m − 0.2] ≡ W − k + 2C −
Y − [Y

4 ] − [C
4 ] ≡ 2 (mod 7). And since [2.6m − 0.2] ≡ 2 (mod 7) with 0 < m ≤ 10 only for m = 1 and

9, we see that March and November have Friday the 13th. But we have only checked the months after
(and including March). To check January and February, let W = 5, k = 13, C = 20, and Y = 19. Now,
[2.6m−0.2] ≡ W−k+2C−Y −[Y

4 ]−[C
4 ] ≡ 4 (mod 7). But [2.6·11−0.2] ≡ 0 (mod 7) and [2.6·12−0.2] ≡

3 (mod 7), so neither January nor February have Friday the 13th. So the 13th will fall on Friday only
twice in the year 2020.

5.2.4. There are [10, 000/4] = 2500 years divisible by 4, which are candidates for leap years. But there are
[10, 000/100] = 100 centuries which are not leap years, except for the [10, 000/400] = 25 centuries divisi-
ble by 4, which are leap years. This gives 2500− 100 + 25 = 2425 leap years between the year 1 and the
year 10,000.

5.2.5. For each 4000 years, we need to subtract one day from the total number of days before reducing mod-
ulo 7. Therefore, we subtract [N/4000] = [C/40] from the right hand side of the formula, giving W ≡
k + [2.6m− 0.2]− 2C + Y + [Y/4] + [C/4]− [C/40] (mod 7).

5.2.6. Let the later date be in the year 100C + Y1 and the earlier date be in the year 100C + Y2, where Y1 −
Y, 2 = 28, 56, or 84. Then W1−W2 ≡ (Y1−Y2)+[Y1/4]− [Y2/4] ≡ [Y1/4]− [Y2/4] (mod 7) since 7 | 28, 56,
and 84. Since Y1 ≡ Y2 (mod 4), we have Y1 ≡ 4n1 + r and Y2 ≡ 4n2 + r, for integers n1, n2, r, with 0 ≤
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r < 4. Then 7 | (Y1 − Y2) ≡ 4(n1 − n2), so 7 | (n1 − n2). Then we have W1 −W2 ≡ n1 − n2 ≡ 0 (mod 7).
Therefore, the two days fall on the same day of the week.

5.2.7. If B is the number of the day of the week you were born, 0 ≤ B < 7, and M is the month and K is
the day, then we need to solve the congruence B ≡ K + [2.6M − 0.2]− 2C + Y + [Y/4] + [C/4] (mod 7)
for C and Y . There are two cases. If C = 19, then the congruence reduces to B ≡ K + [2.6M − 0.2] +
Y + [Y/4] + 1 (mod 7). If C = 20 then the congruence reduces to B ≡ K + [2.6M − 0.2] + Y + [Y/4]
(mod 7). In both cases, there are 4 subcases depending on the residue of Y modulo 4. Restrict Y to only
those years between your birth and your 100th birthday.

5.2.8. This is the sequence of years that are not divisible by 4, so the next term is 2005. These are all non-leap
years.

5.2.9. This is the sequence of years divisible by 100, but not by 400, so the next term is 2500. These are all the
century years that are not leap years.

5.2.10. In any 400 consecutive years, there will be exactly 100 multiples of 4, exactly 4 multiples of 100 and
exactly 1 multiple of 400, so there will be exactly 100− 4 + 1 = 97 leap years in that time span.

5.2.11. If the 13th falls on the same day of the week on two consecutive months, then the number of days in
the first month must be congruent to 0 modulo 7, and the only such month is February during non-leap
year. If February 13th is a Friday, then January 1st is 31 + 13− 1 ≡ 1 (mod 7) week days earlier, that is,
Thursday.

5.2.12. 12 Years in the International Fixed Calendar match exactly with years in the Gregorian Calendar. Since
June gets the extra day for leap year, we number the months as follows: Sol = 1, July = 2, August = 3,
September = 4, October = 5, November = 6, December = 7, January = 8, February = 9, March = 10, April
= 11, May = 12, and June = 13. Other notation is the same as for the Gregorian Calendar. Since January
1, 1600 Gregorian = January 1, 1600 IFC, we can compute that Sol 1, 1600 was a Monday. We compute
the number of leap years since then in the same way as in the Gregorian. Each normal year shifts the
day of the week by one, and each leap year shifts the day of the week by two, just as in the Gregorian
Calendar. Thus, if dN is the day of the week of Sol 1 in year N , then dN ≡ 1 − 2C + Y + [C/4] + [Y/4]
(mod 7). Since each month has 28 days, which is divisible by 7, the first day of each of the months of
Sol through December are the same day of the week, for months January through June, (after year end
day), the first day of the month is shifted one. Then [m/8] + 1 gives the shift for the change in months.
The day of the week is given by W ≡ k + [m/8] + 1− 2C + Y + [Y/4] + [C/4] (mod 7).

5.2.13. In the perpetual calendar formula we let W = 5 and k = 13 to get 5 ≡ 13 + [2.6m − 0.2] − 2C + Y +
[Y/4] + [C/4] (mod 7). Then [2.6m − 0.2] ≡ 6 + 2C − Y − [Y/4] − [C/4] (mod 7). We note that as the
month varies from March to December, the expression [2.6m− 0.2] takes on every residue class modulo
7. So regardless of the year, there is always an m which makes the left side of the last congruence con-
gruent to the right side.

5.2.14. Note that as the month runs from March to December, the expression [2.6m − 0.2] (mod 7) runs
through the sequence 2, 5, 0, 3, 5, 1, 4, 6, 2, 4, so all residue classes modulo 7 are covered and all of these
months have at least 30 days. The perpetual calendar formula gives us W ≡ k +[2.6m− 0.2]− 2C +Y +
[Y/4]+ [C/4] (mod 7). The only think not fixed on the right hand side is the expression [2.6m−0.2], and
since it runs through all residue classes, so does W .

5.2.15. The months with 31 days are March, May, July, August, October, December and January, which is
considered in the previous year. The corresponding numbers for these months are 1, 3, 5, 6, 8, 10, and
12. Given Y and C, we let k = 31 in the perpetual calendar formula and get W ≡ 31 + [2.6m − 0.2] −
2C + Y + [Y/4] + [C/4] ≡ 3 + [2.6m− 0.2]− 2C + Y + [Y/4] + [C/4] (mod 7). To see which days of the
week the 31st will fall on, we let m take on the values 1, 3, 5, 6, 8, 10 and reduce. Finally, we decrease
the year by one (which may require decreasing the century by one) and let m take on the value 12 and
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reduce modulo 7. The collection of values of W tells us the days of the week on which the 31st will fall.

5.2.16. For February to have 5 Sundays, we must have the 29th be a Sunday. So in the perpetual calendar
formula, we let W = 0, k = 29 and m = 12, giving us 0 ≡ 29 + [2.6(12)− 0.2]− 2C + Y + [Y/4] + [C/4]
(mod 7). Since C is fixed, this linear congruence has a unique solution modulo 7. And since February
has 29 days only in leap years, we have Y ≡ 0 (mod 4). By the Chinese remainder theorem, these two
congruences have a unique solution modulo 28. Therefore February has 5 Sundays every 28 years dur-
ing a given century. Therefore this could happen at most 4 times during one century. To show that this
happens at least 4 times, we seek a century in which February has 5 Sundays for a very small value of
Y . Since Y + 1 must be a multiple of 4, we set Y = 4b − 1, so that [Y/4] = b − 1. Then the perpetual
calendar formula reduces to 0 ≡ 29 + [2.6(12)− 0.2]− 2C + (4b− 1) + (b− 1) + [C/4] (mod 7), or 5b ≡
−2 + 2C − [C/4] (mod 7). Multiplying through by 3 gives us b ≡ 1 − C − 3[C/4] (mod 7). We seek a
value of C which will make b ≡ 1 (mod 7) so that Y will be small. We note that for C = 20, we have b =
1 so that y = 3 which corresponds to February of 2004, which had 5 Sundays. Then in that century the
other years with 5 Sundays will be 2032, 2060 and 2088.

5.3. Round-Robin Tournaments
5.3.1. a. Teams i and j are paired in round k if and only if i + j ≡ k (mod 7) with team i drawing a bye if

2i ≡ k (mod 7). The result is shown in the following table.

Team

Round 1 2 3 4 5 6 7

1 7 6 5 bye 3h 2h 1h

2 bye 7h 6h 5h 4 3 2

3 2h 1 7h 6h bye 4 3

4 3h bye 1 7 6 5h 4h

5 4 3 2h 1h 7h bye 5

6 5h 4h bye 2 1 7 6h

7 6 5 4 3h 2h 1h bye

b. Teams i and j are paired in round k if and only if i + j ≡ k (mod 7). Team i draws a Team 8 if 2i ≡
k (mod 7). The result is shown in the following table.

Team

Round 1 2 3 4 5 6 7 8

1 7 6 5 8 3 2 1 4

2 8 7 6 5 4 3 2 1

3 2 1 7 6 8 4 3 5

4 3 8 1 7 6 5 4 2

5 4 3 2 1 7 8 5 6

6 5 4 8 2 1 7 6 3

7 6 5 4 3 2 1 8 7

c. Teams i and j are paired in round k if and only if i + j ≡ k (mod 9). Team i draws a bye if 2i ≡ k
(mod 9). The result is shown in the following table.
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Team

Round 1 2 3 4 5 6 7 8 9

1 9h 8h 7h 6h bye 4 3 2 1

2 bye 9 8 7 6 5h 4h 3h 2h

3 2 1h 9h 8h 7h bye 5 4 3

4 3h bye 1 9 8 7 6h 5h 4h

5 4 3 2h 1h 9h 8h bye 6 5

6 5h 4h bye 2 1 9 8 7h 6h

7 6 5 4 3h 2h 1h 9 bye 7h

8 7h 6h 5h bye 3 2 1 9 8h

9 8 7 6 5 4h 3h 2h 1h bye

d. Teams i and j are paired in round k if and only if i + j ≡ k (mod 9). Team i draws Team 10 if 2i ≡
k (mod 9). The result is shown in the following table.

Team
Round 1 2 3 4 5 6 7 8 9 10

1 9 8 7 6 10 4 3 2 1 5
2 10 9 8 7 6 5 4 3 2 1
3 2 1 9 8 7 10 5 4 3 6
4 3 10 1 9 8 7 6 5 4 2
5 4 3 2 1 9 8 10 6 5 7
6 5 4 10 2 1 9 8 7 6 3
7 6 5 4 3 2 1 9 10 7 8
8 7 6 5 10 3 2 1 9 8 4
9 8 7 6 5 4 3 2 1 10 9

5.3.2. Let n be an odd positive integer. First suppose that i is odd. Then i+j is even for j = 1, 3, 5, . . . , i, . . . , n.
Team i is the home team in its game with team j where j is odd if and only if i > j, and this occurs (i−
1)/2 times. Furthermore, i+ j is odd for j = 2, 4, 6, . . . , n−1. Team i is the home team in its game with a
team j where j is even if and only if i < j, and this occurs [(n− 1)− (i− 1)]/2 = (n− i)/2 times. Hence
team i is the home team (i− 1)/2 + (n− 1)/2 = (n− 1)/2 times. Since this team plays n− 1 games, it is
the away team n− (n − 1)/2 = (n − 1)/2 times. Now suppose that i is even. Then i + j is even for j =
2, 4, 6, . . . , i, . . . , n − 1. Team i is the home team in its game with team j where j is even if and only if
i > j, and this occurs (i− 2)/2 times. Furthermore, i + j is odd for j = 1, 3, 5, . . . , n. Team i is the home
team in its game with a team j where j is odd if and only if i > j, and this occurs [n − 1(i − 1)]/2 =
(n − 1 + 1)/2 times. Hence team i is the home team (i − 2)/2 + (n − i + 1)/2 = (n − 1)/2 times. Since
this team plays n− 1 games, it is the away team n− (n− 1)/2 = (n− 1)/2 times. We conclude that each
team plays an equal number of home and away games.

5.3.3. a. For round 1, teams i and j are paired if i + j ≡ 1 (mod 5). Teams 1 and 5 are paired, and since
1 + 5 = 6 is even, team 5 is the home team. Teams 2 and 4 are paired, and since 2 + 4 = 6 is even,
team 4 is the home team. Finally, in round 1 team 3 draws a bye.

For round 2, teams i and j are paired if i + j = 2 (mod 5). Team 1 draws a bye. Teams 2 and 5
are paired, and since 2 + 5 = 7 is odd, team 2 is the home team. Teams 3 and 4 are paired, and since
3 + 4 = 7 is odd, team 3 is the home team.

For round 3, teams i and j are paired if i + j = 3 (mod 5). Teams 1 and 2 are paired, and since
1 + 2 = 3 is odd, team 1 is the home team. Teams 3 and 5 are paired, and since 3 + 5 = 8 is even,
team 5 is the home team. Team 4 draws a bye.
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For round 4, teams i and j are paired if i + j = 4 (mod 5). Teams 1 and 3 are paired, and since
1+3 = 4 is even, team 3 is the home team. Team 2 draws a bye. Teams 4 and 5 are paired, and since
4 + 5 = 9 is odd, team 4 is the home team.

For round 5, teams i and j are paired if i + j = 5 (mod 5). Teams 1 and 4 are paired, and since
1 + 4 = 5 is odd, team 1 is the home team. Teams 2 and 3 are paired, and since 2 + 3 = 5 is odd,
team 2 is the home team. Team 4 draws a bye.

We see that each team plays 2 home and 2 away games.

b. In the table in Exercise 1 part (a), the teams who play at home are marked with an “h.”

c. In the table in Exercise 1 part (c), the teams who play at home are marked with an “h.”

5.4. Hashing Functions
5.4.1. Let k be the six-digit number on the license plate of a car. We can assign this car the space numbered

h(k) ≡ k (mod 101) where the spaces are numbered 0, 1, 2, . . . , 100. When a car is assigned the same
space as another car we can assign it to the space h(k) + g(k) where g(k) ≡ k + 1 (mod 99) and 0 <
g(k) ≤ 98. When this space is occupied we next try h(k)+2g(k), then h(k)+3g(k), and so on. All spaces
are examined since (g(k), 101) = 1.

5.4.2. a. For example, suppose a student was born on the 23rd of the month. Then K = 23, and h(23) ≡
23 ≡ 4 (mod 19). so we would assign the 4th memory location to this student if it is free. If it’s not,
then we would try h1(23) ≡ 4 + 1 ≡ 5 (mod 19). If this one is not free, then we would try h2(23) ≡
4 + 2 ≡ 6 (mod 19), and so on until we found an empty location.

b. For example, suppose K = 23. As in part (a), h(23) ≡ 4 (mod 19). We compute g(23) ≡ 1 + 23 ≡
7 (mod 17). If there is a collision, we try h1(23) ≡ 4 + 1 · 7 ≡ 11 (mod 19) In case of a collision here,
we try h2(23) ≡ 4 + 2 · 7 ≡ 18 (mod 19), and so on.

5.4.3. a. It is clear that m memory locations will be probed as j = 0, 1, 2, . . . , m − 1. To see that they are all
distinct, and hence every memory location is probed, assume that hi(K) ≡ hj(K) (mod m). Then
h(K) + iq ≡ h(K) + jq (mod m). From this it follows that iq ≡ jq (mod m), and as (q, m) = 1, i ≡
j (mod m) by corollary 3.4.1. And so i = j since i and j are both less than m.

b. It is clear that m memory locations will be probed as j = 0, 1, 2, . . . , m − 1. To see that they are all
distinct, and hence every memory location is probed, assume that hi(K) ≡ hj(K) (mod m). Then
h(K) + iq ≡ h(K) + jq (mod m). From this it follows that iq ≡ jq (mod m), and as (q, m) = 1, i ≡
j (mod m) by corollary 3.4.1. And so i = j since i and j are both less than m.

5.4.4. a. Let l represent some memory location. Then we seek to solve l ≡ h(K) + j(2h(K) + 1) (mod m), or
l − h(K)− j ≡ 2h(K)j (mod m). Since m is prime, and 1 < 2, h(K) < m, then 2 and h(K) have in-
verses modulo m. Therefore, we can solve the congruence for j, and hence the location l is proved
at this value for j.

b. If we the definition into the congruence hj+r(K1) ≡ h− j + r(K2) (mod m), and rearrange, we get
h(K1)(1 + 2(j + r)) ≡ h(K2)(1 + (j + r)) (mod m). Since this must be true for all r, many of which
cause (1 + 2(j + r)) to be invertible, we must have h(K1) ≡ h(K2) (mod m).

5.4.5. We have k11 = 137612044 ≡ 558 (mod 4969) so that the files of the student with this social security
number are assigned to location h(k11) = 558. We find that k12 = 505576452 ≡ 578 (mod 4969), but
location h(k12) = 578 is taken, so we continue with the probing sequence h1(k12) = h(k12) + g(k12),
where g(k12) ≡ 505576452 + 1 ≡ 424 (mod 4967), so that g(k12) = 424. We have h1(k12) ≡ 578 + 424 =
1002 (mod 4969). Since location 1002 is not occupied, we assign the files of the student with this social
security number to location 1002. We find that k13 = 157170996 ≡ 1526 (mod 4969) but location 1526 is
taken. We find that g(k13) ≡ 157170996 + 1 ≡ 216. We probe locations h1(k13) = h(k13) + g(k13) = 1742
and h2(k13) = h(k13) + 2g(k13) = 1958, but they are taken. Finally, we probe once more and find that
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we can place the files of this student in location h3(k13) = h(k13) + 3g(k13) = 2174. Finally, we see that
k14 = 131220418 ≡ 4 (mod 4969) so that we can place the files of this last student in location 4 which is
not already taken.

5.5. Check Digits
5.5.1. a. Since 1 + 1 + 1 + 1 + 1 + 1 ≡ 0 (mod 2), the check bit is 0.

b. Since 0 + 0 + 0 + 0 + 0 + 0 ≡ 0 (mod 2), the check bit is 0.

c. Since 1 + 0 + 1 + 0 + 1 + 0 ≡ 1 (mod 2), the check bit is 1.

d. Since 1 + 0 + 0 + 0 + 0 + 0 ≡ 1 (mod 2), the check bit is 1.

e. Since 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ≡ 0 (mod 2), the check bit is 0.

f. Since 1 + 1 + 0 + 0 + 1 + 0 + 1 + 1 ≡ 1 (mod 2), the check bit is 1.

5.5.2. a. Since 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ≡ 1 (mod 2), we know there is an error.

b. Since 0+1+0+1+0+1+0+1+0+1+0+1 ≡ 0 (mod 2), we don’t know whether there is an error.

c. Since 1+1+1+1+0+1+0+1+0+1+0+1+0+1+0+1 ≡ 0 (mod 2), we don’t know whether
there is an error.

5.5.3. a. The sum of the known digits is even, so the keep the sum of all digits even, we must have ? = 0.

b. The sum of the known digits is odd, so ? = 1.

c. The sum of the known digits is even, so ? = 0.

5.5.4. An error changes a 0 into a 1 or a one into a 0, so one error must change the sum of the digits (includ-
ing the parity check bit) from even to odd. A second error will change the sum back to even, and so on.

5.5.5. a. We have 7 · 1 + 3 · 3 + 2 + 7 · 9 + 3 · 9 + 9 ≡ 7 (mod 10), so the check digit is 7.

b. We have 7 · 8 + 3 · 0 + 5 + 7 · 2 + 3 · 3 + 7 ≡ 1 (mod 10), so the check digit is 1.

c. We have 7 · 6 + 3 · 4 + 5 + 7 · 1 + 3 · 5 + 3 ≡ 4 (mod 10), so the check digit is 4.

5.5.6. a. We apply the congruence to the first 6 digits and get 7 ·3+3 ·3+0+7 ·0+3 ·0+0 ≡ 4 6≡ 8 (mod 10),
so the number is invalid.

b. We have 7 · 4 + 3 · 5 + 0 + 7 · 1 + 3 · 8 + 2 ≡ 6 6≡ 4 (mod 10), so the number is invalid.

c. We have 7 · 1 + 3 · 8 + 7 + 7 · 3 + 3 · 3 + 3 ≡ 1 6≡ 6 (mod 10), so the number is invalid.

5.5.7. Here, transposition means that adjacent digits are in the wrong order. Suppose, first, that the first two
digits, x1 and x2, or equivalently, the fourth and fifth digits are exchanged, and the error is not detected.
Then x7 ≡ 7x1 + 3x2 + x3 + 7x4 + 3x5 + x6 ≡ 7x2 + 3x1 + x3 + 7x4 + 3x5 + x6 (mod 10). It follows that
7x1 +3x2 ≡ 7x2 +3x1 (mod 10) or 4x1 ≡ 4x2 (mod 10). By Corollary 3.4.1, we see that x1 ≡ x2 (mod 5).
This is equivalent to | x1 − x2 |= 5, as x1 and x2 are single digits. Similarly, if the second and third (or
fifth and sixth) digits are transposed, we find that 2x2 ≡ 2x3 (mod 10), which again reduces to x2 ≡
x3 (mod 5) by Corollary 3.4.1. Also, if the third and fourth digits are transposed, we find that 6x3 ≡
6x4 (mod 10) and x3 ≡ x4 (mod 5), similarly as before. The reverse argument will complete the proof.
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5.5.8. a. We have 7 · 0 + 3 · 0 + 9 · 1 + 7 · 8 + 3 · 5 + 9 · 4 + 7 · 0 + 3 · 3 ≡ 5 (mod 10), so the check digit is 5.

b. Suppose xi is replaced by yi. Denote the check digit of this new number by y9. Then x9 − y9 ≡
axi − ayi (mod 10), where a is 7, 3 or 9. So if this replacement produces no change in the check
digit, we have a(xi − yi) ≡ 0 (mod 10), or xi ≡ yi (mod 10), since 7, 3, and 9 have inverses modulo
10. Therefore, all single errors are detected.

c. If two digits xi and xj are switched, the difference in the check digits will be aixi + ajxj − aixj −
ajxi ≡ (ai − aj)(xi − xj) (mod 10), where ai and aj are 3, 7, or 9. The transposition will go unde-
tected if and only if (ai − aj)(xi − xj) ≡ 0 (mod 10). Since ai − aj is even, if either xi ≡ xj (mod 5),
or ai = aj , then the transposition will go undetected.

5.5.9. a. We have x10 ≡ 2 · 1 + 1 · 2 + 1 · 3 + 3 · 4 + 5 · 5 + 4 · 6 + 0 · 7 + 0 · 8 + 1 · 9 ≡ 0 (mod 11).

b. We have x10 ≡ 0 · 1 + 1 · 2 + 9 · 3 + 0 · 4 + 8 · 5 + 1 · 6 + 0 · 7 + 8 · 8 + 2 · 9 ≡ 3 (mod 11).

c. We have x10 ≡ 1 · 1 + 2 · 2 + 1 · 3 + 2 · 4 + 3 · 5 + 9 · 6 + 9 · 7 + 4 · 8 + 0 · 9 ≡ 4 (mod 11).

d. We have x10 ≡ 0 · 1 + 0 · 2 + 7 · 3 + 0 · 4 + 3 · 5 + 8 · 6 + 1 · 7 + 3 · 8 + 3 · 9 ≡ 10(= X) (mod 11).

5.5.10. Since
10∑

i=1

ixi ≡ 0 (mod 11), we have
9∑

i=1

ixi ≡ −10x10 ≡ −(1)x10 ≡ x10 (mod 11), as desired.

5.5.11. a. We have x10 ≡ 0 · 1 + 3 · 2 + 9 · 3 + 4 · 4 + 3 · 5 + 8 · 6 + 0 · 7 + 4 · 8 + 9 · 9 ≡ 5 (mod 11), which matches
the check digit, so the ISBN is valid.

b. We have x10 ≡ 1·1+0·2+9·3+2·4+3·5+1·6+2·7+2·8+1·9 ≡ 8 (mod 11), so the ISBN is not valid.

c. We have x10 ≡ 0 ·1+8 ·2+2 ·3+1 ·4+8 ·5+0 ·6+1 ·7+2 ·8+3 ·9 ≡ 6 (mod 11), so the ISBN is valid.

d. We have x10 ≡ 0 ·1+4 ·2+0 ·3+4 ·4+5 ·5+0 ·6+8 ·7+7 ·8+6 ·9 ≡ 10 (mod 11), so the ISBN is valid.

e. We have x10 ≡ 9·1+0·2+6·3+1·4+9·5+1·6+7·7+0·8+5·9 ≡ 0 (mod 11), so the ISBN is not valid.

5.5.12. a. We have 1 · 0 + 2 · 1 + 3 · 9 + 4 · 8 + 5x + 6 · 3 + 7 · 8 + 8 · 0 + 9 · 4 ≡ 9 (mod 11), or 5x ≡ 2 (mod 11)
which has solution x ≡ 7 (mod 11). So the missing digit is 7.

b. We have 1 · 9 + 2 · 1 + 3 · 5 + 4 · 5 + 5 · 4 + 6 · 2 + 7 · 1 + 8 · 2 + 9x ≡ 6 (mod 11), or 9x ≡ 4 (mod 11)
which has solution x ≡ 9 (mod 11). So the missing digit is 9.

c. We have 1x + 2 · 2 + 3 · 6 + 4 · 1 + 5 · 0 + 6 · 5 + 7 · 0 + 8 · 7 + 9 · 3 ≡ 10 (mod 11), or x ≡ 3 (mod 11).
So the missing digit is 7.

5.5.13. Computing the check digit for the incorrect ISBN yields y10 ≡ 0 · 1 + 0 · 2 + 7 · 3 + 2 · 4 + 8 · 5 + 9 ·
6 + 0 · 7 + 9 · 8 + 5 · 9 ≡ 9 (mod 11). Then using the notation in the text, we have (j − k)(xk − xj) ≡
9 (mod 11). Without loss of generality, assume that j > k. There are a number of possibilities to check.
Let’s suppose first that j − k = 3 and xk − xj = 3. We search for two digits which are three places apart
and such that the second digit is 3 more than the first. Finding none, we suppose j−k = 1 and xk−xj =
9. We search for two consecutive digits such that the second is 9 more than the first. We find that the
7th and 8th digits satisfy these conditions and conclude that the correct ISBN is 0-07-289905-0. Had we
been unsuccessful, we might have tried j−k = 9 or we might have replaced 9 by−2 or 20 or some other
integer congruent to 9 modulo 11.

5.5.14. Let x1, x2, . . . , x11 be the first eleven digits of the UPC. Then x12 ≡ −3(x1 + x3 + x5 + x7 + x9 + x11)−
(x2 + x4 + x6 + x8 + x10) (mod 10), where x12 is taken to be the least non-negative residue.
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5.5.15. a. Using the congruence from Exercise 14, we compute x12 ≡ −3(0 + 7 + 0 + 0 + 1 + 3)− (4 + 0 + 0 +
0 + 8) ≡ 5 (mod 10). Since 5 is not the check digit for this UPC, the code is invalid.

b. Using the congruence from Exercise 14, we compute x12 ≡ −3(3 + 1 + 0 + 0 + 0 + 8)− (1 + 0 + 0 +
1 + 3) ≡ 9 (mod 10). Since 9 is the check digit for this UPC, the code is valid.

c. Using the congruence from Exercise 14, we compute x12 ≡ −3(0 + 8 + 0 + 0 + 1 + 7)− (5 + 0 + 0 +
0 + 2) ≡ 5 (mod 10). Since 5 is the check digit for this UPC, the code is valid.

d. Using the congruence from Exercise 14, we compute x12 ≡ −3(2 + 6 + 0 + 0 + 1 + 9)− (2 + 5 + 0 +
1 + 7) ≡ 1 (mod 10). Since 1 is not the check digit for this UPC, the code is invalid.

5.5.16. a. Using the congruence from Exercise 14, we compute x12 ≡ −3(3 + 1 + 7 + 0 + 9 + 8)− (8 + 3 + 0 +
2 + 1) ≡ 2 (mod 10). So 2 is the check digit for this UPC.

b. Using the congruence from Exercise 14, we compute x12 ≡ −3(5 + 1 + 7 + 0 + 5 + 7)− (0 + 1 + 5 +
0 + 5) ≡ 4 (mod 10). So 4 is the check digit for this UPC.

c. Using the congruence from Exercise 14, we compute x12 ≡ −3(0 + 3 + 0 + 3 + 4 + 9)− (3 + 0 + 3 +
1 + 3) ≡ 3 (mod 10). So 3 is the check digit for this UPC.

d. Using the congruence from Exercise 14, we compute x12 ≡ −3(4 + 1 + 0 + 0 + 0 + 8)− (1 + 0 + 0 +
1 + 2) ≡ 7 (mod 10). So 7 is the check digit for this UPC.

5.5.17. Let x1x2x3x4x5x6x7x8x9x10x11x12 be a correct UPC. Suppose that when the product is scanned, the
numbers are read as y1y2y3y4y5y6y7y8y9y10y11y12, where xi = yi if i 6= k, but xk 6= yk, for some k. Then,
from the congruence in Exercise 14, 0 ≡ x12 − y12 ≡ −3(x1 + x3 + x5 + x7 + x9 + x11)− (x2 + x4 + x6 +
x8 + x10) + 3(y1 + y3 + y5 + y7 + y9 + y11) + (y2 + y4 + y6 + y8 + y10) ≡ a · (yk − xk) (mod 10), where
a = 3 or 1 according as k is odd or even. In either case, (a, 10) = 1, so we can divide the congruence by
a to obtain (yk − xk) ≡ 0 (mod 10), which contradicts the assumption that xk 6= yk. We conclude that
this code will always detect a single error.

5.5.18. From the congruence in Exercise 14, we see that transposing any two digits in odd numbered places,
or any two digits in even numbered place leaves the check digit unchanged. Therefore, this code cannot
detect every transposition. However, if the transposition occurs between adjacent digits, then the check
digit is changed by 2|xj − xj+1| which will be detected if xj − xj+1 is not divisible by 5.

5.5.19. a. Yes. If xi is entered as yi, then for both codewords to be valid, xi ≡ yi (mod 11). As xi and yi are
single digits (less than 11), xi = yi.

b. No. We cannot detect any transpositions, as addition is commutative.

5.5.20. a. Solving the first congruence for x10 and substituting into the second gives
∑10

i=1 ixi ≡
∑9

i=1 ixi +

10
(∑9

i=1−xi

)
≡ ∑9

i=1 ixi+
(∑9

i=1 xi

)
≡ ∑9

i=1(i+1)xi ≡ 0 (mod 11). Solving this last congruence

for x9 gives
∑8

i=1(i+1)xi ≡ −(9+1)x9 ≡ x9 (mod 11), as desired. We also have x10 ≡ −∑9
i=1 xi ≡

−∑8
i=1 +x9 ≡ −∑8

i=1 xi −
∑8

i=1(i + 1)xi ≡ −∑8
i=1(i + 2)xi ≡ −∑8

i=1(9− i)xi, as desired.

b. By part (a), we can freely choose the digits x1 through x8, and these determine x9 and x10. Since
there are 10 choices for the first 8 digits, we have 108 valid codewords.

c. Suppose xk is changed to yk, and recompute the 9th and 10 digits using the formulae from part (a).
Call the new 9th and 10th digits y9 and y10. Then we have y9 ≡ x9 + (k + 1)(yk − xk) (mod 11) and
y10 ≡ x10 + (9− k)(yk − xk). We can solve this linear system for k and yk − xk and thereby correct
the error.
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d. Suppose xn and xn are transposed, but the error goes undetected. Then from the first congruence
in part (a), we have (m + 1)xm + (n + 1)xn ≡ (m + 1)xn + (n + 1)xm (mod 11). This reduces to
(xm − xn)(m− n) ≡ 0 (mod m), but since m,n, xm, and xn are all digits between 0 and 9, we must
have m = n or xm = xn.

5.5.21. a. x10 ≡ 8 · 1 + 4 · 1 + 5 · 0 + 10 · 4 + 3 · 9 + 2 · 1 + 7 · 2 + 6 · 3 + 9 · 8 ≡ 9 (mod 11). x11 ≡ 6 · 1 + 7 · 1 + 8 ·
0 + 9 · 4 + 4 · 9 + 5 · 1 + 6 · 2 + 7 · 3 + 8 · 8 + 9 · 9 ≡ 4 (mod 11).

b. If xi is misentered as yi, then if the congruence defining x10 holds, we see that axi ≡ ayi (mod 11)
by setting the two definitions of x10 congruent. From this, it follows by Corollary 3.4.1 that xi ≡
yi (mod 11) and so xi = yi. If the last digit, x11 is misentered as y11, then the congruence defining
x11 will hold if and only if x11 = y11.

c. Suppose that xi is misentered as yi and xj is misentered as yj , with i < j < 10. Suppose both of the
congruences defining x10 and x11 hold. Then by setting the two versions of each congruence con-
gruent to each other we obtain axi + bxj ≡ ayi + byj (mod 11) and cxi + dxj ≡ cyi + dyj (mod 11)
where a 6= b and c 6= d. If it is the case that ad − bc 6≡ 0 (mod 11), then the coefficient matrix is in-
vertible and we can multiply both sides of this system of congruences by the inverse to obtain xi =
yi and xj = yj . Indeed, after (tediously) checking each possible choice of a, b, c, and d, we find that
all the matrices are invertible modulo 11.

5.5.22. a. We have 4 linear congruences which may be solved for 4 of the variables, leaving 6 to be freely cho-
sen. Therefore, there are 106 valid codewords.

b. If xm and xn are changed to ym and yn, respectively, then we can solve the 4 congruences for
m,n, (ym − xm), and (yn − xn), as in Exercise 14. With this information, we can correct the errors.

c. If xm and xn are changed to ym and yn, let dm = (ym − xm) and dn = (yn − xn). The procedure
in part (b) gives the system dm + dn ≡ 7,mdm + ndn ≡ 7,m2dm + n2dn ≡ 9, and m3dm + n3dn ≡
2 (mod 11). Solving the first congruence for dm and substituting into the others gives us the system
7m−mdn + ndn ≡ 7, 7m2 −m2dn + n2dn ≡ 9, and 7m3 −m3dn + n3dn ≡ 2 (mod 11). Solving the
first of these, substituting into the others and simplifying gives us the system n + m−mn ≡ 6 and
n2 + nm + m2 −mn2 − nm2 ≡ 5 (mod 11). We rewrite this last one as n(n + m−mn) + m(n + m−
nm) −mn ≡ 5 (mod 11). Then using the first congruence we have 6n + 6m −mn ≡ 5 (mod 11).
We subtract the first congruence to get 5n + 5m ≡ 10 (mod 11) or n ≡ 2 −m (mod 11). Then we
may write 2−m + m−m(2−m) ≡ 6 (mod 11), or (m− 1)2 ≡ 5 (mod 11). Trial and error gives us
the solutions m ≡ 5 or 8 (mod 11), which gives n ≡ 8 or 5 (mod 11). The problem is symmetric in
m and n so we need only consider m ≡ 5, n ≡ 8 (mod 11). Then y8 − x8 ≡ d8 ≡ 9 (mod 11), and
hence x8 = 9 instead of 7. Also, y5 − x5 ≡ d5 ≡ 7 − d8 ≡ 9 (mod 11), so x5 = 0 instead of 9. The
correct codeword is 0204006910.

5.5.23. a. When we divide 00032781811224 by 7 we get a remainder of 1, so the check digit is a15 = 1.

b. When we divide 10238544122339 by 7 we get a remainder of 1, so the check digit is a15 = 1.

c. When we divide 00611133123278 by 7 we get a remainder of 6, so the check digit is a15 = 6.

5.5.24. a. When we take the first 14 digits 10228471103312 and divide by 7 we get a remainder of 0, so the
check digit should be 0 and not 2 as printed. This is not a valid ticket number.

b. When we take the first 14 digits 00411371131124 and divide by 7 we get a remainder of 2, so the
check digit should be 2 and not 0 as printed. This is not a valid ticket number.

c. When we take the first 14 digits 10026141300153 and divide by 7 we get a remainder of 6, so the
check digit should be 6 and not 3 as printed. This is not a valid ticket number.
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5.5.25. Suppose an undetectable error is made in the ith digit, so that the incorrect digit b is written in place of
the correct digit ai. Then we must have a1a2 · · · a14 ≡ a1a2 · · · b · · · a14 (mod 7) which reduces to ai10i ≡
b10i (mod 7). Since (7, 10) = 1, we can divide out the power of 10 and we have ai ≡ b (mod 7). Since
0 ≤ b ≤ 9, the only undetectable errors are when we have one of the following substitutions: 0 for 7, 1
for 8, 2 for 9 or vice versa.

5.5.26. Suppose the digits ai and ai+1 are transposed and the error is undetected. Then a1a2 · · · a14 ≡
a1a2 · · · ai+1ai · · · a14 (mod 14), which reduces to ai10i + ai+110i+1 ≡ ai+110i + ai10i+1 (mod 7). Since
(7, 10) = 1, we can divide both sides by 10i to get ai + 10ai+1 ≡ ai+1 + 10ai (mod 7), which reduces to
2ai+1 ≡ 2ai (mod 7). Since (2, 7) = 1, we can divide by 2 and get ai ≡ ai+1 (mod 7). So the only unde-
tectable transpositions of adjacent digits are when we have one of the following substitutions: 0 for 7, 1
for 8, 2 for 9 or vice versa.

5.5.27. a. Since 3 · 0 + 4 · 3 + 5 · 1 + 6 · 7 + 7 · 8 + 8 · 4 + 9 · 7 = 210 ≡ 1 (mod 11), the check digit is 1.

b. Since 3 · 0 + 4 · 4 + 5 · 2 + 6 · 3 + 7 · 5 + 8 · 5 + 9 · 5 = 164 ≡ 10 (mod 11), the check digit is X .

c. Since 3 · 1 + 4 · 0 + 5 · 6 + 6 · 3 + 7 · 6 + 8 · 6 + 9 · 9 = 222 ≡ 2 (mod 11), the check digit is 2.

d. Since 3 · 1 + 4 · 3 + 5 · 6 + 6 · 3 + 7 · 8 + 8 · 3 + 9 · 7 = 206 ≡ 8 (mod 11), the check digit is 8.

5.5.28. Suppose one digit di is replaced by the digit b, and that this error is undetected. Then 3d1 +4d2 + · · ·+
9d7 ≡ 3d1 + · · ·+(i+2)b+ · · ·+9d7 (mod 11), which reduces to (i+2)di ≡ (i+2)b (mod 11). Since 3 ≤
i + 2 ≤ 9, we have (i + 2, 11) = 1 and so we can divide through by i + 2 and get di ≡ b (mod 11), but
since both di and b are digits from 0 to 9, they must be the same, so there must not have been an error.
We conclude that all single-digit errors will be detected.

5.5.29. Suppose two consecutive digits are transposed and the error is undetected. Then 3d1 + 4d2 + · · · +
9d7 ≡ 3d1 + · · ·+ (i + 2)di+1 + (i + 3)di + · · ·+ 9d7 (mod 11), which reduces to (i + 2)di + (i + 3)di+1 ≡
(i + 2)di+1 + (i + 3)di (mod 11), which in turn simplifies to di+1 ≡ di (mod 11). So no error in fact ex-
isted. We conclude that all single transpositions of consecutive digits are detectable. (In fact all single
transpositions are detectable.)



CHAPTER 6

Some Special Congruences

6.1. Wilson’s Theorem and Fermat’s Little Theorem
6.1.1. Note that 10! + 1 = 1(2 · 6)(3 · 4)(5 · 9)(7 · 8)10 + 1 = 1 · 12 · 12 · 45 · 56 · 10 + 1 ≡ 1 · 1 · 1 · 1 · 1 · (−1) + 1 ≡

0 (mod 11). Therefore 11 divides 10! + 1.

6.1.2. Note that 12!+1 = (1)(2 ·7)(3 ·9)(4 ·10)(5 ·8)(6 ·11)(12)+1 ≡ (1)(1)(1)(1)(1)(1)(−1)+1 ≡ 0 (mod 13).
Therefore 13 divides 12! + 1.

6.1.3. By Wilson’s theorem, we have 18 ≡ 18! ≡ 16!(17)(18) ≡ 16!(−2)(−1) ≡ 16!2 (mod 19). Since (2, 19) =
1, we can divide both sides by 2 and get 9 ≡ 16! (mod 19).

6.1.4. We compute 5!25! = 1 · 2 · 3 · 4 · 5 · 25! ≡ (−30)(−29)(−28)(−27)(−26)25! ≡ (−1)530! ≡ (−1)5(−1) ≡ 1
(mod 31), by Wilson’s theorem. So the remainder is 1.

6.1.5. We see that 8 · 9 · 10 · 11 · 12 · 13 ≡ 1 · 2 · 3 · 4 · 5 · 6 = 6! ≡ −1 (mod 7), using Wilson’s theorem for the
last congruence.

6.1.6. We compute 7 · 8 · 9 · 15 · 16 · 17 · 23 · 24 · 25 · 43 ≡ 7 · 8 · 9 · 4 · 5 · 6 · 1 · 2 · 3 · 10 ≡ 10! ≡ −1 (mod 11). So
the remainder is 10.

6.1.7. Note that 437 = 19 · 23. From Wilson’s theorem we have 18! ≡ −1 (mod 19) and 22 ≡ 22! (mod 23).
Then 22 ≡ 22! ≡ 18!(−4)(−3)(−2)(−1) ≡ 18!(1) (mod 23) Hence, 18! ≡ 22 (mod 23). Now applying
the Chinese remainder theorem to the system x ≡ −1 (mod 19), x ≡ 22 (mod 23) yields x ≡ 436 ≡ −1
(mod 437).

6.1.8. Note that 1763 = 41 ·43. By Wilson’s theorem, 40! ≡ −1 (mod 41). Further−1 ≡ 42! ≡ 40!(−2)(−1) ≡
40!2 (mod 43). We multiply both sides by 22, which is an inverse for 2 modulo 43. This yields 40! ≡
−22 ≡ 21 (mod 43). Applying the Chinese remainder theorem to the system x ≡ 40! ≡ −1 (mod 41)
and x ≡ 40! ≡ 21 (mod 43) gives us x ≡ 40! ≡ 1311 (mod 1763).

6.1.9. By the Division algorithm, we have 100 = 6 · 16 + 4. Then by Fermat’s little theorem, 5100 ≡ 56·16+4 ≡
(56)16 · 54 ≡ 116 · 54 ≡ 252 ≡ 42 ≡ 16 ≡ 2 (mod 7).

6.1.10. From Fermat’s little theorem, we know that 610 ≡ 1 (mod 11). Then 62000 ≡ (610)200 ≡ 1200 ≡ 1
(mod 11). Therefore the remainder is 1.

6.1.11. Since 999999999 is an odd multiple of 3, we know it is congruent to 3 modulo 6. So by Fermat’s Little
Theorem, we have 3999999999 ≡ 33 ≡ 27 ≡ −1 (mod 7).

6.1.12. We have 21000000 ≡ (216)62500 ≡ 162500 ≡ 1 (mod 17).

6.1.13. We have (35)2 ≡ 2432 ≡ 12 ≡ 1 (mod 112).

6.1.14. We have 3100 ≡ (36)1634 ≡ 116 · 9 · 9 ≡ 2 · 2 ≡ 4 (mod 7).

105
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6.1.15. a. Multiply both sides of 7x ≡ 12 (mod 17) by 715 to obtain 716x ≡ 715 · 12 (mod 17). Since 716 ≡ 1
(mod 17) this gives x ≡ 715 ·12 ≡ (73)5 ·12 ≡ 3435 ·12 ≡ 35 ·12 ≡ 243 ·12 ≡ 5 ·12 ≡ 60 ≡ 9 (mod 17).

b. Multiply both sides of 4x ≡ 11 (mod 19) by 417 to obtain 418x ≡ 417 · 11 (mod 19). Since 418 ≡ 1
(mod 19), this gives x ≡ 417 · 11 ≡ (42)8 · 4 · 11 ≡ (−3)8 · 4 · 11 ≡ ((−3)4)2 · 4 · 11 ≡ 812 · 44 ≡ 52 · 44 ≡
6 · 6 ≡ 17 (mod 19).

6.1.16. If n is composite, then n has a divisor d less than or equal to
√

n. Then 1 < n/d < n and the factors d
and n/d both appear among the factors of (n− 1)! = 1 · 2 · · · (n− 1), and so if d 6= n/d, then n | (n− 1)!
If d = n/d, then 2d < n, so 2d2 | (n− 1)!. In either case (n− 1)! ≡ 0 (mod n).

6.1.17. Suppose that p is an odd prime. Then Wilson’s theorem tells us that (p − 1)! ≡ −1 (mod p). Since
(p− 1)! = (p− 3)!(p− 1)(p− 2) ≡ (p− 3)!(−1)(−2) ≡ 2 · (p− 3)! (mod p) this implies that 2 · (p− 3)! ≡
−1 (mod p).

6.1.18. Since (3, n) = 1, we have n2 ≡ 1 (mod 3) by Fermat’s Little Theorem, so 3 | (n2 − 1). Since n is odd,
n = 2k + 1 for some integer k. then n2 − 1 = 4(k2 + k) = 8l, since kk and k have the same parity. There-
fore 8 | n2 − 1. Since (3, 8) = 1, 3 · 8 = 24 | (n2 − 1), so n2 ≡ 1 (mod 24).

6.1.19. Since (a, 35) = 1, we have (a, 7) = (a, 5) = 1, so we may apply Fermat’s little theorem to get a12 − 1 ≡
(a6)2− 1 ≡ 12− 1 ≡ 0 (mod 7), and a12− 1 ≡ (a4)3− 1 ≡ 13− 1 ≡ 0 (mod 5). Since both 5 and 7 divide
a12 − 1, then 35 must also divide it.

6.1.20. Note that 168 = 8 · 3 · 7. Since (a, 42) = 1, a must be odd, so a6 ≡ 1 (mod 8). By Fermat’s Little The-
orem, a6 ≡ (a2)3 ≡ 1 (mod 3) and a6 ≡ 1 (mod 7). Therefore a6 and 1 are solutions to the system of
congruences x ≡ 1 (mod 8), x ≡ 1 (mod 3), and x ≡ 1 (mod 7). Therefore a6 ≡ 1 (mod 168). Hence
168 divides a6 − 1.

6.1.21. When n is even, so is n7, and when n is odd, so is n7. It follows that n7 ≡ n (mod 2). Furthermore,
since n3 ≡ n (mod 3), it follows that n7 = (n3)2 · n ≡ n2 · n ≡ n3 ≡ n (mod 3). We also know by Fer-
mat’s little theorem that n7 ≡ n (mod 7). since 42 = 2 · 3 · 7, it follows that n7 ≡ n (mod 42).

6.1.22. By Theorem 6.4 , we have n9−n ≡ (n3)3−n ≡ n3−n ≡ 0 (mod 3), and n9−n ≡ n5n4−n ≡ n5−n ≡
0 (mod 5). Since n9 and n have the same parity, n9−n ≡ 0 (mod 2). By the Chinese remainder theorem,
since both n9 − n and 0 are solutions to the system x ≡ 0 (mod 2), x ≡ 0 (mod 3), and x ≡ 0 (mod 5),
we have 0 ≡ n9 − n (mod 2 · 3 · 5). Therefore 30 divides n9 − n.

6.1.23. By Fermat’s little theorem,
∑p−1

k=1 kp−1 ≡ ∑p−1
k=1 1 ≡ p− 1 (mod p).

6.1.24. For k = 1, 2, . . . , p − 1, we have, by Fermat’s little theorem, that kp ≡ k (mod p). Then we have 1p +
2p + · · ·+ (p− 1)p ≡ 1 + 2 + · · ·+ (p− 1) ≡ p(p− 1)/2 ≡ 0 (mod p) since p− 1 is even.

6.1.25. By Fermat’s little theorem we have a ≡ ap ≡ bp ≡ b (mod p), hence b = a + kp for some integer k.
Then by the binomial theorem, bp = (a + kp)p = ap +

(
p
1

)
ap−1kp + p2N where N is some integer. Then

bp ≡ ap + p2ak + p2N ≡ a2 (mod p2), as desired.

6.1.26. We find r2 = 4, r3 = 64, r4 ≡ 66 (mod 689). Then (3, 689) = 1, (63, 689) = 1, but (65, 689) = 13 which
is a factor of 689.

6.1.27. Using computational software, we find r2 = 4, r3 = 64, r4 ≡ 2114982 (mod 7331117), r5 = 2937380
(mod 7331117), r6 = 6924877 (mod 7331117), r7 = 3828539 (mod 7331117), and r8 = 4446618 (mod 7331117).
We have (ri−1, 7331117) = 1, for i = 1, 2, . . . , 7, but (r8−1, 7331117) = 641, so this is a factor of 7331117.

6.1.28. By Fermat’s little theorem since (p, q) = 1 we know that pq−1 ≡ (mod q). Hence pq−1 + qp−1 ≡ 1
(mod q). similarly, by Fermat’s little theorem since (q, p) = 1 we know that qp−1 ≡ (mod p). Hence
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pq−1 + qp−1 ≡ 1 (mod p). It follows that pq−1 + qp−1 ≡ 1 (mod pq).

6.1.29. Suppose that p is prime. Then by Fermat’s little theorem for every integer a, ap ≡ a (mod p) and by
Wilson’s theorem (p− 1)! ≡ −1 (mod p) so that a(p− 1)! ≡ −a (mod p). It follows that ap + (p− 1)!a ≡
a + (−a) ≡ 0 (mod p). Consequently p | [ap + (p− 1)!a].

6.1.30. Note that 1232 · · · (p− 4)2(p− 2)2 ≡ (−1)(p−1)/2 · 1 · (−1) · 2 · (−2) · · · (p− 4) · (4− p) · (p− 2) · (2− p) ≡
(−1)(p−1)/2 · 1 · (p− 1) · 2 · (p− 2) · · · (p− 4) · 4 · 2 ≡ (−1)(p−1)/2 · (p− 1)! ≡ (−1)(p−1)/2(−1) ≡ (−1)(p−1)/2

(mod p), where we have used Wilson’s theorem to replace (p− 1)! by -1 in the congruence.

6.1.31. Since p− 1 ≡ −1, p− 2 ≡ −2, . . . , (p− 1)/2 ≡ (p− 1)/2 (mod p), we have ((p− 1)/2)!2 ≡ −(p− 1)! ≡
1 (mod p), (since p ≡ 3 (mod 4) the minus signs work out.) If x2 ≡ 1 (mod p), then p | x2 − 1 = (x −
1)(x + 1), so x ≡ ±1 (mod p).

6.1.32. a. We use (−1)rr! ≡ (−1) to show that (p−r−1)! ≡ −1. Then by Wilson’s theorem, we have−1 ≡ (p−
1)! ≡ 1 ·2 · · · (p−(r−1))(p−r)(p−(r−1) · · · (p−2)(p−1) ≡ (p−r−1)!(−r)(−(r−1)) · · · (−2)(−1) ≡
(p− r − 1)!(−1)rr! ≡ (p− r − 1)! (mod p).

b. Note that (−1)77! ≡ (−1)99! ≡ 1 (mod 71). Then by part (a) we have (71 − 7 − 1)! ≡ 63! ≡ −1
(mod 71), and (71− 9− 1)! ≡ 61! ≡ −1 (mod 71).

6.1.33. Suppose that p ≡ 1 (mod 4). Let y = ±[(p−1)/2]!. Then y2 ≡ [(p−1)/2]!2 ≡ [(p−1)/2]!2(−1)(p−1)/2 ≡
(1·2·3 · · · (p−1)/2)(−1·(−2)·(−3) · · · (−(p−1)/2)) ≡ 1·2·3 · · · (p−1)/2·(p+1)/2 · · · (p−3)(p−2)(p−1) =
p! ≡ −1 (mod p), where we have used Wilson’s theorem. Now suppose that x2 ≡ −1 (mod p). Then
x2 ≡ y2 (mod p) where y = [(p − 1)/2]!. Hence (x2 − y2) = (x − y)(x + y) (mod p). It follows that p |
(x− y) or p | (x + y) so that x ≡ ± (mod p).

6.1.34. We have (p − k)!(k − 1)! ≡ (−k)(−(k + 1)) · · · (−(p − 1))(k − 1)! ≡ (−1)p−k(p − 1)! ≡ (−1)p+1−k ≡
(−1)k (mod p), by Wilson’s theorem, and where we have used the fact that p + 1 is even.

6.1.35. If n is composite and n 6= 4, then Exercise 16 shows that (n− 1)!/n is an integer, so [((n− 1)! + 1)/n−
[(n − 1)!/n]] = [(n − 1)!/n + 1/n − (n − 1)!/n] = [1/n] = 0 and if n = 4, then the same expression is
also equal to 0. But if n is prime, then by Wilson’s Theorem (n − 1)! = Kn − 1 for some integer K. So
[((n− 1)! + 1)/n− [(n− 1)!/n]] = [(Kn− 1 + 1)/n− [(Kn− 1)/n]] = [K − (K − 1)] = 1. Therefore, the
sum increases by 1 exactly when n is prime, so it must be equivalent to π(x).

6.1.36. If n is even, n4 + 4n is even and greater than two so it is not prime. If n is odd, note that n4 + 4n =
n4 + 2n22n + 22n − 2n22n = (n2 + 2n)2 − (n · 2(n+1)/2)2=(n2+2n+n·2(n+1)/2

)(n2 + 2n − n · 2(n+1)/2). It is
easy to see that both of these factors are greater than one if n > 1. Hence n4 + 4n is prime if and only if
n = 1, so that n = 14 + 41 = 5.

6.1.37. Suppose that n and n + 2 are twin primes. Then since n is prime by Wilson’s theorem we know that
(n− 1)! = −1 (mod n). Hence 4[(n− 1)! + 1] + n ≡ 4 · 0 + n ≡ 0 (mod n). Also, since n + 2 is prime by
Wilson’s theorem it follows that (n+1)! ≡ −1 (mod n+2), so that (n+1)n ·(n−1)! ≡ (−1)(−2)(n−1)! ≡
2(n − 1)! ≡ −1 (mod n + 2). Hence 4[(n − 1)! + 1] + n ≡ 2(2 · (n − 1)!) + 4 + n ≡ 2 · (−1) + 4 + n =
n + 2 ≡ 0 (mod n + 2). Since (n, n + 2) = 1 it follows that 4[(n− 1)! + 1] + n ≡ 0 (mod n(n + 2)).

6.1.38. Suppose n and n + k are prime. Then, by Wilson’s theorem (n− 1)! + 1 ≡ 0 (mod n) and by Exercise
34, (n−1)!k! ≡ (−1)k+1 (mod n+k). Then (k!)2((n−1)!+1)+n(k!−1)(k−1)! ≡ (k!)2 ·0+0 · (k!−1) ≡
0 (mod n), and (k!)2((n − 1)! + 1) + n(k! − 1)(k − 1)! ≡ (−1)k+1(k!) + (k!)2 + (−k)(k! − 1)(k − 1)! ≡
(−1)k+1(k!)+(k!)2−k!(k!)+k! ≡ −k!+k! ≡ 0 (mod n+k), where we have used the fact that k+1 must
be odd. By the Chinese Remainder Theorem, there is a unique solution to this system modulo n(n + k),
therefore, (k!)2((n− 1)! + 1) + n(k!− 1)(k − 1)! ≡ 0 (mod n(n + k)). The converse is false. n = 9, k = 8
provides a counterexample.
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6.1.39. We have 1 · 2 · · · (p − 1) ≡ (p + 1)(p + 2) · · · (2p − 1) (mod p). Each factor is prime to p, so 1 ≡ ((p +
1)(p+2) · · · (2p−1))/(1 ·2 · · · (p−1)) (mod p). Thus 2 ≡ ((p+1)(p+2) · · · (2p−1)2p)/(1 ·2 · · · (p−1)p) ≡(
2p
p

)
(mod p).

6.1.40. We have (a + b)p =
∑p

k=0

(
p
k

)
akbp−k ≡ a0bp + 0 + 0 + · · ·+ apb0 = bp + ap since

(
p
k

) ≡ 0 (mod p) when
1 ≤ k ≤ p− 1.

6.1.41. We first note that 1p ≡ 1 (mod p). Now suppose that ap ≡ a (mod p). then by Exercise 40 we see that
(a + 1)p ≡ ap + 1 (mod p). But by the inductive hypothesis ap ≡ a (mod p) we see that ap + 1 ≡ a + 1
(mod p). Hence (a + 1)p ≡ a + 1 (mod p). This completes the inductive step of the proof.

6.1.42. Let x be an integer less than and relatively prime to m. Then x has an inverse x, which is also rela-
tively prime to m. If x 6= x, then both appear in the product, so we group them together and have xx ≡
1 (mod m), and they contribute nothing to the product. If x = x, then we have x2 ≡ 1 (mod m) and
(−x)2 ≡ 1 (mod m). Then x and −x appear in the product, so we group them together and get a fac-
tor of −1 in the product for every two solutions to x2 ≡ 1 (mod m). The numbers of such solutions are
given by Exercise 32 of Section 4.3.

6.1.43. a. If c < 26 then c cards are put into the deck above the card, so it ends up in the 2cth position and
2c < 52, so b = 2c. If c ≥ 26 then c − 1 cards are put into the deck above the card, but 26 cards are
taken away above it, so it ends up in the b = (c−26+c−1)th place. Then b = 2c−25 ≡ 2c (mod 53).

b. 52.

6.1.44. We compute qp(ab)− qp(a)− qp(b) = ((ab)p−1− 1)/p− (ap−1− 1)/p− (bp−1− 1)/p = (ap−1− 1)(bp−1−
1)/p ≡ ap−1 − 1) · 0 ≡ 0 (mod p), as desired.

6.1.45. Assume without loss of generality that ap ≡ bp ≡ 0 (mod p). Then, by Wilson’s theorem, a1a2 · · · ap−1 ≡
b1b2 · · · bp−1 ≡ −1 (mod p). Then a1b1 · · · ap−1bp−1 ≡ (−1)2 ≡ 1 (mod p). If the set were a complete sys-
tem, the last product would be ≡ −1 (mod p).

6.1.46. If n is even, the proposition is clear. If n is odd and n | 2n−1, then let p be the smallest prime dividing
n. Then (n, p− 1) = 1 and there exist integers a and b such that an + b(p− 1) = 1. Since 2n ≡ 1 (mod n),
we have 2n ≡ 1 (mod p). Then 2an ≡ 1 (mod p). By Fermat’s little theorem, 2b(p−1) ≡ 1b ≡ 1 (mod p).
Multiplying these last two congruences gives us 2 ≡ 2an+b(p−1) ≡ 1 · 1 (mod p), a contradiction.

6.1.47. The basis step is omitted. Assume (p − 1)pk−1 ≡ −1 (mod pk). Then, (p − 1)pk ≡ ((p − 1)pk−1
)p ≡

(−1 + mpk)p ≡ −1 +
(
p
1

)
mpk + · · ·+ (mpk)p ≡ −1 (mod pk+1), where we have used the fact that p | (p

j

)
for j 6= 0 or p.

6.1.48. We need to show that for p > 5, (p − 1)! + 1 is not a power of a prime. Suppose (p − 1)! + 1 = qk for
some prime q and positive integer k. By Wilson’s theorem, p | (p− 1)! + 1 = qk, so we must have q = p,
that is, (p − 1)! + 1 = pk. From this we have pk = (p − 1)! + 1 < (p − 1)p−1 < pp−1, so k < p − 1. Now
since p is a prime greater than 5, p− 1 is a composite number greater than 4, so by Exercise 16, we have
0 ≡ (p − 2)! (mod p − 1). Also, we have (p − 1)! = pk − 1 = (p − 1)(pk−1 + pk−2 + · · · + p + 1), so 0 ≡
(p− 2)! = pk−1 + pk−2 + · · ·+ p + 1 ≡ 1 + 1 + · · ·+ 1 ≡ k (mod p− 1). So we have k < p− 1 and p− 1 |
k, so k = 0, which is impossible. Therefore (p− 1)! + 1 has at least two distinct prime divisors.

6.2. Pseudoprimes
6.2.1. We find that 390 = (34)22 · 32 = 814 · 9 ≡ (−10) · 9 = −90 ≡ 1 (mod 91). Hence 91 is a pseudoprime

modulo 3.
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6.2.2. Note that 174 ≡ 192 ≡ 1 (mod 45). Then, 1745 ≡ 174·1117 ≡ 11117 ≡ 17 (mod 45), and 1945 ≡
192·2219 ≡ 12219 ≡ 19 (mod 45). So 45 is a pseudoprime to the bases 17 and 19.

6.2.3. Note that 2262 ≡ 2 (mod 161038). Then 2161038 ≡ 2262·614+170 ≡ 2614+170 ≡ 2 (mod 161038).

6.2.4. Suppose that n is an odd composite integer. Then 1n ≡ 1 (mod n) and (−1)n = −1 (mod n). Hence
n is a pseudoprime to the bases 1 and −1.

6.2.5. From the Binomial Theorem, (n − a)n ≡ (−a)n ≡ −(an) ≡ −a ≡ (n − a) (mod n), where we used
an ≡ a (mod n).

6.2.6. Since n − 1 = a2(a2p−2 − 1)/(a2 − 1) and (a2)p−1 ≡ 1 (mod p), we get n − 1 ≡ 0 (mod n), since p -
(a2 − 1). Writing n− 1 = a2(1 + a2 + · · ·+ (a2)p−2), we get n− 1 ≡ 0 (mod 2) since if a is odd, the sum
has an even number of odd terms. So 2p | (n − 1). Now a2p − 1 = n(a2 − 1) ≡ 0 (mod n), so an−1 ≡
a2pk ≡ 1k ≡ 1 (mod n), where k is an integer.

6.2.7. Raise the congruence 22n ≡ −1 (mod Fn) to the 22n−nth power.

6.2.8. Note that p | 2p−1− 1 by Fermat’s Theorem. Let k = (2p−1− 1)/p. Then we have 2p ≡ 1 (mod 2p− 1).
We raise both sides to the k power to get 22p−1−1 ≡ 1k ≡ 1 (mod 2p − 1). Squaring both sides gives us
22p−2 ≡ 1k ≡ 1 (mod 2p − 1), and multiplying both sides by 2 gives the result.

6.2.9. Suppose that n is a pseudoprime to the bases a and b. Then bn ≡ b (mod n) and an ≡ a (mod n). It
follows that (ab)n ≡ anbn ≡ ab (mod n). Hence n is a pseudoprime to the base ab.

6.2.10. We have 1 ≡ anan ≡ anan ≡ ana (mod n), since n is a pseudoprime to the base a. But then a ≡ an

(mod n), so n is also a pseudoprime to the base a.

6.2.11. a. If (ab)n−1 ≡ 1 (mod n), then, 1 ≡ an−1bn−1 ≡ 1 · bn (mod n) which implies that n is a pseudoprime
to the base b.

b. Let a1, a2, . . . , ar be the bases to which n is a pseudoprime and for which (ai, n) = 1 for each i.
Then, by part (a), we know that, for each i, n is not a pseudoprime to the base bai. Thus, we have
2r different elements relatively prime to n. Then by the definition of φ(n), we have r ≤ φ(n)/2.

6.2.12. We have 25 − 1 = 23 · 3. First note that 722·3 = 712 = (72)6 ≡ (−1)6 = 1 (mod 25). Next note that
72·3 = 76 = (72)3 ≡ (−1)3 = −1 (mod 25). Hence 25 is a strong pseudoprime to the base 7.

6.2.13. From 218 ≡ 1 (mod 1387) we get 21387 ≡ 2 (mod 1387) so 1387 is a pseudoprime. But 1387−1 = 2·693
and 2693 ≡ 512 (mod 1387), which is all that must be checked, since s = 1. Thus 1387 fails Miller’s test
and hence is not a strong pseudoprime.

6.2.14. For n = 1373653, we have n − 1 = 22343413, and we have 2343413 ≡ 890592 (mod 1373653) but
22·343413 ≡ 1 (mod 1373653). So n passes Miller’s test to the base 2, and so n is a strong pseudoprime to
the base 2. Further we have 3343413 ≡ −1 (mod 1373653), so n passes Miller’s test to the base 3, and so
n is a strong pseudoprime to the base 3.

6.2.15. 25326001 = 241582875 = 2st and with this value of t, 2t ≡ −1 (mod 25326001), 3t ≡ −1 (mod 25326001),
and 5t ≡ 1 (mod 25326001).

6.2.16. a. Since (7− 1) = 6 | (2821− 1) = 2820, (13− 1) = 12 | (2821− 1) = 2820, (31− 1) = 30 | (2821− 1) =
2820. Theorem 6.7 shows that 2821 is a Carmichael number.

b. Since (5 − 1) = 4 | (10585 − 1) = 10584, (29 − 1) = 28 | (10585 − 1) = 10584, and (73 − 1) = 72 |
(10585− 1) = 10584. Theorem 6.7 shows that 10585 is a Carmichael number.
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c. Since (13 − 1) = 12 | (29341 − 1) = 29340, (37 − 1) = 36 | (29341 − 1) = 29340, and (61 − 1) = 60 |
(29341− 1) = 29340. Theorem 6.7 shows that 29341 is a Carmichael number.

d. Since (13− 1) = 12 | (314821− 1) = 314820, (61− 1) = 60 | (314821− 1) = 314820, and (397− 1) =
396 | (314821− 1) = 314820. Theorem 6.7 shows that 314820 is a Carmichael number.

e. Since (5 − 1) = 4 | (278545 − 1) = 278544, (17 − 1) = 16 | (278545 − 1) = 278544, (29 − 1) = 28 |
(278545− 1) = 278544, and (113− 1) = 112 | (278545− 1) = 278544 Theorem 6.7 shows that 278544
is a Carmichael number.

f. Since (7 − 1) = 6 | (172081 − 1) = 172080, (13 − 1) = 12 | (172081 − 1) = 172080, (31 − 1) = 30 |
(172081 − 1) = 172080, and (61 − 1) = 60 | (172081 − 1) = 172080, Theorem 6.7 shows that 172081
is a Carmichael number.

g. Since (43−1) = 42 | (564651361−1) = 564651360, (3361−1) = 3360 | (564651361−1) = 564651360,
and (3907−1) = 3096 | (564651361−1) = 564651360, we see that 564651361 is a Carmichael number.

6.2.17. Suppose c = 7 · 23 · q, with q and odd prime, is a Carmichael number. Then by Theorem 6.7 we must
have (7 − 1)|(c − 1), so c =≡ 7 · 23 · q ≡ 1 (mod 6). Solving this yields q ≡ 5 (mod 6). Also, we must
have (23− 1)|(c− 1), so c =≡ 7 · 23 · q ≡ 1 (mod 22). Solving this yields q ≡ 19 (mod 22) If we apply the
Chinese remainder theorem to these two congruences we obtain q ≡ 41 (mod 66), that is q = 41 + 66k.
Then we must have (q − 1)|(c − 1), which is (40 + 66k)|(7 · 23 · (41 + 66k) − 1. So there is an integer m
such that m(40 + 66k) = 6600 + 10626k = 160 + 6440 + 10626k = 160 + 161(40 + 66k). Therefore 160
must be a multiple of 40 + 66k, which happens only when k =. Therefore q = 41 is the only such prime.

6.2.18. a. Suppose that 6m + 1, 12m + 1, and 18m + 1 are primes. Let N = (6m + 1)(12m + 1)(18m + 1).
It follows that N − 1 = 6 · 12 · 18m3 + (6 · 12 + 6 · 18 + 12 · 18)m2 + (6 + 12 + 18)m + 1 =
1296m3 + 396m2 + 36m. We see that [(6m + 1) − 1] = 6m | (N − 1) = 6m(216m2 + 66m + 6),
[(12m + 1)− 1] = 12m | (N − 1) = 12m(108m2 + 33m + 3), and [(18m + 1)− 1] = 18m | (N − 1) =
18m(72m2 + 22m + 2). Hence N is a Carmichael number.

b. We have 7 = 6 ·1+1, 13 = 12 ·1+1 and 19 = 18 ·1+1, so by part (a), 7 ·13 ·19 = 1729 is a Carmichael
number. We have 37 = 6 · 6 + 1, 73 = 12 · 6 + 1 and 109 = 18 · 6 + 1, so by part (a), 37 · 73 · 109 =
294409 is a Carmichael number. We have 211 = 6 · 35 + 1, 421 = 12 · 35 + 1 and 631 = 18 · 35 + 1,
so by part (a), 211 · 421 · 631 = 56052361 is a Carmichael number. We have 271 = 6 · 45 + 1, 541 =
12 · 45 + 1 and 811 = 18 · 45 + 1, so by part (a), 271 · 541 · 811 = 118901521 is a Carmichael number.
We have 307 = 6 · 51 + 1, 613 = 12 · 51 + 1 and 919 = 18 · 51 + 1, so by part (a), 307 · 613 · 919 =
172947529 is a Carmichael number.

6.2.19. We have 321197185− 1 = 321197184 = 4 · 80299296 = 18 · 17844288 = 22 · 14599872 = 28 · 11471328 =
36 · 8922144 = 136 · 2361744, so p− 1|321197185− 1 for every prime p which divides 321197185. There-
fore, by Theorem 6.7, 321197185 is a Carmichael number.

6.2.20. Let n be a Carmichael number and suppose there is a prime p such that n = ptm, with (p,m) = 1 and
t ≥ 2. Let x = b be a solution to the system of congruences x ≡ pt−1 + 1 (mod pt), x ≡ 1 (mod m). Then
since (b, p) = 1 and (b,m) = 1, we have that (b, n) = 1. If it were the case that b ≡ 1 (mod n), then we
would have b ≡ 1 (mod pt), a contradiction. Therefore b 6≡ 1 (mod n). On the other hand, note that
bn ≡ (pt−1 + 1)n ≡ (pt−1)n + n(pt−1)n−1 + · · · + npt−1 + 1 ≡ 1 (mod pt), by the binomial theorem and
the fact that p | n, so pt divides every term but the last. Also bn ≡ 1 (mod m), so that by the Chinese
remainder theorem, we must have bn ≡ 1 (mod n). Since (b, n) = 1 and b 6≡ 1 ≡ bn (mod n), n is not a
Carmichael number. Therefore n must be squarefree.

6.2.21. We can assume that b < n. Then b has fewer than log2 n bits. Also, t < n so it has fewer than log2 n
bits. It takes at most log2 n multiplications to calculate b2s

so it takes O(log2 n) multiplications to calcu-
late b2log2 t

= bt. Each multiplication is of two log2 n bit numbers, and so takes O((log2 n)2) operations.
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So all together we have O((log2 n)3) operations.

6.3. Euler’s Theorem
6.3.1. a. The set 1, 5 is a reduced residue set modulo 6.

b. The set 1, 2, 4, 5, 7, 8 is a reduced residue set modulo 9.

c. The set 1, 3, 7, 9 is a reduced residue set modulo 10.

d. The set 1, 3, 5, 9, 11, 13 is a reduced residue set modulo 14.

e. The set 1, 3, 5, 7, 9, 11, 13, 15 is a reduced residue set modulo 16.

f. The set 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 is a reduced residue set modulo 17.

6.3.2. Since the integers relatively prime to 2m are the odd integers, 1, 3, 5, . . . , 2m−1 is a reduced residue
system modulo 2m.

6.3.3. If (a,m) = 1, then (−a,m) = 1, so −ci must appear among the cj . Also ci 6≡ −ci (mod m), else 2ci ≡
0 (mod m) and so (ci, m) 6= 1.

6.3.4. We have (a− 1)(1 + · · ·+ aφ(m)−1) = aφ(m) − 1 ≡ 0 (mod m), since (a, m) = 1. But (a− 1, m) = 1 so
m | (1 + · · ·+ aφ(m)−1), as desired.

6.3.5. Since φ(10) = 4, we have, by Euler’s theorem, 31000 ≡ (34)250 ≡ 1250 ≡ 1 (mod 10). Therefore the last
decimal digit of 31000 is 1.

6.3.6. Since φ(10) = 4 and 999999 = 4(249999) + 3, we have, by Euler’s theorem, 7999999 ≡ (74)24999973 ≡
124999973 ≡ 49 · 7 ≡ 9 · 7 ≡ 63 ≡ 3 (mod 10). Therefore the last decimal digit is 3.

6.3.7. By Euler’s theorem 3φ(35) = 328 ≡ 1 (mod 35). Since 100000 = 2857 · 35 + 5, it follows that 3100000 ≡
(328)2857 · 35 ≡ 1 · 35 = 81 ≡ 11 (mod 35).

6.3.8. By Fermat’s little theorem, a7 ≡ a (mod 7), so we need to show that a7 ≡ a (mod 9). If 9 | a this re-
duces to 0 ≡ 0 (mod 9) which is true. If 3 - a then (a, 9) = 1. Then, since φ(9) = 6, by Euler’s theorem,
we have a6 ≡ 1 (mod 9) or a7 ≡ a (mod 9). Therefore a7 ≡ a (mod 63).

6.3.9. Since a2 ≡ 1 (mod 8) whenever a is odd, it follows that a12 ≡ 1 (mod 8) whenever (a, 32760) = 1. Eu-
ler’s theorem tells us that aφ(9) = a6 ≡ 1 (mod 9) whenever (a, 9) = 1, so that a12 = (a6)2 ≡ 1 (mod 9)
whenever (a, 32760) = 1. Furthermore, Fermat’s little theorem tells us that a4 ≡ 1 (mod 5) whenever
(a, 5) = 1, a6 ≡ 1 (mod 7) whenever (a, 7) = 1, and a12 ≡ 1 (mod 13) whenever (a, 13) = 1. It follows
that a12 ≡ (a4)3 ≡ 1 (mod 5), a12 ≡ (a6)2 ≡ 1 (mod 7), and a12 ≡ 1 (mod 13) whenever (a, 32760) = 1.
Since 32760 = 2332 · 5 · 7 · 13 and the moduli 8, 9, 5, 7, and 13 are pairwise relatively prime, we see that
a12 ≡ 1 (mod 32760).

6.3.10. Suppose that a and b are relatively prime positive integers. Then by Euler’s theorem aφ(b) ≡ 1 (mod b)
and bφ(a) ≡ 1 (mod a). Since aφ(b) ≡ 0 (mod a) and bφ(a) ≡ 0 (mod b) it follows that aφ(b) + bφ(a) ≡ 1
(mod a) and (mod b). By the Chinese remainder theorem, since a and b are relatively prime it follows
that aφ(b) + bφ(a) ≡ 1 (mod ab).

6.3.11. a. We multiply both sides of the congruence 5x ≡ 3 (mod 14) by 5φ(14)−1 = 55 to obtain 56x ≡ 55 · 3
(mod 14). Since 56 ≡ 1 (mod 14) by Euler’s theorem, it follows that x ≡ 55 · 3 ≡ (52)2 · 5 · 3 ≡
112 · 15 ≡ 9 · 1 ≡ 9 (mod 14).
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b. We multiply both sides of the congruence 4x ≡ 7 (mod 15) by 4φ(15)−1 = 47 to obtain 48x ≡ 48 · 7
(mod 15). since 48 ≡ 1 (mod 15) by Euler’s theorem, it follows that x ≡ 47 ·7 ≡ (42)3 ·4 ·7 ≡ 1 ·28 ≡
13 (mod 15).

c. We multiply both sides of the congruence 3x ≡ 5 (mod 16) by 3φ(16)−1 = 37 to obtain 38x ≡ 37 · 5
(mod 16). since 38 ≡ 1 (mod 16) by Euler’s theorem, it follows that x ≡ 37 ·5 ≡ 34 ·33 ·5 ≡ 1 ·27 ·5 ≡
11 · 5 ≡ 7 (mod 16).

6.3.12. Since the mj are pairwise relatively prime, we have (Mj ,mj) = 1 for all j, and (Mi,mj) = mj for
i 6= j. Then, by Euler’s theorem, we have M

φ(mj)
j ≡ 1 (mod mj). Therefore, for any j we have x ≡

a1M
φ(m1)
1 + · · ·+ajM

φ(mj)
j + · · ·+arM

φ(mr)
r ≡ 0+0+ · · ·+aj(1)+0+ · · ·+0 ≡ aj (mod mj). Therefore,

x satisfies the system, and by the Chinese remainder Theorem, it must be the unique solution modulo M .

6.3.13. a. We have x ≡ 4 · 1710 + 3 · 1116 ≡ 27 (mod 187).

b. We have x ≡ 1 · 151 + 2 · 102 + 3 · 64 ≡ 23 (mod 30).

c. We have x ≡ 0 · 1051 + 0 · 702 + 1 · 424 + 6 · 306 ≡ 6 (mod 210).

d. We have x ≡ 2 · 5038810 + 3 · 461894 + 4 · 4263612 + 5 · 3260416 + 6 · 2917218 ≡ 150999 (mod 554268).

6.3.14. We have M = 2310,M1 = 1155,M2 = 770,M3 = 462,M4 = 330, and M5 = 210. Then x ≡ 1 · 11551 +
2 · 7702 + 3 · 4624 + 4 · 3306 + 5 · 21010 ≡ 1523 (mod 2310).

6.3.15. We have φ(10) = 4, so 74 ≡ 1 (mod 10) and 71000 ≡ (74)250 ≡ 1250 ≡ 1 (mod 10).

6.3.16. We have φ(16) = 8 and 51000000 ≡ 58·125000 ≡ 1125000 ≡ 1 (mod 16). Therefore the last digit is 1, in
hexadecimal notation.

6.3.17. We note that φ(p) = p − 1 if p is prime, so φ(13) = 12, φ(17) = 16, and φ(19) = 18. Since the integers
relatively prime to 16 are the odd integers, we see that φ(16) = 8. The integers relatively prime to 14 are
the odd integers not divisible by 7. We see that φ(14) = 6. The integers relatively prime to 15 are those
not divisible by either 3 or 5. we see that φ(15) = 8. The integers relatively prime to 18 are the odd inte-
gers not divisible by 3. It follows that φ(18) = 6. the integers relatively prime to 20 are the odd integers
not divisible by 5. It follows that φ(20) = 8.

6.3.18. Let a be an integer with (a, 10) = 1, and let n = 9kφ(a), where k is a positive integer. By Euler’s theo-
rem, 10n ≡ (10φ(a))9k ≡ 1 (mod a). By Fermat’s Theorem, 10n−1 ≡ ((9+1)9kφ(a))−1 ≡ (99kφ(a) + · · ·+(
9
1

)
9 + 1)− 1 ≡ 0 (mod 92). Then (10n− 1) is divisible by 81, and by a, and so (10n− 1)/9 is divisible by

9 and by a.

6.3.19. If (a, b) = 1 and (a, b− 1) = 1 then a | (bkφ(a) − 1)/(b− 1) which is a base b repunit. If (a, b− 1) = d >

1, then d divides any repunit of length k(b− 1), and (a/d) | (bkφ(a/d) − 1)/(b− 1) and these sets intersect
infinitely often.

6.3.20. Let m = pa1
1 pa2

2 · · · par
r . If (a, pi) = 1 for some integer i then by Euler’s theorem we see that aφ(p

ai
i ) ≡ 1

(mod pai
i ). Since φ(pai

i ) | φ(m) it follows pai
i | (aφ(m) − 1) if (a, pi) = 1.

Since for i = 1, 2, . . . , m we know that p
ai−1
i | φ(m), it follows that p

ai−1
i | (m − φ(m)). since m −

φ(m) ≥ 1, it follows that m − φ(m) ≥ pai−1
i ≥ ai (since qa−1 ≥ a for positive integers q and a with q ≥

2). Hence, if (a, pi) > 1, so that pi | a, we have pai
i | pm−φ(m)

i , which implies that pai
i | am−φ(m).

We conclude that for every integer a we have pai
i | am−φ(m)(aφ(m) − 1) = am − am−φ(m) for i =

1, 2, . . . , r. It follows that m | (am − am−φ(m)), which implies that am ≡ am−φ(m) (mod m).



CHAPTER 7

Multiplicative Functions

7.1. The Euler Phi-Function
7.1.1. a. Since for all positive integers m and n, f(mn) = 0 = 0 · 0 = f(m) · f(n), f is completely multiplica-

tive.

b. Since f(6) = 2, but f(2) · f(3) = 2 · 2 = 4, f is not completely multiplicative.

c. Since f(6) = 3, but f(2) · f(3) = 2
2 · 3

2 = 3
2 , f is not completely multiplicative.

d. Since f(4) = log(4) > 1, but f(2) · f(2) = log(2) · log(2) < 1, f is not completely multiplicative.

e. Since for any positive integers m and n, f(mn) = (mn)2 = m2n2 = f(m) · f(n), f is completely
multiplicative.

f. Since f(4) = 4! = 24, but f(2) · f(2) = 2!2! = 4, f is not completely multiplicative.

g. Since f(6) = 7, but f(2) · f(3) = 4 · 3 = 12, f is not completely multiplicative

h. Since f(4) = 44 = 256, but f(2) · f(2) = 2222 = 16, f is not completely multiplicative.

i. Since for any positive integers m and n, f(mn) =
√

mn =
√

m
√

n = f(m) · f(n), f is completely
multiplicative.

7.1.2. a. We have 100 = 2252, so φ(100) = 100(1− 1/2)(1− 1/5) = 40.

b. We have 256 = 28, so φ(256) = 28 − 27 = 128.

c. We have 1001 = 7 · 11 · 13, so φ(1001) = (7− 1)(11− 1)(13− 1) = 720.

d. We have φ(2 · 3 · 5 · 7 · 11 · 13) = (2− 1)(3− 1)(5− 1)(7− 1)(11− 1)(13− 1) = 5760.

e. The primes which divide 10! are 2,3,5 and 7, so φ(10!) = 10!(1− 1/2)(1− 1/3)(1− 1/5)(1− 1/7) =
829, 440.

f. The primes which divide 20! are 2, 3, 5, 7, 11, 13, 17 and 19, so φ(20!) = 20!(1 − 1/2)(1 − 1/3)(1 −
1/5)(1− 1/7)(1− 1/11)(1− 1/13)(1− 1/17)(1− 1/19) = 416,084,687,585,280,000.

7.1.3. We have the following prime factorizations of 5186, 5187, and 5188: 5186 = 2 ·2593, 5187 = 3 ·7 ·13 ·19,
and 5188 = 221297. Hence φ(5186) = φ(2)φ(2593) = 1 · 2592 = 2592, φ(5187) = φ(3)φ(7)φ(13)φ(19) =
2 · 6 · 12 · 18 = 2592, and φ(5188) = φ(22)φ(1297) = 2 · 1296 = 2592. It follows that φ(5186) = φ(5187) =
φ(5188).

7.1.4. a. If n > 1, let n = 2kpa1
1 pa2

2 · · · par
r be the prime factorization of n. If k > 0 then φ(n) = 2k−1(pa1

1 −
pa1−1
1 ) · · · (par

r − par−1
r ) and if k = 0 then φ(n) = (pa1

1 − pa1−1
1 ) · · · (par

r − par−1
r ). If φ(n) = 1, then

either n = 1; or k = 1 and n = 2.
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b. Using the notation developed in part (a), if φ(n) = 2, then either k = 2 and n = 4; or k = 1 and
pa1
1 − pa1−1

1 = 2 so pa1
1 = 3 and n = 6; or k = 0 and pa1

1 − pa1−1
1 = 2, so pa1

1 = 3 and n = 3.

c. Using the notation developed in part (a), if φ(n) = 3, then pa1
1 − pa1−1

1 = 3, which is impossible, so
there are no solutions.

d. Using the notation developed in part (a), if pt | n, then pt−1(p − 1) | φ(n) = 4. Therefore, no odd
prime can appear in the factorization of n to a power higher than 1. Further, p− 1 must be a divisor
of 4, so p must be one of 2, 3, or 5. Say n = 2k3a5b, where a and b are 0 or 1. Note that φ(2k) ≥ 2k−1

which must divide 4, so k is either 0, 1, 2, or 3. If k = 3, then a = b = 0, and so one solution is n =
8. If k = 2, then φ(22) = 2 which forces a = 1 and b = 0, so a second solution is n = 12. If k = 0 or
1, then φ(2k) = 1. This forces a = 0 and b = 1. This gives us two more solutions n = 5 and n = 10.
Having exhausted all possibilities, we have the complete set of solutions: 5, 8, 10, and 12.

7.1.5. If φ(n) = 6, and suppose k distinct primes divide n. Then either k = 2 and pa1
1 − pa1−1

1 = 3, which is
impossible, or k = 1 and pa1

1 − pa1−1
1 = 6, so pa1

1 = 9 and n = 18 or pa1
1 = 7 and n = 14, or k = 0 and

pa1
1 − pa1−1

1 = 6 and pa1
1 = 9 = n or pa1

1 = 7 and n = 7. So the only solutions are n = 7, 9, 14, or 18.

7.1.6. Suppose a prime p divides n. Then p − 1 is a divisor of 12. So p − 1 = 1, 2, 3, 4, 6, or 12, that is p =
2, 3, 5, 7, or 13. If p2 | n, then p | 12, and so only 2 and 3 can divide n to a power higher than 1. If 33 | n
then φ(n) ≥ φ(33) ≥ 18 > 12, a contradiction. If 32 divides n, say n = 9k with 3 - k, then 12 = φ(n) =
φ(9)φ(k) = 6φ(k), which forces φ(k) = 2. Since 3 - k, Exercise 4(b) shows that k = 4, yielding the solu-
tion n = 36. Likewise, if 5 | n, say n = 5k with 5 - k, then 12 = φ(n) = 4φ(k), and so φ(k) = 3, which is
impossible. If 2t ‖ n, say n = 2tk, then φ(2t) = 2t−1 | 12, and so t ≤ 3. If t = 3, then φ(k) = 3 which is
still impossible, so t ≤ 2. So n = 2t3a7b13c, where t = 0, 1, or 2, and a, b, and c are either 0 or 1. If t = 2,
then n = 4k with k odd and 12 = φ(n) = 2φ(k), so k is an odd solution to φ(k) = 6, and from Exercise
5, we know k = 7 or 9 and therefore n = 28 and n = 36 are two solutions. If t = 1 or 0, then n = 2tk
with k odd and 12 = φ(n) = φ(k). If 13 | k, then φ(2t13) = 12 and there can be no other factors of n. So
n = 13 and n = 26 are two more solutions. The only other possibilities for k are 3, 7, and 21. But only
φ(21) = 12, so n = 21 and n = 42 are the last two solutions. This gives us 13, 21, 26, 28, 36, and 42 as the
only solutions.

7.1.7. If φ(n) = 24, we have 5 cases as k = 0, 1, 2, 3 or 4. Note that if pa − pa−1 = 2m, then a = 1 and p =
2m = 1. Also note that pa − pa−1 is always even. In every case, 3 | pa1

1 − pa1−1
1 . Every other factor in the

formula for φ(n) is of the form 2k−1 or p − 1 where p is a Mersenne prime. If k = 4, then pa1
1 − pa1−1

1 =
3 which is impossible. If k = 3, then φ(n) = φ(8 · m) = φ(8)φ(m) = 4φ(m), so φ(m) = 6. By part (d)
m = 7 or 9 so n = 56 or 72. If k = 2, then φ(n) = φ(4 ·m) = φ(4)φ(m) = 2φ(m), so φ(m) = 12. Since
pa1
1 − pa1−1

1 6= 3, pa1
1 − pa1−1

1 = 6 or 12 so pa1
1 = 13 and n = 52 or pa1

1 = 9 and pa2
2 − pa2−1

2 = 2 which
is impossible. If k = 1, then φ(n) = φ(2m) = φ(m) so the case k = 0 is covered here also. We have
pa1
1 − pa1−1

1 = 24 or (pa1
1 − pa1−1

1 )(pa1
2 − pa2−1

2 ) = 24. In the first case we have p1 = 3 since 3 | 24 and this
leads to p2 = 13 so n = 39 or 78. In the second case, either p1 = 3 and we have (3− 1)(pa2

2 − pa2−1
2 ) = 24

so p2 = 13 as in the last case, or p1 = 5 and (5− 1)(pa2
2 − pa2−1

2 ) = 24, so pa2
2 = 9 or 7 which leads to n =

45 and 35 respectively if k = 0 and 90 and 70 if k = 1. Then the totality of all solutions is 35, 39, 45, 52,
56, 70, 72, 78, 84, and 90.

7.1.8. If φ(n) = 14, then 7 | pa1
1 − pa1−1

1 for some odd prime p1. Since the only factors of 14 are 2 and 7, either
p1 = 7 and a1 > 1 and hence p1 − 1 = 6 | 14 which is false, or 7 | p1 − 1, but p1 − 1 is even, so p1 − 1 =
14 or p1 = 15 which is not prime. Therefore there are no solutions.

7.1.9. Studying Table E.2 on page 609 and 610, we discover that the nth term of this sequence is given by
φ(2n).

7.1.10. Studying Table E.2 on page 609 and 610, we discover that the nth term is the number of solutions to
φ(k) = n.
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7.1.11. Let n = 3km, where (3,m) = 1. If k = 0, then φ(3n) = 2φ(n) 6= 3φ(n). On the other hand, if k ≥ 1,
then φ(3n) = φ(3k+1m) = (3k+1 − 3k)φ(m) = 3(3k − 3k−1)φ(m) = 3φ(3km) = 3φ(n). Therefore, φ(3n) =
3φ(n) if and only if 3 | n.

7.1.12. If n = 2kpa1
1 pa2

2 · · · par
r then φ(n) = 2k−1pa1−1

1 (p1 − 1) · · · par−1
r (pr − 1). Since pi is odd, pi − 1 is even.

So φ(n) is divisible by 4 if n satisfies any of the following: (1) n = 2k with k ≥ 3; (2) n has an odd prime
divisor of the form 4k + 1; (3) n is divisible by 4 (i.e. k = 2) and n has an odd prime divisor; (4) n has 2
odd prime divisors.

7.1.13. If n = 2kpa1
1 · · · par

r then φ(n) = n(p1−1)/p1 · · · (pr−1)/pr. If φ(n) = n/2, we have (p1−1)/p1 · · · (pr−
1)/pr = 1/2. Let pr be the largest prime dividing n, then pr divides none of p1 − 1, p2 − 1, · · · , pr − 1,
so it must appear in the denominator of (p1 − 1)/p1 · · · (pr − 1)/pr in lowest terms. But 1/2 is in lowest
terms, therefore n has no odd prime divisors. Since φ(2k) = 2k−1 = 2k/2, for k = 1, 2, · · · we have n =
2, 22, · · · as the only solutions.

7.1.14. If n = pa1
1 · · · par

r and φ(n) | n we have kφ(n) = kn(p1 − 1)/p1 · · · (pr − 1)/pr = n so that k = p1/(p1 −
1) · · · pr/(pr − 1) is an integer. The numerator can have at most one factor of 2, so the denominator can
have at most one factor of the form pi − 1 where pi is an odd prime. Thus either n = 2a1 and φ(n) =
(n/2) | n or n = 2a1pa2 and φ(n) = n((2− 1)/2))((p− 1)/p) and l = (2/(2− 1)) · (p/(p− 1) = 2p/(p− 1).
So p− 1 = 2 or p = 3 and we have n = 2a13a2 . So the solutions are n = 1, 2a1 , 2a13a2 with a1, a2 ≥ 1.

7.1.15. If n is odd, then (2, n) = 1 and φ(2n) = φ(2)φ(n) = 1 · φ(n) = φ(n). If n is even, say n = 2st with t
odd. Then φ(2n) = φ(2s+1t) = φ(2s+1)φ(t) = 2sφ(t) = 2(2s−1φ(t)) = 2(φ(2s)φ(t)) = 2(φ(2st)) = 2φ(n).

7.1.16. Suppose that the prime factorization of n is n =
∏k

j=1 p
aj

j . Then since φ is multiplicative, φ(n) =∏k
j=1 φ(paj

j ). Note that φ(paj

j ) = p
aj−1
j (pj − 1). If pj is odd, then 2 | φ(pj). Hence 2k | φ(n) if n has k

distinct odd prime divisors.

7.1.17. If φ(n) is a power of 2 then every factor pai
i − pai−1

i = pai−1
i (pi − 1) must be a power of 2. Then either

pi = 2 or ai = 1 and pi − 1 = 2ki and so pi is a Mersenne prime. Therefore φ(n) is a power of 2 if and
only if n = 2kp1p2 · · · pr where each pi is a Mersenne prime.

7.1.18. Since n is odd, we have (4, n) = 1. Then since φ is multiplicative, we compute φ(4n) = φ(4)φ(n) =
2φ(n).

7.1.19. Let n = pa1
1 · · · par

r be the factorization for n. If n = 2φ(n) then pa1
1 · · · par

r = 2
∏r

j=1 p
aj−1
j (pj − 1). Can-

celling the powers of all pj ’s yields p1 · · · pr = 2
∏r

j=1(pj − 1). If any pj is an odd prime, then the factor
(pj − 1) is even and must divide the product on the left-hand side. But there can be at most one factor of
2 on the left-hand side and it is accounted for by the factor of 2 in front of the product on the right hand
side. Therefore, no odd primes appear in the product. That is, n = 2j for some j.

7.1.20. First, if p - n, then (p, n) = 1. Since φ is multiplicative, we have φ(pn) = φ(p)φ(n) = (p− 1)φ(n). Con-
versely, if p|n, say n = pam, where (p,m) = 1, then we compute φ(pn) = φ(pa+1m) = φ(pa+1)φ(m) =
(pa+1− pa)φ(m) = (p− 1)paφ(m). On the other hand (p− 1)φ(n) = (p− 1)φ(pam) = (p− 1)φ(pa)φ(m) =
(p− 1)(p− 1)pa−1φ(m). If we form the ratio of these two expressions, we get φ(pn)/(p− 1)φ(n) = p/(p−
1). Since this last expression can not be equal to 1, we know that φ(pn) 6= (p− 1)φ(n).

7.1.21. Since (m,n) = p, p divides one of the terms, say n exactly once, so n = kp with (m, k) = 1 = (n, k).
Then φ(n) = φ(kp) = φ(k)φ(p) = φ(k)(p− 1), and φ(mp) = pφ(m) by the formula in Example 7.7. Then,
φ(mn) = φ(mkp) = φ(mp)φ(k) = (pφ(m))(φ(n)/(p− 1)).

7.1.22. Suppose that the prime factorization of m is m =
∏r

i=1 pai
i . Then φ(m) =

∏r
i=1 φ(pai

i ). Since mk

=
∏r

i=1 pkai
i , φ(mk) =

∏r
i=1 φ(pkai

i ). Note that φ(pkai
i ) = pkai−1

i (pi − 1) = p
(k−1)ai

i pai−1
i (pi − 1) =

p
(k−1)a1
i φ(pai

i ). Hence φ(mk) =
∏r

i=1 p
(k−1)ai

i φ(pai
i ) =

∏r
i=1 p

(k−1)ai

i

∏r
i=1 φ(pai

i ) = mk−1φ(m).
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7.1.23. Let p1, · · · , pr be those primes dividing a but not b. Let q1, · · · , qs be those primes dividing b but not
a. Let r1, · · · rt be those primes dividing a and b. Let P =

∏
(1− 1

pi
), Q =

∏
(1− 1

qi
) and R =

∏
(1− 1

ri
).

Then we have φ(ab) = abPQR = aPRbQR
R = φ(a)φ(b)

R . But φ((a, b)) = (a, b)R so R = φ((a,b))
(a,b) and we have

φ(ab) = φ(a)φ(b)
R = (a,b)φ(a)φ(b)

φ((a,b)) as desired.

7.1.24. If n is prime, then φ(n) = n−1 ≥ 10k. If n is not prime, then by Exercise 18, n ≥ 10k+
√

n ≥ 10k+10k/2.
So in each case, we seek the smallest prime between 10k and 10k+10k/2: a. 101 b. 1013 c. 10007 d. 100003

7.1.25. From the formula for the φ function, we see that if p|n, then p − 1|k. Since k has only finitely many
divisors, there are only finitely many possibilities for prime divisors of n. Further, if p is prime and pa|n,
then pa−1|k. Hence, a ≤ logp(k) + 1. Therefore, each of the finitely many primes which might divide
n may appear to only finitely many exponents. Therefore, there are only finitely many possibilities for n.

7.1.26. If n is odd, then φ(2n) = φ(n) = k, giving two solutions, so n must be even. If n = 2m with m odd,
then φ(m) = φ(2m) = φ(n) = k, also giving two solutions, so 4 | n. Say n = 2tm with m odd and t ≥
2. Then k = φ(n) = 2t−1φ(m). If 3 - m, then φ(2t−13m) = 2t−2(3− 1)φ(m) = 2t−1φ(m) = k, giving two
solutions, so 3 | m. If m = 3s with (3, s) = 1, then k = φ(n) = 2t−1(3 − 1)φ(s) = 2tφ(s). But φ(2n/3) =
φ(2t+1s) = 2tφ(s) = k, again giving two solutions. Therefore 3 | s and so 4 · 9 = 36 | n.

7.1.27. From the formula for the φ function, we see that if p|n, then p − 1|k. Since k has only finitely many
divisors, there are only finitely many possibilities for prime divisors of n. Further, if p is prime and pa|n,
then pa−1|k. Hence, a ≤ logp(k) + 1. Therefore, each of the finitely many primes which might divide
n may appear to only finitely many exponents. Therefore, there are only finitely many possibilities for n.

7.1.28. We further assume that 2ap + 1 is not prime for a = 1, 2, . . . , r, and that p is not a Fermat prime. Sup-
pose that φ(n) =

∏k
i=0(p

ai
i − pai−1

i ) = 2rp. Then only one odd non-Fermat prime can appear to a power
greater than 1 in the prime power factorization of n. There are two cases. First, p2 ‖ n, so that φ(n) =
p(p − 1)2a = 2rp. But this forces p − 1 = 2r−a, so that p is a Fermat prime, which contradicts the hy-
potheses. Second, there is a prime q ‖ n such that p | q − 1 so that φ(n) = m(q − 1) = 2rp. So there is an
integer a with 1 ≤ a ≤ r such that 2ap + 1 = q is prime. This also contradicts the hypotheses.

7.1.29. As suggested, we take k = 2 · 36j+1 with j ≥ 1, and suppose that φ(n) = k. From the formula for φ(n)
we see that φ(n) has a factor of (p− 1), which is even for every odd prime that divides n. Since there is
only one factor of 2 in k, there is at most one odd prime divisor of n. Further, since 2 ‖ k, we know that
4 6| n. Since k is not a power of 2, we know that an odd prime p must divide n. So n is of the form pa

or 2pa. Recall that φ(pa) = φ(2pa). It remains to discover the value of p. If a = 1, then φ(pa) = p − 1 =
2 · 36j+1. But then, p = 2 · 36j+1 + 1 ≡ 6 · (36)j + 1 ≡ (−1)(1)j + 1 ≡ 0 (mod 7). Hence p = 7. But φ(7) =
6 = 2 · 36j+1 implies that j = 0, contrary to hypothesis, so this is not a solution. Therefore a > 1 and we
have φ(pa) = (p− 1)pa−1 = 2 · 36j+1, from which we conclude that p = 3 and a = 6j + 2. Therefore the
only solutions are n = p6j+2 and n = 2p6j+2.

7.1.30. Let p be a prime. If a > 1, then φ(pa) = pa−1(p − 1) ≥ pa−1 ≥ pa/2 =
√

pa. If p is odd, then φ(p) =
p−1 >

√
p and φ(2pa) = pa−1(p−1) ≥ pa−12 ≥ √

2pa. Finally, if p > 4, then p2+1 > 4p, so (p−1)2 = p2−
2p + 1 > 2p, and we have φ(2p) = p− 1 ≥ √

2p. Now suppose n = 2a0pa1
1 · · · par

r . If a0 6= 1, then by mul-
tiplicativity of the φ-function and the square root function, we have φ(n) =

∏r
i=0 φ(pai

i ) ≥ ∏r
i=0

√
pai

i =√
n. If a0 = 1 and, by rearrangement if necessary, pa1

1 has either a1 > 1 or p1 > 4, then again by multi-
plicativity, we have φ(n) = φ(2pa1

1 )
∏r

i=2 φ(pai
i ) ≥ √

2pa1
1

∏r
2=0

√
pai

i =
√

n. The remaining cases are for
n exactly divisible by 2, not divisible by a prime greater than 4 and not divisible by a prime to a power
greater than 1. This leaves only n = 2 and n = 6, which are the only exceptions to the proposition.

7.1.31. If n = prm, then φ(prm) = (pr − pr−1)φ(m) | (prm− 1), hence p | 1 or r = 1. So n is square-free. If n =
pq, then φ(pq) = (p − 1)(q − 1) | (pq − 1). Then (p − 1) | (pq − 1) − (p − 1)q = q − 1. Similarly (q − 1) |
(p− 1), a contradiction.
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7.1.32. Suppose that n = pa1
1 pa2

2 · · · pam
m . Using the formula for φ(n) in terms of its prime factorization, we

find that n/φ(n) = p1p2···pm

(p1−1)(p2−1)···(pm−1) . We see that φ(n) | n if and only if (p1 − 1)(p2 − 1) · · · (pm − 1) |
p1p2 · · · pm. The right hand side contains at most one factor of 2, so that there is at most one even factor
on the left hand side. Hence there can be at most one odd prime in the factorization.

We see that φ(1) = 1 | 1. If n = 2a where a is positive integer then φ(n)+2a−1 so that n | φ(n). Other-
wise, n = 2apb where a and b are positive integers and p is an odd prime. Then φ(n) = 2a−1pb−1(p− 1).
We first show that p 6= 3. If p > 3 then (p− 1)does not divide 2p. Suppose that it does, then (p− 1)d = 2p

where d is an odd positive integer so that d = 2p
(p−1) = 2

1−1/p < 2
2/3 = 3, which is a contradiction. Now

suppose that p = 3. Then if a ≥ 1, φ(n) = 2a3b−1 so that n = 3φ(n) and n | φ(n). If a = 0 then φ(n) =
2 · 3b−1 so that n is odd but φ(n) is even. Hence φ(n) does not divide n. In summary, φ(n) divides n if
and only if n = 1, 2a, or 2a3b where a and b are positive integers.

7.1.33. Let n = pa1
1 pa2

2 · · · pak

k . Let Pi be the property that an integer is divisible by pi. Let S be the set
{1, 2, . . . , n − 1}. To compute φ(n) we need to correct the elements of S with more of the properties
P1, P2, · · · , Pk. Let n(Pi1 , Pi2 , · · · , Pim) be the number of elements of S with all of properties Pi1 , Pi2 , · · · ,
Pim

. Then n(pi1 , · · ·Pim
) = n

pi1
pi2 · · · pim . By Exercise 18 of Section 1.4, we have φ(n) = n−( n

p1
+ n

p2
+· · ·+

n
pk

)+( n
p1p2

+ · · ·+ n
pk−1pk

)+ · · ·+(−1)k( n
p1···Pk

) = n(1−∑
pi|n

1
pi

+
∑

pi1pi2 |n
1

pi1pi2
−∑

pi1p12pi3

1
pi1pi2pi3

+

· · ·+(−1)k n
p1
· · · pk). On the other hand, notice that each term in the expansion of (1− 1

p1
)(1− 1

p2
) · · · (1−

1
pk

) is obtained by choosing either 1 or− 1
pi

from each factor and multiply the choice together. This gives

each term the form (−1)m

pi1pi2 ···pim
. Note that each term can occur in only one way. Thus n(1 − 1

p1
)(1 −

1
p2

) · · · (1− 1
pk

) = n(1−∑
pi|n

1
pi

+
∑

pi1pi2

1
pi1pi2

− · · · (−1)k n
p1···pk

) = φ(n).

7.1.34. If n is prime, φ(n) = n− 1 > n−√n. If n is not prime say n = ab with a, b > 1. Then b ≥ √
n say. By

Exercise 23, φ(ab) = (a,b)φ(a)φ(b)
φ((a,b)) < φ(a)φ(b) ≤ (a− 1)(b− 1) = ab− a− b + 1 ≤ n− b + 1 ≤ n−√n + 1.

So φ(a, b) < n−√n + 1 but since both sides are integers we have φ(a, b) ≤ n−√n.

7.1.35. Note that 1 ≤ φ(m) ≤ m − 1 for m > 1. Hence if n ≥ 2, n > n1 > n2 > · · · ≥ 1 where ni = φ(n) and
ni = φ(ni−1) for i > 1. Since ni, i = 1, 2, 3, . . . is a decreasing sequence of positive integers, there must
be a positive integer r such that nr = 1.

7.1.36. We have f(pk) = φ(pk)
pk = (pk−pk−1)

pk = (p−1)
p = φ(p)

p . Hence f(n) = φ(n)
n is strongly multiplicative.

7.1.37. Note that the definition of f ∗ g can also be expressed as (f ∗ g)(n) =
∑

a·b=n f(a)g(b). Then the fact
that f ∗ g = g ∗ f is evident.

7.1.38. Using the form of the definition in the solution to Exercise 37 above, we have ((f ∗ g) ∗ h)(n)

=
∑

ab=n

(f ∗ g)(a)h(b)

=
∑

ab=n

∑

cd=a

f(c)g(d)h(b)

=
∑

cdb=n

f(c)g(d)h(b)

Similarly, (f ∗ (g ∗ h))(n) =
∑

cdb=n f(c)g(d)h(b) and we’re done.

7.1.39. a. If either m > 1 or n > 1 then mn > 1 and one of ι(m) or ι(n) is equal to zero. Then ι(mn) = 0 =
ι(m)ι(n). Otherwise, m = n = 1 and we have ι(mn) = 1 = 1 · 1 = ι(m)ι(n). Therefore ι(n) is multi-
plicative.

b. (ι ∗ f)(n) =
∑

d|n ι(d)f(n
d ) = ι(1)f(n

1 ) = f(n) since ι(d) = 0 except when d = 1.(f ∗ ι)(n) = (ι ∗
f)(n) = f(n) by Exercise 37.
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7.1.40. We need, first of all, for (f ∗f−1)(1) = ι(1) = 1 which reduces to f(1)f−1(1) = 1. Therefore if f(1) = 0,
there is no solution and hence no inverse. If f(1) 6= 0, we define f−1(1) = 1

f(1) , the unique solution. Now
assume that f−1(k) has been uniquely determined for all k < n. We solve the equation (f ∗ f−1)(n) =
ι(n), or

∑
d|n f(n

d )f−1(d) = 0. Rewriting gives

f(1)f−1(n) +
∑

d|n
d<n

f(
n

d
)f−1(d) = 0.

If d < n, then n
d < n and every quantity in the equation is uniquely determined except for f−1(n). Since

f(1) 6= 0 we can solve uniquely for f−1(n) and by induction we’re done.

7.1.41. Let h = f ∗ g and let (m,n) = 1. Then h(mn) =
∑

d|mn f(d)g(mn
d ). Since (m,n) = 1, each divisor d of

mn can be expressed in exactly one way as d = ab where a | m and b | n. Then (a, b) = 1 and (m
a , n

b ) =
1. Then there is a one-to-one correspondence between the divisors d of mn and the pairs of products ab
where a | m and b | n. Then

h(mn) =
∑

a|m
b|n

f(ab)g(
mn

ab
) =

∑

a|m
b|n

f(a)f(b)g(
m

a
)g(

n

b
)

=
∑

a|m
f(a)g(

m

a
)
∑

b|n
f(b)g(

n

b
) = h(m)h(n)

as desired.

7.1.42. By Exercise 38, Dirichlet product is associative. We compute F ∗ h = (f ∗ g) ∗ h = f ∗ (g ∗ h) = f ∗ ι by
the definition in Exercise 40. Then, by Exercise 39, f ∗ ι = f , which proves the theorem.

7.1.43. a. Since 12 = 223, we have λ(12) = (−1)2+1 = −1.

b. Since 20 = 225, we have λ(20) = (−1)2+1 = −1.

c. Since 210 = 2 · 3 · 5 · 7, we have λ(210) = (−1)1+1+1+1 = 1.

d. Since 1000 = 2353, we have λ(1000) = (−1)3+3 = 1.

e. Since 1001 = 7 · 11 · 13, we have λ(1001) = (−1)1+1+1 = −1.

f. Since 10! = 2834527, we have λ(10!) = (−1)8+4+2+1 = −1.

g. Since 20! = 21838547211 · 13 · 17 · 10, we have λ(20!) = (−1)18+8+4+2+1+1+1+1 = 1.

7.1.44. We see that λ(n) = (−1)s where S is the sum of the powers in the prime factorization of n (with S =
0 for n = 1). Suppose that m and n are positive integers with prime factorizations m = pa1

1 · · · pas
s and

n = qb1
1 · · · qbt

t . Thenλ(m) = (−1)s and λ(n) = (−1)T where S =
∑

ai and T =
∑

bi. But λ(mn) =
(−1)S+T = (−1)S(−1)T since the prime powers in the factorization of mn are formed by multiplying
the prime powers in the factorizations of m and n. Hence λ(mn) = λ(m)λ(n).

7.1.45. Let f(n) =
∑

d|n λ(d). Then f is the Dirichlet product of λ and the constant function h(n) = 1. Since h

and λ are both multiplicative, so is f , by Exercise 41. Now, f(pt) = λ(1) + λ(p) + λ(p2) + · · · + λ(pt) =
1− 1 + 1− · · ·+ (−1)t = 0 if t is odd and = 1 if t is even. Then f(pa1

1 pa2
2 · · · par

r ) =
∏

f(pai
i ) = 0 if any ai

is odd and = 1 if all ai are even and hence n is a square.

7.1.46. Suppose that f and g are multiplicative functions. Then f(mn) = f(m)f(n) and g(mn) = g(m)g(n)
whenever (m,n) = 1. It follows that (fg)(mn) = f(mn)g(mn) = f(m)f(n)g(m)g(n) = f(m)g(m)f(n)g(n)
= (fg)(m)(fg)(n) whenever (m,n) = 1. We conclude that fg is completely multiplicative.
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7.1.47. If f and g are completely multiplicative and m and n are positive integers we have (fg)(mn) =
f(mn)g(mn) = f(m)f(n)g(m)g(n) = f(m)g(m)f(n)g(n) = (fg)(m)(fg)(n), so fg is also completely
multiplicative.

7.1.48. If p is prime and f is completely multiplicative then f(pa) = f(p)f(p) · · · f(p), a−times, = f(p)a. Since
f is multiplicative we have f(n) = f(pa1

1 · · · pam
m ) = f(pa1

1 )f(pa2
2 ) · · · f(pam

m ) = f(p1)a1 · · · f(pm)am .

7.1.49. We have f(mn) = log mn = log m + log n = f(m) + f(n). Hence f(n) = log n is completely additive.

7.1.50. a. Since 1 has no prime factors, ω(1) = 0.

b. Since 2 is prime, ω(2) = 1.

c. Since 20 = 225, we have ω(20) = 2.

d. Since 84 = 223 · 7, we have ω(84) = 3.

e. Since 128 = 27, we have ω(128) = 1.

7.1.51. a. Since 12 = 223, we have ω(12) = 2.

b. Since 30 = 2 · 2 · 5, we have ω(30) = 3.

c. Since 32 = 25, we have ω(32) = 1.

d. Since the primes that divide 10! are exactly those primes less than or equal to 10, namely 2, 3, 5 and
7, we have ω(10!) = 4.

e. Since the primes that divide 20! are exactly those primes less than or equal to 20, namely 2, 3, 5, 7,
11, 13, 17 and 19, we have ω(20!) = 8.

f. Since the primes that divide 50! are exactly those primes less than or equal to 50, and π(50) = 15,
we have ω(50!) = 15.

7.1.52. Suppose that (m,n) = 1. Then m and n have no common prime factors. Let the prime power factor-
izations of m and n be m = pa1

1 · · · pas
s and n = qb1

1 · · · qbs
s , so that ω(m) = s and ω(n) = t. Then since

the primes pi and qj are distinct, the prime power factorization of mn is mn = pa1
1 · · · pas

s qb1
1 · · · qbt

t , so
that ω(mn) = s + t. Hence ω(mn) = ω(m) + ω(n), which shows that ω is additive. To see that ω is not
completely additive, note that ω(4) = ω(2 · 2) = 1 but ω(2) + ω(2) = 1 + 1 = 2.

7.1.53. Let (m,n) = 1, then by the additivity of f we have f(mn) = f(m) + f(n). Then g(mn) = 2f(mn) =
2f(m)+f(n) = 2f(m)2f(n) = g(m)g(n), so g is multiplicative.

7.1.54. Let f(n) = nk. Then if n and m are any two positive integers, we have, by the ordinary rules of expo-
nents, f(mn) = (mn)k = mknk = f(m)f(n). Therefore f is completely multiplicative.

7.2. The Sum and Number of Divisors
7.2.1. a. Since 35 = 5 · 7 and σ is multiplicative, we see that σ(35) = (1 + 5)(1 + 7) = 6 · 8 = 48.

b. Since 196 = 2272 and σ is multiplicative, we see that σ(196) = (1+2+22)(1+7+72) = 7 ·57 = 399.

c. Since 1000 = 2353 and σ is multiplicative, we see that σ(1000) = (1 + 2 + 22 + 23) ·
(1 + 5 + 52 + 53) = 15 · 156 = 2340.
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d. By Lemma 7.1 we have σ(2100) = 2101−1
2−1 = 2101 − 1.

e. Since σ(n) is a multiplicative function, we have σ(2 · 3 · 5 · 7 · 11) = (1 + 2)(1 + 3)(1 + 5) ·
(1 + 7)(1 + 11) = 6912.

f. Since σ is multiplicative, it follows that σ(25 · 34 · 53 · 72 · 11) = (1 + 2 + 22 + 23 + 24 + 25) · (1 + 3 +
32 + 33 + 34) · (1 + 5 + 52 + 53) · (1 + 7 + 72) · (1 + 11) = 63 · 121 · 156 · 57 · 12 = 813404592.

g. The prime factorization of 10! is 10! = 2834527. By Theorem 6.8, we conclude that σ(10) = 29−1
2−1 ·

35−1
3−1 · 52−1

5−1 · 72−1
7−1 = 511 · 242 · 6 · 8 = 5935776.

h. The prime factorization of 20! is 20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19. By Theorem 6.8 it follows that
σ(20) = 219−1

2−1 · 39−1
3−1 · 55−1

5−1 · 73−1
7−1 · 112−1

11−1 · 132−1
13−1 · 172−1

17−1 · 192−1
19−1 · = 9841 · 781 · 57 · 12 · 14 · 18 · 20 =

26495791882560.

7.2.2. a. Since the prime factorization of 36 is 36 = 2232 and τ is multiplicative it follows that 36 has τ(36) =
(2 + 1)(2 + 1) = 3 · 3 = 9 positive integer divisors.

b. Since the prime factorization of 99 is 99 = 32 · 11 and τ is multiplicative, it follows that 99 has
τ(99) = (2 + 1)(1 + 1) = 3 · 2 = 6 positive integer divisors.

c. Since the prime factorization of 144 is 144 = 24 · 32 and τ is multiplicative, it follows that 144 has
τ(144) = (4 + 1)(2 + 1) = 15 positive integer divisors.

d. Since τ is multiplicative, it follows that 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 has τ(2 · 3 · 5 · 7 · 11 · 13 · 17 · 19) =
(1 + 1)8 = 28 = 256 positive integer divisors.

e. By Theorem 7.9 we find that 2 · 32 · 53 · 74 · 115 · 134 · 175 · 195 has τ(2 · 32 · 53 · 74 · 115 · 134 · 175 · 195) =
(1 + 1)(2 + 1)(3 + 1)(4 + 1)(5 + 1)(4 + 1)(5 + 1)(5 + 1) = 129600 divisors.

f. Since the prime factorization of 20! is 20! = 21838547211 · 13 · 17 · 19, and τ is multiplicative, by The-
orem 7.9 it follows that 20! has τ(20) = (18 + 1)(8 + 1)(4 + 1)(2 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) =
19 · 9 · 5 · 3 · 2 · 2 · 2 · 2 = 41040 divisors.

7.2.3. Let n = pa1
1 pa2

2 · · · pas
s . We need to find when τ(n) is odd. By Theorem 7.9 τ(n) = (a1 + 1)(a2 +

1) · · · (as + 1), so each factor ai + 1 must be odd, hence each ai must be even. Therefore n is a perfect
square.

7.2.4. Let n = pa1
1 pa2

2 · · · pas
s . We need to find when σ(n) is odd. By Lemma 7.1 and the multiplicativity of σ

we have σ(n) = (1 + p1 + · · · + pa1
1 )(1 + p2 + · · · + pa2

2 ) · · · (1 + ps + · · · + pas
s ). So we need each factor

(1 + pi + · · · + pai
i ) to be odd. Each factor has ai + 1 terms. If pi is odd, then each term 1,pi, · · · , pai

i is
odd, so their sum will be odd if and only if there is an odd number of terms, that is ai must be even. If
pi = 2, then 1 + 2 + 22 + · · · + 2ai is always odd. Therefore φ(n) is odd if n = 2kt with t odd and t is a
perfect square.

7.2.5. a. For each part of this exercise let the prime factorization of n be pa1
1 pa2

2 · · · par
r . Then since σ is multi-

plicative, we have σ(n) =
∏r

i=1(1 + pi + · · ·+ pai
i ).

Suppose that σ(n) = 12. Each factor in the formula for σ(n) must divide 12. The only ways to
get factors, other than 1, of 12 for sums of this type are (1+2) = 3, (1+3) = 4, (1+5) = 6, (1+11) =
12. Hence the only values of n for which σ(n) = 12 are n = 2 · 3 = 6 and n = 11.

b. Suppose that σ(n) = 18. Each factor in the formula for σ(n) must divide 18 and the product of
these factors must be 18. The only ways to get factors, other that 1, of 18 for sums of this type are
(1 + 2) = 3, (1 + 5) = 6, and(1 + 17) = 18. It follows that the only solutions of σ(n) = 18 are n =
2 · 5 = 10 and n = 17.
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c. Suppose that σ(n) = 24. Each factor in the formula for σ(n) must divide 24 and the product of
these factors must be 24. The only ways to get factors, other than 1, of 24 for sums of this type are
(1 + 2) = 3, (1 + 3) = 4, (1 + 5) = 6, (1 + 7) = 8, (1 + 11) = 12, and (1 + 23) = 24. It follows that the
only solutions of σ(n) = 24 are n = 2 · 7 = 14,n = 3 · 5 = 15, and n = 23.

d. Suppose that σ(n) = 48. Each factor in the formula for σ(n) must divide 48 and the product of
these factors must be 48. The only ways to get factors, other than 1, of 48 for sums of this type are
(1 + 2) = 3, (1 + 3) = 4, (1 + 5) = 6, (1 + 7) = 8, (1 + 11) = 12, (1 + 23) = 24, and (1 + 47) = 48. If
follows that the only solutions of σ(n) + 48 are n = 3 · 11 = 33, n = 5 · 7 = 35, and n = 47.

e. Suppose that σ(n) = 52. Each factor in the formula for σ(n) must divide 52 and the product of
these factors must be 52. The only ways to get factors, other than 1, of 52 for sums of this type are
(1 + 3) = 4 and (1 + 3 + 9) = 13. Since only one factor for each prime can be included, there are no
solutions of σ(n) = 52.

f. Suppose that σ(n) = 84. Each factor in the formula for σ(n) must divide 84 and the product of
these factors must be 84. The only ways to get factors, other than 1, of 84 for sums of this type are
(1 + 2) = 3, (1 + 3) = 4, (1 + 5) = 6, (1 + 2 + 4) = 7, (1 + 11) = 12, (1 + 13) = 14, and (1 + 83) = 84.
It follows that the only solutions of σ(n) = 84 are n = 5 · 13 = 65, n = 4 · 11 = 44, and n = 83.

7.2.6. a. Suppose that n =
∏r

j=1 p
aj

j is the prime factorization of n. By Theorem 7.9 we know that τ(n) =∏r
j=1(1 + aj).

For τ(1) = 1 it is necessary that n = 1. Hence n = 1 is the smallest positive integer such that
τ(n) = 1.

b. For τ(n) = 2 we must have n = p where p is a prime. Consequently the smallest n for which τ(n) =
2 is p = 2.

c. For τ(n) = 3 we must have n = p2 where p is prime. Hence 22 = 4 is the smallest n for which
τ(n) = 4.

d. For τ(n) = 6, by the formula for τ(n) we see that n must have the form n = pq2 or n = p5 where p
and q are prime. The smallest n of the first kind is 3 · 22 = 12 and the smallest n of the second kind
is 25 = 32. Hence the smallest n such that τ(n) = 6 is n = 12.

e. For τ(n) = 14, by the formula for τ(n), we see that n = pq6 or n = p13 where p and q are primes.
The smallest such integer is n = 3 · 26 = 192.

f. For τ(n) = 100, by the formula for τ(n) we see that n = pq49, n = p3q24, n = p4q19, n = p9q9, n =
pqr24, n = p3r4q4 or n = pqr4s4 where p, q, r, and s are primes. We can easily see that the smallest
such integer is of the final form listed, with n = 24 · 34 · 5 · 7 = 45360.

7.2.7. Note that τ(pk−1) = k whenever p is prime and k is a positive integer k > 1. Hence the equation
τ(n) = k has infinitely many solutions.

7.2.8. The positive integers with exactly two prime divisors are the primes.

7.2.9. The only positive integers with exactly three prime divisors are those integers of the form p2 where
p is prime. We see this using the formula given in Theorem 7.9. We have τ(pa1

1 · · · pat
t ) = (a1 + 1)(a2 +

1) · · · (at + 1). Since the terms on the right-hand side are all at least 2, this product can equal 3 if and
only if there is precisely one term on the right-hand side that is equal to 3.

7.2.10. We need τ(n) = 4. If n = pa1
1 pa2

2 · · · pas
s then τ(n) = (a1 + 1)(a2 + 1) · · · (as+1) = 4, so there are two

possibilities. Either (a1 + 1) = 4 or (a1 + 1) = (a2 + 1) = 2. In the first case a1 = 3 and n = p3. In the
second case a1 = a2 = 1 and n = p1p2.
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7.2.11. We first suppose that n is not a perfect square. Then the divisors of n come in pairs with product n,
that is, when d is a divisor, so is n/d and conversely. Since there are τ(n)/2 such pairs, the product of all
divisors is nτ(n)/2. Now suppose that n is a perfect square. Then there are τ(n)−1

2 pairs with product n

and the extra divisor
√

n. Hence the product of all the divisors of n is n(τ(n)−1)/2 · n1/2 = nτ(n)/2.

7.2.12. If n > k then σ(n) ≥ n > k. So a solution must be a positive integer less than or equal to k. Since there
are only finitely many of these, we’re done.

7.2.13. a. The nth term is given by σ(2n).

b. The nth term is given by σ(n)− τ(n).

c. The nth term of this sequence is the least positive integer m with τ(m) = n.

d. The nth term is the number of solutions k to the equation σ(k) = n.

7.2.14. a. The nth term is given by σ(n) + τ(n).

b. The nth term is given by σ(2n− 1).

c. The nth term is the nth smallest solution to τ(n) = 4.

d. The nth term is given by τ(2n− 1).

7.2.15. If we list the values of τ(n) for n = 2, 3, 4, . . . , in order, we can identify highly composite integers by
noting the first occurrence of a value which is larger than all previous values. From Table 2 in Appen-
dix E we see that τ(2) = 2 is the first occurrence of 2, and is larger than all previous values. This is first
exceeded when we find τ(4) = 3. This is exceeded when we find τ(6) = 4. This is exceeded when we
find τ(12) = 6. This is exceeded when we find τ(24) = 8. This is exceeded when we find τ(36) = 9. So
the first six highly composite numbers are 2, 4, 6, 12, 24 and 36.

7.2.16. Since n is highly composite, τ(m) > τ(n) > τ(j) for j = 1, 2, . . . , n − 1. Let k be the smallest integer
greater than n for which τ(k) ≥ τ(m). If no integer between m and n works, then k = m, so the exis-
tence of k is assured. Then τ(k) > τ(j) for j = 1, 2, . . . , k− 1, and hence k is highly composite. Since, for
instance τ(2a) = a+1 is arbitrarily large, such an m always exists, and hence, for each highly composite
number we can find a larger one. By induction, there are infinitely many highly composite numbers.

7.2.17. Let a be the largest highly composite integer less than or equal to n. Note that 2a is less than or equal
to 2n and has more divisors than a and hence τ(2a) > τ(a). By Exercise 16, there must be a highly com-
posite integer b with a < b ≤ 2a. If b ≤ n, this contradicts the choice of a. Therefore n < b ≤ 2n. It
follows that there must be a highly composite integer k with 2m < k ≤ 2m+1 for every nonnegative in-
teger m. Therefore, there are at least m highly composite integers less than or equal to 2m. Thus the mth
highly composite integer is less than or equal to 2m.

7.2.18. Let the prime power factorization of n be 2a13a2 · · · pak

k , and suppose there is some pair i < j such that
ai < aj . Form a new integer m = 2a1 · · · paj

i · · · pai
j · · · pak

k . Then τ(m) = τ(n) since both integers have
exactly the same set of exponents in their prime power factorization. But n/m = (pai

i p
aj

j )/(paj

i pai
j ) =

p
aj−ai

j /p
aj−ai

i > 1, since pj > pi. Therefore m < n with τ(m) = τ(n) and so n is not highly composite, a
contradiction. Therefore the sequence a1, a2, . . . , ak is strictly decreasing.

7.2.19. If n = 2a3b is highly composite, then by Exercise 18 we have a ≥ b. Since 2a3b > 2a−1b3b−15, we must
have τ(2a3b) > τ(2a−1b3b−15), that is (a + 1)(b + 1) > 2ab. Rearranging the inequality yields (a− 1)(b−
1) < 2. Hence, either a = b = 2 or b < 2. In the first case we have n = 36, which is highly composite. If
b = 1, assume a > 3. We have n = 2a3 > 2a−13 · 5. Then τ(2a3) = 2(a + 1) > 4(a − 2) = τ(2a−13 · 5).
This reduces to a < 5, so we need only check a = 1, 2, 3 and 4, which correspond to the numbers 6, 12, 24
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and 48, all of which are highly composite. Finally, if b = 0 assume a > 2. Then n = 2a > 2a−23, and so
tau(2a) = a + 1 > 2(a − 1) = τ(2a−23, which reduces to a < 5. So we need only check the cases a =
0, 1, 2, 3 and 4, which correspond to the numbers 1, 2, 4, 8 and 16. Of these, only 1, 2, and 4 are highly
composite. The complete list of the highly composite numbers of the form 2a3b is 1, 2, 4, 6, 12, 24, 36 and
48.

7.2.20. We have σ3(4) =
∑

d|4 d3 = 13 + 23 + 43 = 1 + 8 + 64 = 73. Similarly, we have σ3(6) =
∑

d | 6d3 =
13 + 23 + 33 + 63 = 1 + 8 + 27 + 216 = 252. Likewise, we have σ3(12) =

∑
d|12 d3 = 13 = 23 + 33 + 43 +

63 + 123 = 1 + 8 + 27 + 64 + 216 + 1728 = 2044.

7.2.21. We find that σk(p) =
∑

d|p dk = 1k + pk = 1 + pk.

7.2.22. We find that σk(pa) =
∑

d|pa dk = 1k + pk + (p2)k + · · ·+ (pa)k = 1k + pk + p2k + · · ·+ pak = (pak+1−1)
(p−1) .

7.2.23. Suppose that a and b are positive integers with (a, b) = 1. Then
∑

d|ab dk =
∑

d1|a,d2|b(d1d2)k =∑
d2|a dk

1

∑
d2|a dk

2 = σk(a)σk(b).

7.2.24. Suppose that n =
∏r

j=1 p
aj

j . Then since σk is multiplicative, σk(n) =
∏r

j=1 σk(paj

j ) =
∏r

j=1

(p
ajk+1
j −1)

(p−1) .

7.2.25. Let n = pa1 · · · par
r . Then φ(n) = (pa1

1 − pa1−1
1 ) · · · (par

r − par−1
r ) =

∑
Tj . Where

∑
Tj is this product is

expanded. Each term Tj is of the form Tj = (−1)kpb1
1 · · · pbr

r where bi = ai or ai−1. Note that each one of
these terms is a divisor of n, and note that one of the terms is pa1

1 · · · par
r = n. Now since σ(n) is the sum of

the divisors of n, each of the terms Tj above appears in the sum σ(n) =
∑

d|n d, without the (−1)k. Note
that n also appears in this sum. Then we have σ(n) + φ(n) =

∑
d|n d +

∑
Tj = 2n +

∑
d|n

d<n
d +

∑
Tj 6=n Tj .

Now if Tj is negative, then the | Tj | appearing in the first sum will cancel it. But if Tj is positive we get
two terms Tj in the last sum. Then we have σ(n)+φ(n) = 2n+

∑
d|n,d<n,d 6=Tj

d+2
∑

Tj>0,tj 6=n Tj . Since
both of these last sums are nonnegative, we need them both to be zero in order to have a solution. In
particular the expansion of φ(n) = (pa1

1 − pa1−1
1 ) · · · (par

r − par−1
r ) can have no positive terms other than

n, and therefore we must have φ(n) = (pa1
1 − pa1−1

1 ). Now the term d = 1 appears in the first sum unless
Tj = −1 for some j. Therefore φ(n) = p1 − 1 and so n is prime.

7.2.26. First we find an explicit formula for f(n) =
∏

d|n d. Notice that

nτ(n) =
∏

d|n
n =

∏

d|n
d(

n

d
) =

∏

d|n
d

∏

d|n

n

d
.

Now as d runs through the divisors of n, so does n
d , so the last two products are the same. Then nτ(n) =(∏

d|n d
)2

and therefore f(n) = n
τ(n)

2 . Now if f(n) = f(m), with n < m, we have n
τ(n)

2 = m
τ(m)

2 which

implies there exists an integer a such that as = n and at = m for some nonnegative integers s and t.
Since n < m, we have s < t so any divisor of n is also a divisor of m, but not vice versa. Therefore
f(n) < f(m) a contradiction.

7.2.27. Let n = pa1
1 pa2

2 · · · par
r and let x and y be integers such that [x, y] = n. then x | n and y | n so we

have x = pb1
1 pb2

2 · · · par
r and y = pc1

1 pc2
2 · · · pcr

r , where bi and ci = 0, 1, 2, . . . , ai. Since [x, y] = n, we must
have max{bi, ci} = ai for each i. Then one of bi and ci must be equal to ai and the other can range over
0, 1, . . . , ai. Therefore we have 2ai + 1 ways to choose the pair (bi, ci) for each i. Then in total, we can
choose the exponents b1, b2, . . . br, c1, . . . , cr in (2a1 + 1)(2a2 + 1) · · · (2ar + 1) = τ(n2) ways.

7.2.28. If p is an odd prime, then pa > (1 + 2)a = 1 + 2a + . . . , +2a > a + 1 for integers a ≥ 1. Also 2a =
(1 + 1)a = 1 + a +

(
a
2

)
+ . . . + 1 > a + 1 for a ≥ 2. Therefore, for any prime p, τ(pa) = (a + 1) < pa unless

pa = 21. Then τ(n) =
∏

τ(pai
i ) <

∏
pai

i = n if any pai
i is different from 2. Thus n > n1 > n2 > · · · until,

for some r, nr = 2, and then nr+1 = τ(nr) = τ(2) = 2 etc.
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7.2.29. Suppose that n is composite. Then n = ab where a and b are integers with 1 < a ≤ b < n. It follows
that either a ≥ √

n or b ≥ √
n. Consequently σ(n) ≥ 1 + a + b + n > 1 +

√
n + n > n +

√
n. Conversely,

suppose that n is prime. Then σ(n) = n + 1 so that σ(n) ≤ n +
√

n. Hence σ(n) > n +
√

n implies that n
is composite.

7.2.30. If d is a divisor of n, then there is an integer k such that n = dk. It follows that 2d − 1 is a divisor of
2n− 1 since 2n− 1 = (2d− 1)(2d(k−1) +2d(k−2) + · · ·+2d +1). Hence 2n− 1 has at least as many divisors
as n does, or in other words, τ(2n − 1) ≥ τ(n).

7.2.31. For n = 1, the statement is true. Suppose that
∑n−1

j=1 τ(j) = 2
∑[

√
n−1]

j=1

[
n−1

j

]
− [
√

n− 1]2. For the in-

duction step, it suffices to show that τ(n) = 2
∑[

√
n−1]

j=1

([
n
j

]
−

[
n−1

j

])
= 2

∑
j≤[

√
n−1]

j|n
1, which is true by

the definition of τ(n), since there is one factor less than
√

n for every factor greater than
√

n. Note that if
n is a perfect square, we must add the term 2

√
n− (2

√
n− 1) = 1 to the last two sums. For n = 100, we

have
∑100

j=1 τ(j) = 2
∑10

j=1

[
n
j

]
− 100 = 482.

7.2.32. Let f(n) = σ(n)
n . Then f is multiplicative. f(ps) = σ(ps)

ps = ps+ps−1+···+p+1
ps = 1 + 1

p + 1
p2 + · · · + 1

ps .
Then it is clear that f(ps) < f(pt) whenever s < t. Suppose n = pa1

1 · · · par
r and d = pb1

1 · · · pbr
1 is a divisor

of n so that bi ≤ ai for i = 1, 2, . . . , r. Then f(n) =
∏

f(pai
i ) ≥ ∏

f(pbi
i ) = f(d). Since a | ab this proves

the first inequality. Now if d | ab, then d can be written as d = xy where x | a and y | b in at least one way.
Then every d in

∑
d|ab d appears in the double sum

∑
x|a

∑
y|b xy =

∑
x|a x

∑
y|b y at least once, which is

to say σ(ab) ≤ σ(a)σ(b) which proves the second inequality.

7.2.33. We use the identity
∑min{a,b}

j=0 (pa+b−j + pa+b−j−1 + · · · + pj) = (pa + pa−1 + · · · + 1)(pb + pb−1 +
· · · + 1). If a =

∏
pai and b =

∏
pbi , then σ(a)σ(b) =

∏
(pai + pai−1 + · · · + 1)(pbi + pbi−1 + · · · + 1) =∏ ∑min{ai,bi}

j=0 (pai+bi−j
i + pai+bi−j−1

i + · · ·+ pj
i )

7.2.34. By Theorem 7.8 we know that
∑

d|n τ(n) is multiplicative since τ(n) is multiplicative. By Exercise 46

in Section 7.1 it follows that
(∑

d|n τ(d)
)2

is multiplicative and τ(n)3 is multiplicative. Moreover, by

Theorem 7.8 we see that
∑

d|n τ(d)3 is multiplicative. Hence both sides of this identity are multiplica-
tive, so to verify that the identity holds for all positive integers n it suffices to prove it holds for powers

of primes. So suppose that n = pk where p is prime and k is a positive integer. Then
(∑

d|pk τ(d)
)2

=
(∑k

j=0 τ(pj)
)2

=
(∑k

j=0(j = 1)
)2

=
(∑k+1

j=1 k
)2

=
(

(k+1)(k+2)
2

)2

, using the formula for the sum

of the first k positive integers given in Exercise 6 of Section 1.2. On the other hand,
∑

d|pk τ(d)3 =
∑K

j=0 τ(pj)3 =
∑k

j=0(j + 1)3 =
∑k+1

j=1 j3 =
(

(k+1)(k+2)
2

)2

, using the formula for the sum of the cubes of
the first k positive integers given in Exercise 8 of Section 1.2. It follows that both sides agree when n is a
power of a prime. Since both sides are multiplicative,Theorem 6.1 shows that they agree for all positive
integers n.

7.2.35. From Exercises 52 and 53 in Section 7.1 we know that the arithmetic function f(n) = 2ω(n) is multi-
plicative. Further, since the Dirichlet product h(n) =

∑
d|n 2ω(d) = f ∗ g(n), where g(n) = 1 is also mul-

tiplicative, we know that h(n) is also multiplicative. See Exercise 41 in Section 7.1. Since τ(n) and n2 are
multiplicative, so is τ(n2). Therefore, it sufficient to prove the identity for n equal to a prime power, pa.
We have τ(p2a) = (2a+1). On the other hand we have

∑
d|pa 2ω(d) =

∑a
i=0 2ω(pi) = 1 +

∑a
i=1 21 = 2a + 1,

which completes the proof.

7.2.36. By Exercises 41 and 46 of Section 7.1, and Theorem 7.8, we know that both sides of the identity repre-
sent multiplicative functions. Therefore it suffices to prove the identity for prime powers. Suppose n =
pa. Then we have

∑
d|pa paσ(d)/d =

∑a
i=0 paσ(pi)/pi =

∑a
i=0 pa−iσ(pi) =

∑a
i=0 pa−i(pi + pi−1 + · · · p +

1) =
∑a

i=0

∑i
j=0 pa−j =

∑a
j=0

∑a
i=j pa−j =

∑a
j=0(a − j + 1)pa−j =

∑a
k=0(k + 1)pk =

∑a
k=0 pkτ(pk) =
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∑
d|pa dτ(d), which is the right hand side.

7.2.37. Let M be the matrix. Let D be the matrix with entries φ(1), φ(2), . . . , φ(n) on the diagonal and zeros
elsewhere. Let A be the matrix of 0’s and 1’s defined by the rule: If i divides j then the (i, j) entry is 1,
otherwise, it is 0. Then A has all 0’s below the main diagonal, and 1’s on the main diagonal, therefore
det(A) = 1. Check that M= ADAT . Then det(M) = 1 · det(D) · 1 = φ(1)φ(2) · · ·φ(n).

7.2.38. We have n ≡ 23 (mod 24) so n ≡ 2 (mod 3), and n is odd. If every prime dividing n was ≡ 1 (mod 3)
then n would be≡ 1 (mod 3) so n has a prime divisor p ≡ 2 (mod 3), say pa‖n. If a were even, then pa ≡
1 (mod 3) and then so is n, so there exists a prime divisor with a odd. Then σ(pa) ≡ pa + pa−1 + · · · +
p + 1 ≡ 2 + 1 + 2 + 1 + · · ·+ 2 + 1 ≡ 3 + 3 + · · ·+ 3 ≡ 0 (mod 3), so 3 | σ(n). Similarly n ≡ 7 (mod 8) so
either pa‖n with p ≡ 7 (mod 8) and a odd or qb‖n and rc‖n with q ≡ 3 (mod 8) and r ≡ 5 (mod 8) and b
and c odd. In the first case σ(pa) = pa + pa−1 + · · ·+ p + 1 ≡ 7 + 1 + 7 + 1 + · · ·+ 7 + 1 ≡ 0 (mod 8) and
so 8 | σ(n). In the second case σ(qb) ≡ 3 + 1 + 3 + 1 + · · · + 3 + 1 ≡ 0 (mod 4) so 4 | σ(n) and σ(rc) ≡
5 + 1 + 5 + 1 + · · ·+ 5 + 1 ≡ 0 (mod 2) so 2 | σ(n)

4 , hence 8 | σ(n). Since 3 | σ(n) we have 24 | σ(n).

7.2.39. Suppose there are infinitely many pairs of twin primes. Let p and p + 2 be a pair of twin primes. Then
σ(p) = p + 1 and φ(p + 2) = p + 2− 1 = p + 1. So each pair of twin primes is a solution to the equation.
Next Suppose there are infinitely many primes of the form 2q − 1 with q prime. Then φ(2q+1) = 2q and
σ(2q − 1) = 2q − 1 + 1 = 2q. So once again we have infinitely many solutions.

7.2.40. By Theorem 7.8, the function F (n) =
∑

d|n φ(d) is multiplicative. Therefore, to prove Theorem 7.7,
it suffices to show only that the identity holds for n a prime power. Suppose n = pa. Then F (n) =∑

d|pa φ(d) = φ(1) + φ(p) + φ(p2) + · · ·+ φ(pa) = 1 + (p− 1) + (p2 − p) + (p3 − p2) + · · ·+ (pa − pa−1).
This is a telescoping sum, and every term cancels expect pa, and so F (pa) = pa as desired.

7.3. Perfect Numbers and Mersenne Primes
7.3.1. From the table on page 264, the first six Mersenne primes are given by 2p−1 with p = 2,3,5,7,13, and 17.

Then Theorem 6.9 gives the first six even perfect numbers as 21(22− 1) = 6;22(23− 1) = 28; 24(25− 1) =
496; 26(27 − 1) = 8, 128; 212(213 − 1) = 33, 550, 336; and 216(217 − 1) = 8589869056.

7.3.2. 219 − 1 is prime, so the seventh even perfect number is 137438691328. 223 − 1 and 229 − 1 are compos-
ite, but 231 − 1 is prime, so the eighth even perfect number is 2305843008139952128.

7.3.3. a. By the difference of cubes factorization we have 215 − 1 = (25)3 − 1 = (25 − 1)(210 + 25 + 1), so
25 − 1 = 31 is a factor.

b. Since 7 | 91, 127 = 27 − 1 | 291− 1.

c. Since 7 | 1001, 127 = 27 − 1 | 21001− 1.

7.3.4. a. Since 3 | 111, 7 = 23 − 1 | 2111− 1.

b. Since 17 | 289, 131071 = 217− 1 | 2289− 1.

c. Since 11 | 46189, 2047 = 211− 1 | 246189− 1.

7.3.5. We have σ(12) = 28, σ(18) = 39, σ(20) = 42, σ(24) = 60, σ(30) = 72 and σ(36) = 91.

7.3.6. If n = paqb, then σ(n)
n = pa+1−1

(p−1)pa · qb+1−1
(q−1)qb < p

p−1 · q
q−1 ≤ 3

2 · 5
4 < 2 so n has at least 3 distinct prime fac-

tors. If p < q are primes, then check that σ(pa)
pa > σ(qa)

qa , so we may take the 3 prime factors to be 3,5, and
7. Try the possibilities in order: 3 · 5 · 7, 32 ·5 · 7, 33 ·5 ·7, 3252 · 7, 3 ·5 ·7 · 11, etc. and find that σ(33 ·5 ·7) =
σ(945) = 1920 is the smallest example.
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7.3.7. Suppose that n = pk where p is prime and k is a positive integer. Then σ(pk) = pk+1−1
p−1 . Note that

2pk− 1 < pk+1 since p ≥ 2. It follows that pk+1− 1 < 2(pk+1− pk) = 2pk(p− 1), so that (pk+1−1)
p−1 < 2pk =

2n. It follows that n = pk is deficient.

7.3.8. Let m and n be integers and write mn =
∏

pai
i and n =

∏
pbi

i where the pi are distinct primes and

ai ≥ bi. Then σ(mn)
mn =

∏ pi−p
−ai
i

pi−1 >
∏ pi−p

bi
i

pi−1 = σ(n)
n . So if mn is deficient, then σ(n)

n < σ(mn)
mn < 2, so n is

also deficient.

7.3.9. Suppose that n is abundant or perfect. Then σ(n) ≥ 2n. Suppose that n | m. Then m = nk for some
integer k. The divisors of m include the integers kd and d | n. Hence σ(m) ≥ ∑

d|n(k + 1)d = (k +
1)

∑
d|n d = (k + 1)σ(n) ≥ (k + 1)2n > 2kn = 2m. Hence m is abundant.

7.3.10. σ(2m−1)σ(2m−1)
n = (2m−1)σ(2m−1)

2m−12(m−1) = σ(2m−1)
2m−1 > 2, since σ(n) ≥ n + 1 with equality if and only if n is

prime.

7.3.11. If p is any prime, then σ(p) = p + 1 < 2p, so p is deficient. Since there are infinitely many primes, we
must have infinitely many deficient numbers.

7.3.12. The solution to Exercise 10 provides an infinite set of even abundant numbers, since 2m − 1 is com-
posite whenever m is composite.

7.3.13. See Exercises 6 and 9. For a positive integer a let n = 3a5 · 7 and compute σ(n) = σ(3a5 · 7) = (3a+1 −
1)/(3 − 1)(5 + 1)(7 + 1) = (3a+1 − 1)24 = 3a+124 − 24 = 2 · 3a(36) − 24 = 2 · 3a(35) + 2 · 3a − 24 =
2n + 2 · 3a − 24, which will be greater than 2n whenever a ≥ 3. This demonstrates infinitely many odd
abundant integers.

7.3.14. We have σ(paqb) = (pa+1−1)(qb+1−1)
(p−1)(q−1) < (pa+1)(qb+1)

(p−1)(q−1) = p
p−1

q
q−1paqb < 2paqb. Therefore n = paqb is defi-

cient.

7.3.15. a. The prime factorizations of 220 and 284 are 220 = 22 · 5 · 11 and 284 = 22 · 71. Hence σ(220) =
σ(22)σ(5)σ(11) = 7 · 6 · 12 = 504 and σ(284) = σ(22)σ(71) = 7 · 72 = 504. Since σ(220) = σ(284) =
220 + 284 = 504, it follows that 220 and 284 form an amicable pair.

b. The prime factorizations of 1184 and 1210 are 1184 = 25 · 37 and 1210 = 2 · 5 · 112. Hence σ(1184) =
σ(25)σ(37) = 63 · 38 = 2394 and σ(1210) = σ(2)σ(5)σ(112) = 3 · 6 · 133 = 2394. Since σ(1184) =
σ(1210) = 1184 + 1210 = 2394, 1184 and 1210 form an amicable pair.

c. The prime factorizations of 79750 and 88730 are 79750 = 2 · 53 · 11 · 29 and 88730 = 2 · 5 · 19 ·
467. Hence σ(79750) + σ(2)σ(53)σ(11)σ(29) = 3 · 156 · 12 · 30 = 168480 and similarly σ(88730) =
σ(2)σ(5)σ(19)σ(467) = 3 · ·6 · 20 · 468 = 168480. Since σ(79750) = σ(88730) = 79750 + 88730 =
168480 it follows that 79750 and 88730 form an amicable pair.

7.3.16. a. σ
(
2n(3 · 2n−1 − 1)(3 · 2n − 1)

)
= (2n+1−1)3·2n−1·3·2n = (2n+1−1)·32·22n−1 and σ

(
2n(32 · 22n−1 − 1)

)
= (2n+1−1) ·32 ·22n−1. Also 2n(3 ·2n−1−1)(3 ·2n−1)+2n(32 ·22n−1−1) = 2n(3222n−1−3 ·2n−1−
3 · 2n + 1 + 3222n−1 − 1) = 2n(3222n−1 − 3 · 2n−1(1 + 2) + 3222n−1) = 2n32(22n−1 − 2n−1 + 22n−1) =
2n32(22n − 2n−1) = 22n−132(2n+1 − 1).

b. We find the following amicable pairs, (220, 284), (17296, 18416), (9363584, 9437056), corresponding
to n = 2, 4, and 7 in the formulae in part (a).

7.3.17. Since 120 = 23 ·3 ·5 and σ is multiplicative, we have σ(120) = σ(23 ·3 ·5) = σ(23)σ(3)σ(5) = 15 ·4 ·6 =
360. Since σ(120) = 360 = 3 · 120, it follows that 120 is 3-perfect.

7.3.18. σ(25325 · 7) = 26−1
2−1 · 33−1

3−1 · (5 + 1)(7 + 1) = 120960 = 4 · 30240.
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7.3.19. σ(27345 · 7 · 112 · 17 · 19) = 28−1
2−1 · 35−1

3−1 (5+1)(7+1) 113−1
11−1 (17+1)(19+1) = 255 · 121 · 6 · 8 · 133 · 18 · 20 =

5 · 14182439040.

7.3.20. Suppose that n is 3-perfect and 3 does not divide n. Then σ(3n) = σ(3)σ(n) = 4 · 3n = 12n = 4 · 3n.
Hence 3n is 4-perfect.

7.3.21. Suppose that n is 3-perfect and 3 does not divide n. Then σ(3n) = σ(3)σ(n) = 4 · 3n = 12n = 4 · 3n.
Hence 3n is 4-perfect.

7.3.22. For example, σ(2433527) = σ(75600) = 307520 > 4 · 75600.

7.3.23. For example, σ(2634527211 · 13) = σ(908107200) = 4561786152 > 5 · 908107200.

7.3.24. The argument in the solution to Exercise 6 shows that a multiple of ak-abundant number is k-abundant.
So it suffices that there are k-abundant numbers for arbitrarily large k. Let nr =

∏r
i=1 pi be the product

of the first r primes. Then limn→∞
σ(nr)

nr
= limn→∞

∏r
i=1(1 + 1

pi
) =

∑∞
k=1

1
k = ∞.

7.3.25. We have σ(σ(16)) = σ(31) = 32 = 2 · 16. Hence 16 is superperfect.

7.3.26. We compute σ (σ(2q)) = σ(2q+1 − 1) = (2q+1 − 1) + 1 = 2q+1 = 2 · 2q . Therefore n is superperfect.

7.3.27. Certainly if r and s are integers, then σ(rs) ≥ rs+r+s+1. Suppose n = 2qt is superperfect with t odd
and t > 1. Then 2n = 2q+1t = σ (σ(2qt)) = σ

((
2q+1 − 1

)
σ(t)

) ≥ (2q+1− 1)σ(t) + (2q+1− 1) + σ(t) + 1 >

2q+1σ(t) ≥ 2q+t(t + 1). Then t > t + 1, a contradiction. Therefore we must have n = 2q, in which case
we have 2n = 2q+1 = σ (σ(2q)) = σ

(
2q+1 − 1

)
= σ(2n− 1). Therefore 2n− 1 = 2q+1 − 1 is prime.

7.3.28. Suppose σ
(
σ(p2)

)
= 2p2, then σ(p2 + p + 1) = 2p2. If p2 + p + 1 has three distinct prime factors, then

for one of them we have σ(qa) = 2, which is impossible. Therefore p2 +p+1 = qarb with q and r primes.
Then σ(qarb) = 2p2, so qa + · · · + q + 1 = p and rb + · · · + r + 1 = 2p. Then p ≡ 1 (mod q) and p2 =
p = 1 = qarb ≡ 0 (mod q), so 3 ≡ 0 (mod q) so q = 3. But p2 + p + 1 ≡ 3 (mod 9) since p ≡ 1 (mod 3),
therefore a = 1 and σ(qa) = σ(3) = 4, a contradiction.

7.3.29. a. By Theorem 7.12 any divisor of M7 = 127 must be of the form 14k + 1 where k is a positive integer.
There are no primes of this form less than

√
127 so M7 = 127 is prime.

b. By Theorem 7.12 any divisor of M11 = 2047 must be of the form 22k + 1 where k is a positive inte-
ger. The only prime of this form less than

√
2047 is 23. Since 23 does not divide 2047, it follows that

M11 = 2047 is prime.

c. By Theorem 7.12 any divisor of M17 = 131071 must be of the form 34k + 1 where k is a positive in-
teger. The primes of this form less than

√
131071 < 363 are 103, 137, 239, and 307, but none of these

divide 131071. Hence M17 = 131071 is prime.

d. By Theorem 7.12 any divisor of M29 = 536870911 must be of the form 58k + 1 where k is a positive
integer. We first note neither that 59 nor 107 divides 536870911. However, 233 = 58 · 4 = 1 does
divide 536870911 since 536870911 = 233 · 2304167. Hence M29 is not prime.

7.3.30. a. Note that M3 = 23 − 1 = 7. We have r1 = 4, and r2 ≡ 42 − 2 = 14 ≡ 0 (mod 7). Since r2 = 14 ≡
0 (mod 7) if follows that M3 = 7 is prime.

b. Note that M7 = 27 − 1 = 127. we have r1 = 4, r2 ≡ 42 − 2 = 14 (mod 127), r3 ≡ 142 − 2 = 194 ≡
67 (mod 127), r4 ≡ 672 − 2 = 4487 ≡ 42 (mod 127), r5 ≡ 422 − 2 = 1762 ≡ 111 (mod 127),and r6 ≡
1112 − 2 = 12319 = 0 (mod 127). Since r7−1 = r6 ≡ 0 (mod M7), it follows that M7 = 127 is prime.

c. M11 = 211 − 1 = 2047. Then r1 = 4, r2 = 16 − 2 = 14, r3 = 196 − 2 = 194, r4 ≡ 1942 − 2 ≡
788 (mod 2047), rs ≡ 7882 − 2 ≡ 701 (mod 2047), r6 ≡ 7012 − 2 ≡ 119 (mod 2047), r7 ≡ 1192 ≡



128 7. MULTIPLICATIVE FUNCTIONS

1877 (mod 2047), r8 ≡ 18772 − 2 ≡ 240 (mod 2047), r9 ≡ 2402 − 2 ≡ 282 (mod 2047), r10 ≡ 2822 −
2 ≡ 1736 6≡ 0 (mod 2047), therefore 2047 is not prime.

d. M13 = 8191. r1 = 4, r2 = 14, r3 = 194, r4 = 4870, r5 = 3953, r6 = 5970, r7 = 1857, r8 = 36, r9 =
1294, r10 = 3470, r11 = 128, r12 = 0,so M13 is prime.

7.3.31. Mn(Mn +2) = (2n−1)(2n +1) = 22n−1. If 2n+1 is prime then φ(2n+1) = 2n and 22n ≡ 1 (mod 2n+
1). Then (2n + 1) | 22n − 1 = Mn(Mn + 2). Therefore (2n + 1) | Mn or (2n + 1) | (Mn + 2).

7.3.32. a. Suppose that n is an odd perfect number with n = pk1
1 pk2

2 · · · pkm
m . Then σ(n) = 2n =

∏m
j=1 σ(pkj

j ).
Since n is odd it follows that 2n ≡ 2 (mod 4) and consequently σ(n) = 2n is divisible by 2 but
not by 4. Hence σ(n) ≡ 2 (mod 4)). It follows that exactly one of the terms σ(pkj

j ) is even and not
divisible by 4 and all other terms are odd. We now relabel the terms so that σ(pk1

1 ) is the even term.
Suppose that pi ≡ −1 (mod 4). Note that σ(pki

i ) = 1 + pi + p2
i + · · ·+ pki

i ≡ 1 + (−1) + 1 + · · ·+
(−1)ki = 0 (mod 4) if ki is odd and 1 (mod 4) if ki is even. It follows that p1 is not congruent to
−1 modulo 4 and that all primes congruent to −1 modulo 4 occur to an even power in the prime
factorization of n.

Now suppose that pi ≡ 1 (mod 4). We have σ(pki
i ) = 1 + pi + p2

i + · · ·+ pki
i ≡ 1 + 11 + 12 + · · ·+

1ki = ki = 1 (mod 4). We know that p1 ≡ 1 (mod 4) and that σ(pki
1 ) ≡ 2 (mod 4). It follows that

ki ≡ 1 (mod 4). For the primes pi in the factorization other than pi that are congruence to 1 modulo
4 it follows that ki ≡ or 2 (mod 4) since σ(ki) = ki + 1 is odd. Summarizing we see that the prime
factorization of n consists of a prime congruent to 1 modulo 4 to a power which is congruent to 1
modulo 4 and a product of even powers of other odd primes. It follows that n = pam2 where p is
prime and p ≡ a ≡ 1 (mod 4).

b. We see from part a) that n = pam2 where p is prime and p ≡ a ≡ 1 (mod 4). It follows that pa ≡
11 ≡ 1 (mod 4) and since m is odd, m2 ≡ 1 (mod 4). Hence n = 1 (mod 4).

7.3.33. Since m is odd, m2 ≡ 1 (mod 8), so n = pam2 ≡ pa (mod 8). By Exercise 32 (a), a ≡ 1 (mod 4), so
pa ≡ p4kp ≡ p (mod 8),since p4k is an odd square. Therefore n = p (mod 8).

7.3.34. Let n = 3a5b7c
∏

pai
i . Since 3 and 7 6≡ 1 (mod 4), by Exercise 32 (a), we must have a, c ≥ 2. Then 2 <

13·6·57
9·5·49 = σ(32·5·72)

32·5·72 ≤ σ(n)
n = 2, a contradiction.

7.3.35. First suppose that n = pa where p is prime and a is a positive integer. Then σ(n) = pa+1−1
p−1 < pa+1

p−1 =
np

p−1 = n
1− 1

p

≤ n
2
3

< 3n
2 so that σ(n) 6= 2n and n is not perfect. Next suppose that n = paqb where a and

b are primes and a and b are positive integers. Then σ(n) = pa+1−1
p−1 · qb+1−1

q−1 < pa+1qb+1

(p−1)(q−1) = npq
(p−1)(q−1) =

n
(1− 1

p )(1− 1
q )
≤ n

( 2
3 )( 4

5 )
= 15n

8 < 2n. Hence σ(n) 6= 2n and n is not perfect.

7.3.36. Suppose n = paqbrc. Then σ(n)
n < σ(pqr)

pqr = (p+1)(q+1)(r+1)
pqr . If (p, q, r) is not (3, 5, 7) or(3, 5, 11), then

the last expression is < 2 and so σ(n)
n < 2 and n is not perfect. Exercise 28 eliminates (3, 5, 7). Exercise

32 (a) gives that if n = 3a5b11c, then a, c,≥ 2. So σ(n)
n < σ(9·5·121)

9·5·121 < 2.

7.3.37. By Exercise 11 of Section 7.2 it follows that the product of all positive divisors of an integer n is n
τ(n)

2 .

If the product of all divisors of n other than n is n2 then n
τ(n)
2−1 = n2 so that τ(n)

2 = 3. This implies that
τ(n) = 6. The integers with τ(n) = 6 are those of the form p5 and p2q where p and q are primes.

7.3.38. a. Suppose that n = n1 is perfect. Then n2 = σ(n) − n = 2n − n = n, so that nj = σ(nj−1) − nj−1 =
σ(n)− n = n for all j ≥ 1. It follows that n = n1 = n2 = n3 = · · · .

b. Suppose that m and n are an amicable pair. Then σ(m) = σ(n) = m + n. If n1 = m then n2 =
σ(n1)− n1 = (m + n)−m = n. We see that n3 = σ(n2)− n2 = σ(m)−m = (m + n)− n = m. We
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see that the terms nj are periodic, with n1 = m, n2 = n, n3 = m, n4 = n, and so on.

c. Let n1 = 12496 = 24 · 11 · 71. Then n2 = σ(n1) − n1 = 26784 − 12496 = 14288, since σ(12496) =
σ(24)σ(11)σ(71) = 31 · 12 · 72 = 26784.

Iterating, we find that n3 = σ(n2) − n2 = 29760 − 14288 = 15472, since 14288 = 24 · 19 · 47 and
σ(14288) = σ(24)σ(19)σ(47) = 31 · 20 · 48 = 29760.

Continuing, we see that n4 = σ(n3) − n3 = 30008 − 15472 = 14536 since 15472 = 24 · 967 and
σ(15472) = σ(24σ(967) = 31 · 968 = 30008.

Carrying the computation to the next stage, we see that n5 = σ(n4) − n4 = 28800 − 14536 =
14264. Since 14536 = 23 · 23 · 79 and σ(14536) = σ(23)σ(23)σ(79) = 15 · 24 · 80 = 28800.

The next iteration shows that n6 = σ(n5)− n5 = 26760− 14264 = 12496. Since 14264 = 23 · 1783
and σ(14264) = σ(23)σ(1784) = 15 · 1784 = 26760.

Since n6 = n1, it follows that the sequence n1, n2, n3, n4 · · · is periodic with period equal to five,
with nj = nj−5 for j = 6, 7, 8, · · · .

7.3.39. Suppose Mn = 2n − 1 = ak, with n and k integers greater than 1. Then a must be odd. If k = 2j, then
2n−1 = (aj)2. Since n > 1 and the square of an odd integer is congruent to 1 modulo 4, reduction of the
last equation modulo 4 yields the contradiction −1 ≡ 1 (mod 4), therefore k must be odd. Then 2n =
ak +1 = (a+1)(ak−1−ak−2 + · · ·+1). So a+1 = 2m for some integer m. Then 2n−1 = (2m− 1)k. Now
n > mk so reduction modulo 22m gives−1 ≡ −k2m−1 (mod 22m) or, since k is odd, 2m ≡ 0 (mod 22m),
a contradiction.

7.4. Möbius Inversion
7.4.1. a. Since 12 = 223 is not squarefree, µ(12) = 0.

b. Since 15 = 3 · 5 is the product of two primes, µ(15) = (−1)2 = 1.

c. Since 30 = 2 · 3 · 5 is the product of three primes, µ(30) = (−1)3 = −1.

d. Since 50 = 2 · 52 is not squarefree, µ(50) = 0.

e. Since 1001 = 7 · 11 · 13 is the product of three primes, µ(1001) = (−1)3 = −1.

f. Since 2 · 3 · 5 · 7 · 11 · 13 is the product of six primes, µ(2 · 3 · 5 · 7 · 11 · 13) = (−1)6 = 1.

g. Since 4|10!, we know 10! is not squarefree, so we have µ(10!) = 0.

7.4.2. a. Since 33 = 3 · 11, the product of two primes, µ(33) = (−1)2 = 1.

b. Since 105 = 3 · 5 · 7, we have µ(105) = (−1)3 = −1.

c. Since 110 = 2 · 5 · 11, we have µ(110) = (−1)3 = −1.

d. Since 22 | 740, we have µ(740) = 0.

e. Since 32 | 999, we have µ(999) = 0.

f. Since 3 · 7 · 13 · 19 · 23 is the product of five distinct primes, µ(3 · 7 · 13 · 19 · 23) = (−1)5 = −1.

g. Let n = 10!/(5!)2. The highest power of 2 dividing the numerator is 28. The highest power of 2
dividing 5! is 23, so the highest power of 2 dividing the denominator is 26. Therefore 22 | n, and so
µ(n) = 0.

7.4.3. Since 4 divides 100, 104, and 108, the value of µ for each of these is 0. Since 101, 103, 107, and 109 are
prime, µ for each of these values is −1. Then µ(102) = µ(2 · 3 · 17) = (−1)3 = −1, µ(105) = µ(3 · 5 · 7) =
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(−1)3 = −1, µ(106) = µ(2 · 53) = (−1)2 = 1, and µ(110) = µ(2 · 5 · 11) = (−1)3 = −1.

7.4.4. Since 4 divides 1000, 1004, and 1008, the value of µ at these numbers is 0. From Exercise 1(e), µ(1001) =
−1. Since 1002 = 2 · 3 · 167, we have µ(1002) = −1. Since 1003 = 17 · 59, we have µ(1003) = 1. Since
1005 = 3 · 5 · 67, we have µ(1005) = −1. Since 1006 = 2 · 503, we have µ(1006) = 1. Since 1007 = 19 · 53,
we have µ(1007) = 1. Since 1009 is prime, we have µ(1009) = −1. Since 1010 = 2 · 5 · 101, we have
µ(1010) = −1.

7.4.5. Such n must be the product of an even number of distinct primes. The only product of zero primes is
1. The products of 2 primes which are less than or equal to 100, are 2 · 3 = 6, 2 · 5 = 10, 2 · 7 = 14, 2 · 11 =
22, 2 · 13 = 26, 2 · 17 = 34, 2 · 19 = 38, 2 · 23 = 46, 2 · 29 = 58, 2 · 31 = 62, 2 · 37 = 74, 2 · 41 = 82, 2 · 43 =
86, 2 · 47 = 94, 3 · 5 = 15, 3 · 7 = 21, 3 · 11 = 33, 3 · 13 = 39, 3 · 17 = 51, 3 · 19 = 57, 3 · 23 = 69, 3 · 29 = 87,
3 · 31 = 93, 5 · 7 = 35, 5 · 11 = 55, 5 · 13 = 65, 5 · 17 = 85, 5 · 19 = 95, 7 · 11 = 77, and 7 · 13 = 91. Since the
product of the four smallest primes is 210 > 100, the above list is exhaustive.

7.4.6. The product of the 4 smallest primes is 210, so we need only find those integers with exactly one or
three distinct prime factors. The primes between 100 and 200 are given in the table in the appendix. The
integers in this range which are products of three primes are: 102, 105, 110, 114, 130, 138, 154, 165, 170,
174, 182, 186, 190, and 195.

7.4.7. Starting with the values µ(1) = µ(6) = µ(10) = 1, µ(2) = µ(3) = µ(5) = µ(7) = −1, and µ(4) = µ(8) =
µ(9) = 0, we compute M(1) = 1, M(2) = 1 + (−1) = 0, M(3) = 0 + (−1) = −1, M(4) = −1 + 0 = −1,
M(5) = −1 + (−1) = −2, M(6) = −2 + 1 = −1, M(7) = −1 +−1 = −2, M(8) = −2 + 0 = −2, M(9) =
−2 + 0 = −2, and M(10) = −2 + 1 = −1,

7.4.8. If p is an odd prime between 1 and 50, then both µ(p) = −1 and µ(2p) = 1 are in the sum, and add to
zero, so we need not consider these numbers in the sum. We also need not consider numbers which are
not squarefree. There are 10 primes between 50 and 100 which contribute, collectively −10 to the sum.
This leaves only 1, 2, 15, 21, 30, 33, 35, 39, 42, 51, 55, 57, 65, 66, 69, 70, 77, 78, 85, 87, 91, 93, and 95. But 16 of
these are the product of two primes, so they contribute 16 to the sum. This leaves 1, 2, 30, 42, 66, 70, and
78. The last 5 of these are the products of 3 primes, and so contribute −5 to the sum. Then we have
M(100) = µ(1) + µ(2)− 10 + 16− 5 = 1− 1 + 1 = 1.

7.4.9. Since µ(n) is 0 for nonsquarefree n, 1 for n a product of an even number of distinct primes and −1 for
n a product of a odd number of distinct primes, the sum M(n) =

∑n
i=1 µ(i) is unaffected by the non-

squarefree numbers, but counts 1 for every even product and −1 for every odd product. Thus M(n)
counts how many more even products than odd products there are.

7.4.10. Since n, n+1, n+2, n+3 form a complete residue system modulo 4, one of them is divisible by 4, and
so not squarefree. Therefore one of the factors in µ(n)µ(n+1)µ(n+2)µ(n+3) is 0, making the product 0.

7.4.11. For any nonnegative integer k, the numbers n = 36k + 8 and n + 1 = 36k + 9 are consecutive and
divisible by 4 = 22 and 9 = 32 respectively. Therefore µ(36k + 8) + µ(36k + 9) = 0 + 0 = 0.

7.4.12. If n is a solution to the system of congruences n ≡ −1 (mod 4), n ≡ 0 (mod 9), n ≡ 1 (mod 25), then
4 | (n + 1), 9 | n and 25 | (n − 1), and none of n − 1, n, or n + 1 is squarefree, making each term of the
sum 0. Since the Chinese remainder theorem ensures infinitely many solutions, all n ≡ 351 (mod 900),
there are infinitely many such n.

7.4.13. Since every multiple of 4 is nonsquarefree, we can have at most 3 consecutive integers for which µ
takes on nonzero values.

7.4.14. We can have µ(n) = 0 for arbitrarily long strings of integers. To see this, let k be a positive integer and
pi be the ith prime. By the Chinese remainder theorem, there is a solution n to the system of congru-
ences n ≡ 0 (mod p2

1), n ≡ −1 (mod p2
2), n ≡ −2 (mod p2

3), . . . , n ≡ −k + 1 (mod p2
k). Then for every i =

0, 1, . . . , k−1, we have p2
i+1 | n+ i, and so none of the numbers n, n+1, n+2, . . . , n+k−1 is squarefree.
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Hence µ takes on the value 0 for all of them.

7.4.15. Let h(n) = n be the identity function. Then from Theorem 7.7 we have h(n) = n =
∑

d|n φ(n). Then
by the Möbius inversion formula, we have φ(n) =

∑
d|n µ(d)h(n/d) =

∑
d|n µ(d)(n/d) = n

∑
d|n µ(d)/d,

as desired.

7.4.16. a. Let F (n) = n for all n. Then we have F (n) =
∑

d|n φ(n/d). By the Möbius inversion formula
we have φ(n) =

∑
d|n µ(d)F (n/d). The divisors of pt are 1, p, p2, . . . , pt of which only 1 and p are

square-free so we have φ(pt) =
∑t

j=0 µ(pj)F (pt/pj) = µ(1)F (pt) + µ(p)F (pt−1) = pt − pt−1.

b. Since F as defined in part (a) is multiplicative, and since µ is multiplicative, we have φ = µ ∗ F is
also multiplicative by Exercise 41 in Section 7.1.

7.4.17. Since µ and f are multiplicative, then so is their product µf , by Exercise 46 of Section 7.1. Further, the
summatory function

∑
d|n µ(d)f(d) is also multiplicative by Theorem 7.17. Therefore it suffices to prove

the proposition for n a prime power. We compute
∑

d|pa µ(d)f(d) = µ(pa)f(pa)+µ(pa−1)f(pa−1)+ · · ·+
µ(p)f(p) + µ(1)f(d). But for exponents greater than 1, µ(pj) = 0, so the above sum equals µ(p)f(p) +
µ(1)f(1) = −f(p) + 1, as desired.

7.4.18. Let n = pa1
1 pa2

2 · · · pak

k be the prime power factorization for n. Using f(n) = n in Exercise 17, we have∑
d|n dµ(d) =

∏k
i=1(1− pi).

7.4.19. Here we let 1/n play the role of f(n) in the identity in Exercise 17. This gives
∑

d|n µ(d)/d =∏k
j=1 (1− 1/pj) . We might note that this resembles the formula for φ(n), indeed, it equals φ(n)/n. Com-

pare Exercise 15.

7.4.20. Let n = pa1
1 pa2

2 · · · pak

k be the prime power factorization for n. Using f(n) = τ(n) in Exercise 17, we
have

∑
d|n µ(d)τ(d) =

∏k
i=1(1− τ(pi)) =

∏k
i=1(1− 2) = (−1)k.

7.4.21. Here we let σ play the role of f in the identity. Then the sum equals
∏k

j=1(1 − σ(pj))
∏k

j=1(1 − (pj +

1)) =
∏k

j=1 pi.

7.4.22. If n is prime, then
∏

d|n µ(d) = µ(1)µ(n) = 1(−1) = −1. If s2 | n for some s > 1, then µ(s2) = 0
appears in the product, making the whole product 0. Finally, if n = p1p2 · · · pk, then

∏
d|n µ(d) = 1 ·∏

pi
µ(pi) ·

∏
pi,pj

µ(pipj) · · ·µ(p1p2 · · · pk). The first of these products contributes k (−1)s to the whole
product. The second product contributes

(
k
2

)
(−1)s to the product, and in general, the ith product con-

tributes
(
k
i

)
(−1)is to the product. Therefore, we need only count the number of (−1)s in the product,

namely,
(
k
1

)
+

(
k
3

)
+

(
k
5

)
+ · · · . By Exercise 6 of Appendix B, this last sum is 2k−1, which is even. (If k =

1, then n is prime.) Since the product consists of an even number of (−1)s, it must equal 1.

7.4.23. Since both sides of the equation are known to be multiplicative, (see Exercise 35 in Section 7.2) it suf-
fices to prove the identity for n = pa, a prime power. On one hand we have

∑
d|pa µ2(d) = µ2(p)+µ2(1) =

1 + 1 = 2. On the other hand, we have ω(pa) = 1, so the right side is 21 = 2, which equals the left side.

7.4.24. Exercises 52 and 53 in Section 7.1 show that g(n) = 2ω(n) is multiplicative. Then by the Möbius inver-
sion formula, we have µ2(n) =

∑
d|n µ(d)g(n/d)) =

∑
d|n µ(d)2ω(n/d), as desired.

7.4.25. Let λ play the role of f in the identity of Exercise 17. Then the left side equals
∏k

j=1(1 − λ(pj)) =∏k
j=1(1− (−1)) = 2k. But ω(n) = k by definition, so we’re done.

7.4.26. Since λ(n) and 2ω(n) are multiplicative, so is their Dirichlet product, which is the sum in question.
Therefore it suffices to prove the identity for n = pa, where p is prime. Then we have

∑
d|n λ(n/d)2ω(d) =∑a

i=0 λ(pa−i)2ω(pi) = λ(pa)2ω(1) +
∑a

i=1(−1)a−i21 = (−1)a(1) + 2
∑a

i=1(−1)a−i which equals (−1) +
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2(1) = 1 if a is odd, and 1 + 2(0) = 1 if a is even. This completes the proof.

7.4.27. We compute µ ∗ ν(n) =
∑

d|n µ(d)ν(n/d) =
∑

d|n µ(d) = ι(n), by Theorem 7.15.

7.4.28. Suppose f and g are multiplicative functions and f =
∑

d|n g(d) = g ? ν. From Exercise 42 in Section
7.1 we can Dirichlet multiply on both sides of the equation by µ, which is the inverse for ν, and get
f ? µ = g, that is, g(n) =

∑
d|n µ(d)f(n/d), which is the Möbius inversion formula.

7.4.29. Since ν(n) is identically 1, we have F (n) =
∑

d|n f(d) =
∑

d|n f(d)ν(n/d) = f ∗ ν(n). If we Dirichlet
multiply both sides by µ, we have F ∗ µ = f ∗ ν ∗ µ = f ∗ ι = f. as desired.

7.4.30. Let n = pa1
1 · · · par

r . Since Λ(d) = 0 unless d is a prime power, we have
∑

d|n Λ(d) =
∑r

i=1

∑
d|pai

i
Λ(d) =∑r

i=1

∑ai

j=1 Λ(pj
i ) =

∑r
i=1

∑ai

j=1 log(pi) =
∑r

i=1 ai log(pi) =
∑r

i=1 log(pai
i ) = log n.

7.4.31. From the Möbius inversion formula, we have Λ(n) =
∑

d|n µ(d) log(n/d) =
∑

d|n µ(d)(log n− log d) =∑
d|n µ(d) log(n)−∑

d|n µ(d) log(d) = log n
∑

d|n µ(d)−∑
d|n µ(d) log(d) = log nν(n)−∑

d|n µ(d) log(d) =
−∑

d|n µ(d) log(d), since ν(n) = 0 if n is not 1, and log n = 0 if n = 1.



CHAPTER 8

Cryptology

8.1. Character Ciphers
8.1.1. We translate ATTACK AT DAWN into the corresponding numbers. We obtain 0 19 19 0 2 10 0 19 3 0

22 13. When encrypting this message using the Caesar cipher we obtain the numbers 3 22 22 3 5 13 3 22
6 3 25 16. Translating this into letters give DWWDF NDWGD ZQ.

8.1.2. Using Table 8.2 we find L in the ciphertext corresponds to I in plaintext. Continuing in this manner
we have ICAME ISAWI CONQU ERED.

8.1.3. We first translate the message SURRENDER IMMEDIATELY into the corresponding numbers. We
obtain 18 20 17 17 4 13 3 4 17 8 12 12 4 3 8 0 19 4 11 24. We encipher each of these numbers using the
transformation C ≡ 11P + 18 (mod 26). This gives 8 4 23 23 10 5 25 10 23 2 20 20 10 25 2 18 19 10 9 22.
Translating back to letters gives IEXXK FZKXC UUKZC STKJW.

8.1.4. First we convert each letter of the plaintext to its corresponding number, to get 19, 7, 4, 17, 8, 6, 7, 19,
2, 7, 14, 8, 2, 4. Then we apply the affine transformation C ≡ 15P + 14 (mod 26) to each number. For
instance 15 · 19 + 14 ≡ 13 (mod 26). Continuing in this fashion, we get 13, 15, 22, 9, 4, 0, 15, 13, 18, 15,
16, 4, 18, 22 which are the numberical equivalents to NPWJE APNSP QSW.

8.1.5. Since 5 is an inverse for 21 modulo 26, we have P ≡ 5(C − 5) ≡ 5C + 1 (mod 26) as the deciphering
transformation. Converting the ciphertext to numbers gives us 24, 11, 5, 16, 23, 15, 2, 17, 8, 19. We apply
the deciphering transform to each number, for instance, 5 · 24 + 1 ≡ 17 (mod 26). Continuing in this
fashion gives us 17, 4, 0, 3, 12, 24, 11, 8, 15, 18 which are the numerical equivalents of READM YLIPS.

8.1.6. Since 3 · 9 = 27 ≡ 1 (mod 26), 9 is an inverse for 3. Then we have p ≡ 9(C − 24) ≡ 9C − 9(24) ≡
9C − 9(−2) ≡ 9C + 18 ≡ 9C − 8 (mod 26). Converting the ciphertext to numbers gives: 17 19 14 11 10
19 14 8 10. Applying the transformation P ≡ 9C − 8 (mod 26) to each number gives: 15 7 14 13 4 7 14
12 4 and converting back to letters: PHONE HOME.

8.1.7. Since E is the most common letter suppose that E is sent to Q. Since E corresponds to 4 and Q corre-
sponds to 16, we have 4 + k ≡ (mod 16). Hence k = 12.

8.1.8. In the ciphertext V occurs 7 times, which is more than any other letter. We guess that V corresponds
to E since E is the most common letter in English text. This implies that 21 ≡ 4 + k (mod 26), or that
k = 17. If this is correct, deciphering is carried out using the relationship P ≡ C − 17 ≡ C + 9 (mod 26).
Attempting to decipher, we obtain THEVA LUEOF THEKE YISSE VENTE EN. Hence, the plaintext mes-
sage was ”The value of the key is seventeen.”

8.1.9. By counting letter frequencies, we find that M is the most common letter, occuring 8 times. We guess
that M stands for E, which would be a shift of 8. We subtract 8 from each letter and get ANIDE AISLI
KEACH ILDNO NEISB ETTER THANY OUROW NFROM CHINE SEFOR TUNEC OOKIE

8.1.10. Since E and T are the most common letters, and E=4, T=19, Q=16, and X=23, we suspect that 23 ≡
a4 + b (mod 26), and 16 ≡ a19 + b (mod 26), which has solution a = 3, b = 11.

133
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8.1.11. Since E=4 and T=19 are the most common letters in plaintext and W=22 and B=1, we have 22 ≡ a4+ b
and 1 ≡ a19 + b (mod 26). By Theorem 3.14, the solution to the system is a ≡ 9, b ≡ 12 (mod 26).

8.1.12. We find that J occurs 11 times followed by F at 7 times and O at 5 times. Our first guess is J → E and
F → T . Hence we solve 9 ≡ a4 + b, 5 ≡ a19 + b (mod 26). This yields a = 24, but (24, 26) = 2 6= 1 so
we try J → E and O → T . We need to solve 9 ≡ a4 + b and 14 ≡ a19 + b (mod 26). Therefore P≡ 3C +
3 (mod 26) and we have WEUSE FREQU ENCIE SOFLE TTERS TODEC RYPTS ECRET MESSA GES.

8.1.13. We count the frequencies of letters in the ciphertext and discover that A, B, T, and N appear most of-
ten, namely 6 times each. Let P = D(C) ≡ cC + d (mod 26). Then D(A) = d is one of A, E, N, or S.
From which we deduce that d = 0, 4, 13 or 18. Also D(B) = c + d, must be another one of these num-
bers. Since A, B, T, N is not a simple shift of A, E, N, S, we see that c is not 0. Assuming that d is also not
zero, the possible pairs for (c, d) are (9, 4), (14, 4), (5, 13), (17, 13), (12, 18), and (21, 18). We try various of
these and discover that P ≡ 5C + 13 is the deciphering transformation. Applying this to the ciphertext
gives us THISM ESSAG EWASE NCIPH EREDU SINGA NAFFI NETRA NSFOR MATIO N

8.1.14. A frequency count shows that J occurs 12 times, F occurs 7 times and O occurs 5 times. Our first guess
is that J is the ciphertext for E and F is the ciphertext for T. But when we solve for a we get an even num-
ber, which is not relatively prime to 26, so we guess that O is the ciphertext for T instead. Then we solve
9 ≡ a4 + b, 14 ≡ a19 + b (mod 26) and get a = 9, b = 25. Then we solve C ≡ 9P + 25 (mod 26) for P and
get P ≡ 3C + 3 (mod 26). This decrypts the message as follows: WEUSE FREQU ENCIE SOFLE TTERS
TODEC RYPTS ECRET MESSA GES.

8.1.15. We have C ≡ 17(5P + 13) + 3 ≡ 85P + 224 ≡ 7P + 16 (mod 26).

8.1.16. We have C ≡ c(aP + b) + d ≡ acP + bc + d (mod 26).

8.2. Block and Stream Ciphers
8.2.1. We first translate the letters of the message DO NOT OPEN THIS ENVELOPE into the correspond-

ing numbers, grouping letters into blocks of six. This gives 3 14 13 14 19 14 15 4 13 19 7 8 18 4 13 21
4 11 14 15 4. The letters of the word SECRET, which is the key, translate to 184217419. For each block
p1p2p3p4p5p6we find ci ≡ pi + ki (mod 26) where 0 ≤ ci ≤ 25 where ki = 18,k2 = 4, k3 = 2, k4 = 17,
k5 = 4, and k6 = 19. This gives 21 18 15 5 23 7 7 8 15 10 11 1 10 8 15 12 8 4 6 19 6. Translating this back to
letters gives VSPFXH HIPLKB KIPMIE GTG.

8.2.2. We have pi ≡ ci − ki (mod 26), so we subtract the numerical equivalents of the letters SECRET from
the numerical equivalents of the letters of the ciphertext respectively. SECRET = 18 4 2 17 4 19. The
cyphertext is 22 1 17 2 18 11 0 25 6 9 12 6 10 12 5 21. Subtracting the key gives 4 23 15 11 14 18 8 21 4
18 8 13 18 8 3 4, which has letter equivalents EXPLOS IVESIN SIDE.

8.2.3. The numerical equivalents for the key TWAIN are 19 22 0 8 13. The numerical equivalents for
ANENGLISHMAN are 0 13 4 13 6 11 8 18 7 12 0 13. Adding the key numbers to the correspond-
ing first five plaintext numbers yields 19 9 4 21 19, (mod 26) which stand for TJEVT. Adding the
key numbers to the corresponding next five plaintext numbers yields 4 4 18 15 25, (mod 26) which
stand for EESPZ. Adding the numbers for TA to the last two letters yields TJ. Continuing in this fash-
ion we find the cipher text to be TJEVT EESPZ TJIAN IARAB GSHWQ HASBU BJGAO XYACF XPHML
AWVMO XANLB GABMS HNEIA TIEZV VWNQF TLEZF HJWPB WKEAG AENOF UACIH LATPR
RDADR GKTJR XJDWA XXENB KA

8.2.4. The numerical equivalents for the key TWAIN are 19 22 0 8 13. The numerical equivalents for
PACWH EZUAR are 15 0 2 22 7 4 25 20 0 17. We substract successively each number of the key
from the cipher text numbers and get 22 4 2 14 20 11 3 20 18 4, (mod 26) which stands for WECOU
LDUSE. Continuing in this fashion we discover the plaintext to be WECOU LDUSE UPTWO ETERN
ITIES INLEA RNING ALLTH ATIST OBELE ARNED ABOUT OUROW NWORL DANDT HETHO
USAND SOFNA TIONS THATH AVEAR ISENA NDFLO URISH EDAND VANIS HEDFR OMITM
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ATHEM ATICS ALONE WOULD OCCUP YMEEI GHTMI LLION YEARS.

8.2.5. Let n be the key length, and suppose k1, k2, . . . , kn are the numerical equivalents of the letters of the
keyword. If pi = pj are two plaintext characters separated by a multiple of the key length, when we
separate the plaintext into blocks of length n, pi and pj will be in the same position in their respective
blocks, say the mth position. So when we encrypt them, we get ci ≡ pi + km ≡ pj + km ≡ cj (mod 26).

8.2.6. We see that the initial UCY is repeated 9 letters later. Likewise with the BS in the second row. The HF
in the fourth block is repeated 21 letters later, so we guess that the period is (9, 21) = 3. A frequency
count of letters in the 1st, 4th, 7th, etc. positions gives us 6 U’s, 5 F’s and 4 B’s and T’s. Since T −E = 15
and U −F = 15, we are quite sure that F → E and U → T , that is, l1 = B. The other two cases are not so
clear. A frequency count of letters in the 2nd, 5th, 8th, etc positions gives us 6 C’s, 6 H’s and 4 V’s. None
of these have a difference of 15, so we guess that one of E or T doesn’t appear among C, H, and V. So we
have 6 reasonable guesses to try. C → E, H → E, V → E,C → T,H → T , and V → T . Each of these 6
cases determines a different second letter, namely E, Z, T, T, O, and A respectively. It is unlikely that Z
or T would follow the first letter, which we believe to be T, so we easily discard three of the cases. A fre-
quency count of letters in the 3rd, 6th, 9th, etc positions gives us 6 B’s, 5 O’s and 4 K’s. We try, in order,
B → E, which implies l3 =X, with each of the three remaining cases for l2, and discover that H → T ,
which corresponds to l2 = O, is the correct choice. Therefore the key is BOX and the plaintext is TOBEO
RNOTT OBETH ATIST HEQUE STION WHETH ERTIS NOBLE RINTH EMIND TOSUF FERTH ESLIN
GSAND ARROW SOFOU TRAGE OUSFO RTUNE.

8.2.7. Searching the ciphertext, we find two occurrences of KMK which are 42 positions apart, and two oc-
currences of PWQW which are 39 positions apart, so we guess that the period is (42, 39) = 3. The index
of coincidence for the letters in positions 1, 4, 7,. . . is 0.064, the index of coincidence for the letters in po-
sitions 2, 5, 8,. . . is 0.072, and the index of coincidence for the letters in positions 3, 6, 9,. . . is 0.068. Since
these indexes are all about 0.065, we are sure that the period is 3. Counting frequencies of the letters in
positions 1, 4, 7,. . . , we find 9 R’s and 7 C’s, and since R − C = 15, we suspect that R → T and C → E,
which implies that l1 = Y . Counting frequencies for the letters in positions 2, 5, 8,. . . , we find 11 E’s, 6
M’s, 5 W’s and 5 I’s. We seek a difference among these letters which is the same as a difference among
the commonly occurring letters E, T, N, R, I, and O. We find that M − I = 4 and E− I = 4, so we suspect
that M → I and I → E, which implies that l2 = E. Counting frequencies for the letters in positions 3, 6,
9,. . . we find 8 S’s, 7 W’s and 6 K’s. We try successively assuming that each of these has plaintext E, and
discover that W → E yields a sensible message with key YES. The plaintext is MISTA KESAR EAPAR
TOFBE INGHU MANAP PRECI ATEYO URMIS TAKES FORWH ATTHE YAREP RECIO USLIF ELESS
ONSTH ATCAN ONLYB ELEAR NEDTH EHARD WAYUN LESSI TISAF ATALM ISTAK EWHIC HA-
TLE ASTOT HERSC ANLEA RNFRO M.

8.2.8. Searching the ciphertext, we find two occurrences of GP which are 15 positions apart. We also find
two occurrences of WV which are 42 positions apart, so we guess that the period is (15, 42) = 3. We
compute the indexes of coincidence for each of the three groups of letters and get 0.057, 0.053, and 0.095,
respectively, which shows that the period is likely 3. Counting frequencies of the letters in positions 1,
4, 7,. . . , we find 7 W’s, and 4 each of A, J and P. Comparing the differences of these letters with the dif-
ferences of E, T, N, R, I and O (the most common plaintext letters) we see that P − J = 6 and T −N =
6, so we guess that P → T and J → N , which implies l1 = W . Counting frequencies of the letters in po-
sitions 2, 5, 8,. . . , we find 7 X’s and 4 I’s. Since X − I = 15 and T − E = 15 we guess that X → T which
implies that l2 = E. Counting frequencies of letters in positions 3, 6, 9,. . . , we find 9 F’s and 8 P’s. Since
P − F = 10 and O − E = 10, we guess that P → O, which implies l3 = B. Using the key WEB, we find
the plaintext to be WEHAV EHEAR DTHAT AMILL IONMO NKEYS ATAMI LLION KEYBO ARDSC
OULDP RODUC ETHEC OMPLE TEWOR KSOFS HAKES PEARE NOWTH ANKST OTHEI NTERN
ETWEK NOWTH ATISN OTTRU E.

8.2.9. Searching the ciphertext, we find two occurrences of UPRW, which are 16 positions apart. We also
find two occurrences of UQ, which are 12 positions apart, so we guess that the period is (16, 12) = 4.
We compute the indexes of coincidence for each of the four letter groups and get 0.059, 0.055, 0.058, and
0.043, which are all significantly greater than 0.038, so we believe the keyword has 4 letters. Counting
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frequencies of the letters in positions 1, 5, 9,. . . , we find 6 F’s and 5 U’s, and since U − F = 15 and
T − E = 15, we guess that U → T and so l1 = B. Counting frequencies of the letters in positions 2, 6,
10,. . . , we find 6 Q’s, 5 P’s and 4 W’s. Since W − Q = O − I = 6, we guess that W → O, so that l2 = I .
Counting frequencies of letters in positions 3, 7, 11,. . . , we find 6 E’s and 5 V’s and R’s. Since V − E =
17 = E−N , we guess that V → E, and so l3 = R. Counting frequencies of letters in positions 4, 8, 12,. . . ,
we find 5 D’s, 4 K’s and 3 each of B, H, J, O, U, and W. (Since the index of coincidence for this group was
relatively small, we are not surprised at the more random-seeming distribution of letters.) After several
attempts we guess that W → T and so l4 = D. Using the keyword BIRD, we find the plaintext to be
IONCE HADAS PARRO WALIG HTUPO NMYSH OULDE RFORA MOMEN TWHIL EIWAS HOEIN
GINAV ILLAG EGARD ENAND IFELT THATI WASMO REDIS TINGU ISHED BYTHA TCIRC UMSTA
NCETH ATISH OULDH AVEBE ENBYA NYEPA ULETI COULD HAVEW ORN.

8.2.10. Searching the ciphertext, we find two occurrences of YLP which are 72 positions apart. We also find
two occurrences of RR which are 20 positions apart, so we guess that the period is (72, 20) = 4. We
compute the indexes of coincidence for each of the four letter groups and get 0.060, 0.060, 0.053, and
0.066, which are all significantly greater than 0.038, so we believe the keyword has 4 letters. Counting
frequencies of the letters in positions 1, 5, 9,. . . , we find 7 P’s, and 6 E’s and Z’s. Since Z − P = 10 =
O − E, we guess that Z → O, and so l1 = L. Counting frequencies of the letters in positions 2, 6,
10,. . . , we find 8 M’s, and 7 Q’s and W’s. Since W − M = 10 = O − E, we guess that W → O, and
so l2 = I . Counting frequencies of the letters in positions 3, 7, 11,. . . , we find 6 each of J, W and Y.
Since these match the numerical pattern of E, R, and T, we guess that J → E and so l3 = F . Counting
frequencies of the letters in positions 4, 8, 12, . . . , we find 11 I’s and no other letter approaching that
frequency. We guess that I → E, so that l4 = E. Using the keyword LIFE, we find the plaintext to be
EVERY DAYYO UMAYM AKEPR OGRES SEVER YSTEP MAYBE FRUIT FULYE TTHER EWILL STRET
CHOUT BEFOR EYOUA NEVER LENGT HENIN GEVER ASCEN DINGE VERIM PROVI NGPAT HY-
OUK NOWYO UWILL NEVER GETTO THEEN DOFTH EJOUR NEYBU TTHIS SOFAR FROMD IS-
COU RAGIN GONLY ADDST OTHEJ OYAND GLORY OFTHE CLIMB.

8.2.11. Searching the ciphertext, we find two occurrences of ZEELN which are 40 positions apart. We also
find two occurrences of SUMHR which are 45 positions apart, so we guess that the period is (40, 45) =
5. The indexes of coincidence for the five letter groups are 0.073, 0.062, 0.062, 0.059, and 0.089, which
are all significantly greater than 0.038, so we are confirmed in our guess that the keyword has length 5.
Counting frequencies of the letters in positions 1, 6, 11,. . . , we find 5 W’s, S’s and M’s, and 4 G’s and L’s.
Since W − L = E − T ≡ 15 (mod 26), we guess that W → E, and so l1 = S. Counting frequencies of
the letters in positions 2, 7, 12,. . . , we find 6 A’s, 5 T’s and 4 E’s. Since these letters should be frequent
in the plaintext, we suspect that A → A and that l2 = A. Counting frequencies of the letters in posi-
tions 3, 8, 13,. . . , we find 5 K’s and 5 Z’s, and since Z − K = 15 = T − E, we guess that Z → T and
so l3 = G. Counting frequencies of the letters in positions 4, 9, 14,. . . , we find 5 T’s, 4 S’s and H’s, and
3 E’s and N’s. Since these letters should be frequent in the plaintext, we suspect that A → A and that
l4 = A. Counting frequencies of the letters in positions 5, 10, 15,. . . , we find 7 R’s, 6 U’s and 5 G’s. Since
R − G = E − T = 15, we guess that R → E and so l5 = N . Using the keyword SAGAN we discover
the plaintext to be BUTTH EFACT THATS OMEGE NIUSE SWERE LAUGH EDATD OESNO TIMPL
YTHAT ALLWH OAREL AUGHE DATAR EGENI USEST HEYLA UGHED ATCOL UMBUS THEYL
AUGHE DATFU LTONT HEYLA UGHED ATTHE WRIGH TBROT HERSB UTTHE YALSO LAUGH
EDATB OZOTH ECLOW N.

8.2.12. Counting frequencies of the letters in positions 1, 4, 7,. . . , we find 7 N’s, 6 L’s and 5 Y’s. Since N −Y =
15 and T −E = 15, we guess that N → T and Y → E, which would make the first letter of the keyword
equal to N − T = 13− 19 ≡ 20 (mod 26) = U . Counting frequencies of the letters in positions 2, 5, 8,. . . ,
we find 13 W’s and no other frequencies nearly so high. We guess that W → E and so the second letter
of the keyword would be S. Counting frequencies of the letters in positions 3, 6, 9,. . . , we find 10 E’s and
8 T’s, which is typical for plaintext. We guess that the third letter of the keyword is A which has numer-
ical equivalent 0.

8.2.13. We first translate BEWARE OF THE MESSENGER into numerical equivalents. This gives 01 04 22 00
17 04 14 05 19 07 04 12 04 18 18 04 13 06 04 17. We now encipher each block. We have 3 · 1 + 10 · 4 ≡
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17 (mod 26), 9 · 1 + 7 · 4 ≡ 11 (mod 26);3 · 22 + 10 · 0 ≡ 14 (mod 26),9 · 22 + 7 · 0 ≡ 16 (mod 26);3 · 17 +
10 · 4 ≡ 13 (mod 26), 9 · 17 + 7 · 4 ≡ 25 (mod 26);3 · 14 + 10 · 5 ≡ 14 (mod 26), 9 · 14 + 7 · 5 ≡ 5 (mod 26);
3 · 19 + 10 · 7 ≡ 23 (mod 26), 9 · 19 + 7 · 7 ≡ 12 (mod 26); 3 · 4 + 10 · 12 ≡ 2 (mod 26), 9 · 4 + 7 · 12 ≡
16 (mod 26); 3 · 4 + 10 · 18 ≡ 10 (mod 26), 9 · 4 + 7 · 18 ≡ 6 (mod 26); 3 · 18 + 10 · 4 ≡ 16 (mod 26),
9 · 18 + 7 · 4 ≡ 8 (mod 26); 3 · 13 + 10 · 6 ≡ 21 (mod 26), 9 · 13 + 7 · 6 ≡ 3 (mod 26); 3 · 4 + 10 · 17 ≡
0 (mod 26) ,9 · 4 + 7 · 17 ≡ 25 (mod 26). This gives the enciphered values 17 11 14 16 13 25 14 5 23 12 2
16 10 6 16 8 21 3 0 25. Translating back to letters gives R L O Q N Z O F X M C Q K G Q I V D A Z.

8.2.14. We break the plaintext into blocks of 2 and convert to numerical equivalents to get 3 14 13 14
19 18 7 14 14 19 19 7 4 12 4 18 18 4 13 6 4 17. Applying the transformation to each block
gives us 20 7 22 11 2 21 0 19 23 17 7 4 10 14 12 2 24 20 2 1 3 17 which converted to
letters is UH WL CV AT XR HE KO MC YU CB DR.

8.2.15. The matrix
(

13 4
9 1

)
has inverse

(
9 16
23 13

)
. The numerical values of R D are 17 and 3. Then

(
9 16
23 13

)(
17
3

)
≡

(
19
14

)
(mod 26), and 19 14 are the numerical values for TO. Continuing in

this fashion we have TO SL EE PP UR CH AN CE TO DR EA MX

8.2.16. The matrix
(

23 3
10 25

)
has inverse

(
1 3
10 3

)
. The numerical values of U W are 20 and 22. Then

(
1 3
10 3

)(
20
22

)
≡

(
8
6

)
(mod 26), and 8 6 are the numerical values for IG. Similarly we have

DM→ NO, NK→ RE, QB→ TH, and EK→ IS. So the plaintext is IGNORE THIS.

8.2.17. RH NI TH and HE correspond to 17 7 13 8 19 7 and 7 4 respectively, so we have
(

17 13
7 8

)
≡

(
a b
c d

) (
19 7
7 4

)
(mod 26). Since

(
4 19
19 19

)
is an inverse for

(
19 7
7 4

)
we have

(
a b
c d

)
≡

(
17 13
7 8

)(
4 19
19 19

)
≡

(
3 24
24 25

)
(mod 26).

8.2.18. a. If the pair P1P2 remained unchanged, we have P1 ≡ 4P1 + 5P2 and P2 ≡ 3P1 + P2 (mod 26). Then
we have 3P1 ≡ 0 (mod 26) hence P1 ≡ 0 from the second congruence. Then the first congruence
gives 5P2 ≡ 0 or P2 ≡ 0 (mod 26). Since 0 0 corresponds to the block AA, this is the only unchanged
pair.

b. As above, we need to solve the congruences P1 ≡ 7P1 +17P2 and P2 ≡ P1 +6P2 (mod 26), or 6P1 +
17P2 ≡ 0 and P1 + 5P2 ≡ 0 (mod 26). Subracting six times the second from the first gives −13P2 ≡
0 (mod 26) which has solutions P1 ≡ 0, 2, 4, . . . , 24. Then P1 ≡ −5P2 ≡ 21P2 (mod 26) and since 21
has a unique inverse modulo 26, we have a unique P2 for each P1, so we have 13 solutions.

c. As above, we solve the congruences P1 ≡ 3P1 + 5P2 and P2 ≡ 6P1 + 3P2 (mod 26), or 2P1 + 5P2 ≡
0 and 6P1 + 2P2 ≡ 0 (mod 26). If we take 3 times the first from the second we have −13P2 ≡ 0, so
P2 ≡ 0, 2, 4, . . . , 24 are all solutions. The second congruence implies 6P1 ≡ −2P2 (mod 26) which
reduces to 3P1 ≡ −P2 (mod 13). Three has an inverse mod 13, so given P2, we can solve for P1

modulo 13. This gives two solutions modulo 26, namely P1 and P1 + 13. Therefore we have 26 so-
lutions.

8.2.19. We have C ≡ AP (mod 26). Multiplying both sides on the left by A gives AC ≡ A2P ≡ IP ≡ P (mod 26).
The congruence A2 ≡ I (mod 26) follows since A is involutory. It follows that A is also a deciphering
matrix.

8.2.20. The numerical equivalents of LME, WRI and ZYC are 11 12 4 22 17 8 and 25 24 2. The numerical

equivalents of THE, AND and THA are 19 7 4 0 13 3 and 19 7 0. Then C =




11 22 25
12 17 24
4 8 2


 and P=



138 8. CRYPTOLOGY




19 0 19
7 13 7
4 3 0


. Now note that detP ≡ 0 (mod 26) so P doesn’t have an inverse. We can still find a

suitable A however. Our matrix conguence is


11 22 25
12 17 24
4 8 2


 ≡




a b c
d e f
g h i







19 0 19
7 13 7
4 3 0


 .

If we perform the multiplication on the right and equate corresponding entries we get the follow system
of 9 congruences in 9 unknowns, modulo 26:

19a + 7b + 4c ≡ 11
13b + 3c ≡ 22
19a + 7b ≡ 25

19d + 7e + 4f ≡ 12
13e + 3f ≡ 17
19d + 7e ≡ 24

19g + 7h + 4i ≡ 4
13h + 3i ≡ 8
19g + 7h ≡ 2

Notice that this is really three 3 × 3 systems. We can solve the first three congruences for a, b, and
c. Subtracting the third from the first gives 4c ≡ −14 (mod 26). Hence 2c ≡ −7 (mod 13) and so c ≡
3 (mod 13). Therefore c ≡ 3 or 16 (mod 26). We can choose either of these and we’ll take c ≡ 3 (mod 26).
Then the second congruence yields 13b + 3(3) ≡ 22 (mod 26) or 13b ≡ 13 (mod 26) hence b can be any
odd number. Take b ≡ 1 (mod 26), then the third congruence becomes 19a + 7(1) ≡ 25 (mod 26) which
forces a ≡ 16 (mod 26). Similarly, we solve the other systems and get, among the several possibilities,

A=




16 1 3
6 2 23
22 0 20


.

8.2.21. We have C ≡ C1C2P ≡
(

5 1
25 4

)(
2 1
1 4

)
P ≡

(
11 32
54 143

)
P ≡

(
11 6
2 13

)
P . Hence the prod-

uct cipher is given by C ≡ AP (mod 26) whereA=
(

11 6
2 13

)
.

8.2.22. Let A be the enciphering matrix for the first Hill cipher and B be the enciphering matrix for the sec-
ond Hill cipher. Then if P is a plaintext vector we have C1 ≡AP (mod 26) for the first encryption. Then
the second encryption is C2 ≡ BC1 ≡ BAP (mod 26). So the final result is the same if we just use the
matrix BA as our encryption matrix.

8.2.23. If the plaintext is grouped into blocks of size m, we may take [m,n]
m of these blocks to form a super-

block of size [m,n]. If A is the m ×m enciphering matrix, form the [m,n] × [m,n] matrix B with [m,n]
m

copies of A on the diagonal and zeros elsewhere: B=




A 0 · · · 0
0 A · · · 0
...

. . .
...

0 · · · A


 Then B will encipher [m,n]

m

blocks of size m at once. Similarly, if C is the n× n enciphering matrix, form the corresponding [m, n]×
[m,n] matrix D. Then by Exercise 8, BD is an [m,n] × [m,n] enciphering matrix which does everything
at once.
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8.2.24. As described in Exercise 23, we form two 6× 6 matrices and multiply them:


1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1







3 10 0 0 0
2 1 0 0 0 0
0 0 3 1 0 0
0 0 2 1 0 0
0 0 0 0 3 1
0 0 0 0 2 1




=




5 2 0 0 0 0
3 1 3 1 0 0
2 1 3 1 0 0
0 0 2 1 3 1
0 0 2 1 2 1
0 0 0 0 5 2




.

8.2.25. Multiplication of (0 · · · 010 · · · 0)




p1

p2

...
pn


 with the 1 in the ith place yields the 1 × 1 matrix (Pi). So if

the jth row of a matrix A is (0 · · · 010 · · · 0) then A




p1

...
pn


 =




C1

...
Cn


 gives Cj = Pi. So if every row

of A has its 1 in a different column, then each Cj is equal to a different Pi. Hence A is a “permutation”
matrix.

8.2.26. We break the plaintext into blocks of two and convert to numerical equivalents to get 7 0 21 4
0 13 8 2 4 3 0 24. Applying the transformation to each pair gives us 3 16 1 2 8 6 10 19 0 2
4 23 which are the numerical equivalents for DQ BC IG KT AC EX.

8.2.27. The matrix
(

3 2
7 11

)
has inverse

(
17 4
1 7

)
modulo 26. We compute P≡

(
17 4
1 7

) (
C −

(
8
19

))
≡

(
17 4
1 7

)
C +

(
22
15

)
(mod 26).

8.2.28. We need to solve the congruence for P.Since C and B are n × 1 matrices we can subtract B from both
sides and get C − B ≡ AP (mod 26). Since (detA, 26) = 1, A has an inverse A modulo 26. We multiply
both sides by A and get A (C − B) ≡ P (mod 26), or AC −AB ≡ P (mod 26) as the deciphering trans-
formation.

8.2.29. The matrix
(

5 2
11 15

)
has inverse

(
15 24
15 5

)
modulo 26. We compute P≡

(
15 24
15 5

) (
C −

(
14
3

))
≡

(
17 4
1 7

)
C +

(
4
9

)
(mod 26). Applying this deciphering transformation to the numeric equivalents

of the ciphertext and converting back to letters gives TOXIC WASTE as the plaintext.

8.2.30. First make a frequency count of digraphs in the ciphertext. Since there are 6 variables to determine,
guesses about 3 digraphs will be needed. We would first guess that the most common digraph has
plaintext TH, the next most common has plaintext HE, etc. Then we could solve the 6 corresponding
congruences in 6 variables.

8.2.31. Make a frequency count of the trigraphs and use a published English language count of frequencies of
trigraphs. Then proceed as in problem 18. There are 12 variables to determine, so 4 guesses are needed.

8.2.32. Yes. Let the first transformation be C1 ≡A1P+B1 (mod 26) and the second be C2 ≡A2P+B2 (mod 26).
Then composition of these transformations is C ≡A2(A1P+B1)+B2 ≡ A2A1P+ A2B1+B2 (mod 26),
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which is an affine transformation.

8.2.33. Let A be an m×m matrix, B be an m× 1 matrix, D be an n×n matrix, and E be an n× 1 matrix. Form
mn × mn matrices X and Yby placing n copies of A along the diagonal of X and m copies of D along
the diagonal of Y. Form mn × 1 matrices Z and W by stringing n copies of B together and m copies of
E, respectively. Then the product tranformation is given by C = YXP + YZ + W which is an affine
transformation based on a block size of mn.

8.2.34. To encrypt the string, we need to add corresponding bits of the string to the keystream to produce the
string 21 1121 1012 and then reduce modulo 2 to get 01 1101 1010 as the ciphertext.

8.2.35. To decrypt the string, we need to add corresponding bits of the string to the keystream to produce the
string 21 1121 1012 and then reduce modulo 2 to get 01 1101 1010 as the plaintext.

8.2.36. Converting MIDDLETOWN and Z to numerical equivalents gives us 12, 8, 3, 3, 11, 4, 19, 14, 22, 13 for
the plaintext and 25 for the seed value. We add 25 to 12 and reduce modulo 26 to get the first ciphertext
as 11. Then we add 12 to 8 and reduce modulo 26 to get 20. Then we add 8 to 3 and reduce to get 11 and
so on. This generates the ciphertext 11, 20, 11, 6, 14, 15, 23, 7, 10, 9, which are the numerical equivalents
of LULGOPXHKJ.

8.2.37. We first convert the ciphertext to its numerical equivalents: 25 21 17 16 7 3 20 9 8 12. The seed is I
which has numerical value 8. We subtract 8 from 25 to get 17 which stands for R. Then we subtract 17
from 21 to get 4 which stands for E. Then we subtract 4 from 17 to get 13 which stands for N. Then we
subtract 13 from 16 to get 3 which stands for D. Then we subtract 3 from 7 to get 4 which stands for E.
Then we subtract 4 from 3 to get −1 ≡ 25 (mod 26) which stands for Z. Then we subtract 25 from 20 to
get −5 ≡ 21 (mod 26) which stands for V. Then we subtract 21 from 9 to get −12 ≡ 14 (mod 26) which
stands for O. Then we subtract 14 from 8 to get −6 ≡ 20 (mod 26) which stands for U. Then we subtract
20 from 12 to get −8 ≡ 18 (mod 26) which stands for S. So the plaintext is RENDE ZVOUS.

8.2.38. Suppose the plaintext is p1p2 . . . pk, where each pi is a binary digit. Also let c1c2 . . . ck be the resulting
ciphertext. Then for each i = 1, 2, . . . , k, if pi = ci then the ith digit of the keystream is 0 and if pi 6= ci

then the ith digit of the keystream is 1. Thus the entire keystream can be determined.

8.2.39. Let p1p2 · · · pm and q1q2 · · · qm be two different plaintext bit streams. Let k1, k2, . . . , km be the keystream
by which the plaintexts are encrypted. Then note that for any i = 1, 2, . . . ,m, Eki(pi) + Eki(qi) = ki +
pi + ki + qi = 2ki + pi + qi ≡ pi + qi (mod 2). Therefore, by adding corresponding bits of the ciphertext
streams, we get the sums of the corresponding bits of the plaintext streams. This can lead to the discov-
ery of portions of the keystream. For instance if pi +qi is known to be 2, then it is known that both pi and
qi are 1. Then if Epi = 1 we know that ki = 0, but if Epi = 0 then ki = 1. Likewise, if pi + qi is known to
be 0, then it is known that both pi and qi are 0. Then if Epi = 0 we know that ki = 0, but if Epi = 1 then
ki = 1. If significant portions of the keystream are discovered in this way, then decoded parts of each
message will aid in deducing further pieces of the keystream, perhaps resulting in complete cryptanal-
ysis.

8.3. Exponentiation Ciphers
8.3.1. Since 25 < p < 2525,m = 1 The numerical equivalents for GOOD MORNING, in blocks of 2 = 2m

digits, are 06 14 14 03 12 14 17 13 08 12 06. Raising each of these 2-digit numbers to the 3rd power and
reducing modulo 101 gives: 14 17 17 27 11 17 65 76 07 76 14.

8.3.2. Converting the plaintext to numerical equivalents and grouping in 4-digit blocks gives 1822 0404 1903
1704 0012. Raising each of these blocks to the 7th power and reducing modulo 2621 yields 0394 1679
1804 0755 0117 for the ciphertext.



8.4. PUBLIC KEY CRYPTOGRAPHY 141

8.3.3. We find that 17 is an inverse of 5 modulo 28 = φ(29). We raise each block to the 17th power and re-
duce modulo 29 to get 01 04 00 12 12 04 20 15, which are the numerical equivalents of BEAM ME UP.

8.3.4. An inverse for 13 modulo 2590 is 797. For each block of ciphertext C, we find the corresponding block
of plaintext by the formula P ≡ C797 (mod 2591). This gives us 0314 1314 1917 0400 0319 0708 1823,
which is the numerical equivalent of DO NO TR EA DT HI SX.

8.3.5. We encipher messages using the transformation c ≡ P 11 (mod 31). The deciphering exponent is the
inverse of 11 modulo 30 since φ(31) = 30. But 11 is its own inverse modulo 30 since 11 · 11 ≡ 121 ≡
1 (mod 30). It follows that 11 is both the enciphering and deciphering exponent.

8.3.6. We have 24 ≡ 20e (mod 29) and we know that (e, 28) = 1 so e must be odd and not 7 or 21. We try 3:
203 ≡ 25 (mod 29). We try 5: 205 ≡ 24 (mod 29) so e = 5. Now d = 17 is an inverse for 5 modulo 28,
so we raise each cipher block to the 17th power and reduce modulo 29: (04)17 ≡ 06, (19)17 ≡ 14, 1117 ≡
03, 2417 ≡ 20, 0917 ≡ 04, and 1517 ≡ 18 (mod 29). And 06 14 14 03 06 20 04 15 15 stands for GOOD
GUESS.

8.4. Public Key Cryptography
8.4.1. Suppose that n = pq = 14647 and φ(n) = 14400. Since φ(n) = (p − 1)(q − 1) = pq − (p + q) + 1,

we have 14400 = 14647 − (p + q) + 1 we have p + q = 248. Also, we have p − q =
√

(p + q)2 − 4n =√
2482 − 4 · 14647 =

√
2916 = 54. When we add p + q = 248 and p− q = 54 we see that 2p = 302. Hence

p = 151 and q = 97.

8.4.2. Since φ(n) = pq − p − q + 1 = 4386607 − p − q + 1 = 4382136, hence p + 1 = 4472. Also φ(n) =
(p− 1)(q− 1) = 4382136 = 8 · 9 · 11 · 11 · 503, so 503 | p− 1, say. Now p < 4472 so p−1

503 < 4472
503 < 9. So the

possibilities for p are: 503 ·2+1, 503 ·3+1, 503 ·4+1, 503 ·6+1, and 503 ·8+1. Of these only 503 ·6+1 =
3019 is prime. Then q = 4472− 3019 = 1453.

8.4.3. Since a block of ciphertext p is less than n, we must have (p, n) = p or q. Therefore the cryptanalyst
has a factor of n.

8.4.4. The probability a message P is not relatively prime to n = pq is the probability that a randomly se-
lected integer between 0 and n− 1, inclusive, is divisible by p or by q. The probability such an integer is
divisible by p is 1/p since there are q integers in the range of pq integers divisible by p, that it is divisible
by q is 1/q since there are p integers in the range divisible by q, and that it is divisible by both p and q
is 1/pq since among the integers in the range only 0 is divisible by both p and q. Hence the probability
that (P, n) > 1 is 1/p + 1/q − 1/pq. When p and q are both greater than 10100 this probability is less than
1/10100 + 1/10100 − 1/(10100)2 = 2/10100 − 1/10200 < 1/1099.

8.4.5. We first translate the letters of BEST WISHES into their numerical equivalents. We group together
numbers into blocks of four digits since n = 2669. This gives 01041819220818070418. We use the trans-
formation C ≡ P 3 (mod 2669) to encipher the message. We have 1043 ≡ 1215 (mod 2669), 18193 ≡
1224 (mod 2669), 22083 ≡ 1471 (mod 2669), 18073 ≡ 23 (mod 2669), 4183 ≡ 116 (mod 2669). Hence the
ciphertext is 1215 1224 1471 0023 0116.

8.4.6. We group the letters into block of two and convert to the numerical equivalents to get 1108 0504 0818
0003 1704 0012. We raise each block to the 7th power and reduce modulo 2627 to get the ciphertext 1019
0014 1066 2187 1349 2155.

8.4.7. Since 2747 = 41 · 67, we have φ(2747) = 40 · 66 = 2640. An inverse for 13 modulo 2640 is 2437, so we
raise each ciphertext block to the 2437 power modulo 2747. For instance, 22062437 ≡ 0617 (mod 2747).
The entire plain text is 0617 0404 1908 1306 1823, which corresponds to the message GR EE TI NG SX.

8.4.8. Since 2881 = 43 · 67, φ(2881) = 42 · 66 = 2772. Since 5 · 1109 ≡ 1 (mod 2772), 1109 is an inverse for
5 modulo 2772. Therefore we perform the transformation P ≡ C1109 (mod 2881) to each 4-digit block
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of ciphertext. For instance 05041109 ≡ 0400 (mod 2881). Similarly we find 1902, 0714, 0214, 1100, 1904,
0200, and 1004 as the other blocks of plaintext. The letters for these are EA TC HO CO LA TE CA KE.

8.4.9. We convert the plaintext into numerical equivalents and group into blocks of 4 (appending an X) to
get 1804 1111 1314 2223. Applying the enciphering algorithm to the first block yields C ≡ 1804 · 1809 ≡
2145 (mod 2573). We encrypt the other blocks the same way. The ciphertext is 0872 2263 1537 2392.

8.4.10. We convert the plaintext into numerical equivalents and group into blocks of 4 (appending an X) to get
1104 0021 0419 1422 1323. Applying the enciphering algorithm to the first block yields C ≡ 1104 ·1115 ≡
2145 (mod 3901). We encrypt the other blocks the same way. The ciphertext is 2145 0672 0724 1404 1630.

8.4.11. No. It is as if the encryption key were (e1e2, n), and it is no more difficult (or easy) to discover the
inverse of e = e1e2 than it would be to discover the inverse of either of the factors modulo φ(n).

8.4.12. Suppose n = pq. If (P, n) > 1, we must have (P, n) = p or q, assuming that the numerical plaintext
block P < n. Without loss of generality, suppose (P, n) = p. The corresponding ciphertext is C ≡ P e

(mod n). Then C ≡ 0 (mod p), and so p|C. Since it is computationally feasible to compute greatest com-
mon divisors, we can find one factor of n, by computing (C, n) = p. Then q = n/p and we have factored
n. Having factored n, we can easily compute φ(n) and then d ≡ e−1 (mod n), which is the private key.

8.4.13. Suppose P is a plaintext message and the two encrypting exponents are e1 and e2. Let a = (e1, e2).
Then there exist integers x and y such that e1x + e2y = 1. Let C1 ≡ P e1 (mod n) and C2 ≡ P e2 (mod n)
be the two cipher texts. Since C1, C2, e1, and e2 are known to the decipherer, and since x and y are rel-
atively easy to compute, then it is also easy to compute Cx

1 Cy
2 ≡ P e1xP e2y ≡ P e1x+e2y ≡ P a (mod n).

If a = 1, then P has been recovered. If a is fairly small, then it may not be too difficult to compute ath
roots of P a and thereby recover P .

8.4.14. Assuming the three moduli are pairwise relatively prime, we can use the Chinese remainder theorem
to solve the system of congruences to give us a least nonnegative integer x ≡ P 3 (mod n1n2n3). Since,
by construction P < ni for i = 1, 2, 3, we have P 3 < n1n2n3. By the uniqueness guaranteed by the Chi-
nese remainder theorem, x must be a perfect cube, whose cube root is, therefore, easy to compute. This
will be the plaintext P .

8.4.15. Encryption works the same as for the two prime case. For decryption, we must compute an inverse d
for e modulo φ(n) = (p− 1)(q − 1)(r − 1) where n = pqr the product of three primes. Then we proceed
as in the two prime case.

8.4.16. Suppose n1 = p1q1 and n2 = p2q2. Then if (n1, n2) > 1 we must have (n1, n2) = p1 or q1, since n1 6=
n2. Without loss of generality, suppose (n1, n2) = p1. Since it is computationally feasible to compute
greatest common divisors, we have a factor of n1, and can easily compute q1 = n/p1, to have the com-
plete prime factorization for n1. Further, since p1 | n2, we have that p1 = p2 or q2, and we also have the
complete factorization for n2, and the system is broken.

8.5. Knapsack Ciphers
8.5.1. a. We have 3 < 5, 3+5 = 8 < 9, 3+5+9 = 17 < 19, and 3+5+9+19 = 36 < 40. Hence the sequence

is super-increasing.

b. We have 2 < 6, 2+6 = 8 < 10, but 2+6+10 = 18 > 15. Hence the sequence is not super-increasing.

c. We have 3 < 7, 3 + 7 = 10 < 17, 3 + 7 + 17 = 27 < 30, and 3 + 7 + 17 + 30 = 57 < 59. Hence the
sequence is super-increasing.

d. We have 11 < 21, 11 + 21 = 32 < 41, 11 + 21 + 41 = 73 < 81, but 11 + 21 + 41 + 81 = 154 > 151.
Hence the sequence is not super -increasing.



8.5. KNAPSACK CIPHERS 143

8.5.2. Suppose that a1, a2, · · · , an is super-increasing. We will prove that aj ≥ 2j−1 using the second prin-
ciple of mathematical induction. For j = 1 we have a1 ≥ 1 since a1 is a positive integer. Hence a1 ≥
21−1 = 20 = 1. Now assume that aj > 2j−1 for every positive integer j with 1 ≤ j < k. Since ai + a2 +
· · ·+ ak−1 ≤ ak the inductive hypothesis shows that ak ≥ 1 + 2 + · · ·+ 2k−2 = 2k−1 − 1. Hence ak ≥ 2k.
This completes the proof.

8.5.3. Proceed by induction. Certainly a1 < 2a1 < a2. Suppose
∑n−1

j=1 aj < an. Then
∑n

j=1 aj =
∑n−1

j=1 aj +
an < an + an = 2an < an+1. This completes the induction step.

8.5.4. If the largest integer in the sum is 16 we can only obtain 18 by taking 16 + 2; every other sum with 16
in it is greater than 18. If 13 is the largest integer in the sum we can include 2 and then also include 3
to find that 13 + 3 + 2 = 18. This is the only way to obtain a sum of 18 with 13 included. Suppose the
largest integer in the sum is 11. If we also include 2 we find that 11 + 5 + 2 = 18. If we include 3 we find
that 11 + 4 + 3 = 18. We also see that 11 + 7 = 18. If the largest integer in the sum is 7 the largest the
sum can be is 2 + 3 + 4 + 7 = 16. Hence thee only sums that equal 18 are 16 + 2, 13 + 3 + 2,11 + 5 + 2,
11 + 4 + 3, and 11 + 7.

8.5.5. We multiply each element by 17 and reduce modulo 163 to get: (17, 51, 85, 7, 14, 45, 73).

8.5.6. We multiply each element of the sequence by 29 and reduce modulo 331 to get (162, 220, 80, 32, 6).
Then we convert each letter to its binary equivalent: B =00001, U=10100, Y=11000, N=01101, O=01110,
W=10110. Then B becomes 6, U becomes 162 + 80 = 242, Y becomes 162 + 220 = 382, N becomes 220 +
80 + 6 = 306, O becomes 220 + 80 + 32 = 332, and W becomes 162 + 80 + 32 = 274.

8.5.7. 273 is the inverse of 17 modulo 464. We multiply each ciphertext element by 273 and reduce modulo
464 to get 242 59 280 101. Then 242 = 22 + 41 + 179 and so corresponds to 01101 which is the binary
equivalent for N. 59 = 18+41 and 10100 stands for U. 280 = 18+83+179 and 10011 stands for T. 101 =
18 + 83 and 10010 stands for S. So the plaintext message is NUTS.

8.5.8. We multiply each element by 7 and reduce modulo 92 to get (21,28,56,27,47,9). Then we multiply by
11 and reduce modulo 95 to get (41,23,46,12,42,4). Finally, we multiply by 6 and reduce modulo 101 to
get (44,37,74,72,50,24).

8.5.9. If the multipliers and moduli are (w1,m1), (w2,m2), . . . , (wr,mr), the inverse w1, w2, . . . , wr can be
computed with respect to their corresponding moduli. Then we multiply and reduce succesively by
(wr,mr), (wr−1,mr−1), . . . , (w1, m1). The result will be the plaintext sequence of easy knapsack prob-
lems.

8.5.10. We have the following prime factorizations: 60 = 22 · 3 · 5, 2 = 2, 3 = 3, 5 = 5, 6 = 2 · 3, and 10 = 2 · 5.
To obtain 60 by multiplying terms from 2, 3, 5, 6, 10 we need to multiply integers so that the sum of the
powers of 2 in these integers is 2 and so that there is one factor of 3 and one factor of 5 in these integers.
This can be done as follows: 60 = 2 · 3 · 10, 60 = 2 · 5 · 6, and 60 = 6 · 10.

8.5.11. Since 5 | 15960 the product must contain 95, the only element divisible by 5, so 15960 = 95 · 168. 8 is
the only even element so we must have 95 · 8 · 21 as the only possibility.

8.5.12. If p is a prime factor of P = ax1
1 ax2

2 · · · axn
n , then p must divide one of the ai’s. Since the ai’s are pair-

wise relatively prime, at most one of them is divisible by p, and that one must be in the factorization.
Thus, by examining all the prime factors of P , we can determine all ai’s that must be in the product. If
the product of these ai’s actually equals P , then we have a unique solution. If they don’t, there is no
solution.

8.5.13. For i = 1, 2, . . . , n, we have bαi ≡ ai (mod m). Then bS ≡ P ≡ (bα1)x1(bα2)x2 · · · (bαn)xn

≡ bα1x1+···+αnxn (mod n). Then S ≡ α1x1 + · · ·+αnxn (mod φ(m)). Since S + kφ(m) is also a logarithm
of P to the base b we may take the congruence to be an equation. Since the xi = 0 or 1, this becomes an
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additive knapsack problem on the sequence (α1, α2, . . . , αn).

8.5.14. Given the binary equivalent for a plaintext block, we can assign the value 1 or 0 to the xi’s accord-
ingly. Then the knapsack cipher S = α1x1 + · · · + αnxn is a generally difficult knapsack problem.
But the receiver who knows b and m can easily convert the problem to bs ≡ P ≡ bα1x1+···+αnxn ≡
ax1 · · · axn (mod n) as in Exercise 13. Then by Exercise 12, this is an easy multiplicative knapsack prob-
lem, so the receiver can recover the values of the xi’s and hence the plaintext.

8.6. Cryptographic Protocols and Applications
8.6.1. The first party, having chosen k1 = 27, computes y1 ≡ 527 ≡ 94 (mod 103) and sends it to the second

party. The second party, having chosen k2 = 31, computes K ≡ 9431 ≡ 90 (mod 103).

8.6.2. The first party, having chosen k1 = 7, computes y1 ≡ 27 ≡ 22 (mod 53) and sends it to the second
party. The second party, having chosen k2 = 8, computes K ≡ 228 ≡ 16 (mod 53).

8.6.3. We compute K = ((73)10)5 ≡ 7150 (mod 601). Using a calculator or computational software we find
K ≡ 7150 ≡ 476 (mod 601).

8.6.4. We must compute 311·12·17·19 (mod 1009). We find that 3504 ≡ 1 (mod 1009) and 11 · 12 · 17 · 19 ≡
300 (mod 504). Hence 311·12·17·19 ≡ 3300 ≡ 150 (mod 1009).

8.6.5. Let k1, k2, . . . , kn be the private keys for parties 1 through n respectively. There are n steps in this
protocol. The first step is for each of the parties 1 through n to compute the least positive residue of
rki (mod p) and send this value yi to the i + 1st party. (The nth party sends his value to the 1st party.)
Now the ith party has the value yi−1 (where we take y0 to be yn.) The second step is for each party to
compute the least positive residue of yki

i−1 (mod p) and send this value to the i + 1st party. Now the ith
party has the least positive residue of rki−1+ki−2 (mod p). This process is continued for a total of n steps.
However, at the nth step, the computed value is not sent on to the next party. Then the ith party will
have the least positive residue of rki−1+ki−2+···+k1+kn+kn−1+···ki+1+ki (mod p), which is exactly the value
of K desired.

8.6.6. a. We have φ(19 · 67) = 1188 and 713 an inverse for 5 (mod 1188). So Romeo finds the numerical
equivalents for his message: 0614 1403 0124 0418 2204 0419 1114 2104. Then he applies his decryp-
tion function to each block, that is he raises each block to the 713th power modulo 19 · 67, to get:
1100 0731 0945 0304 0285 0324 1046 1248. Then, since Juliet’s modulus is smaller than his, he splits
each block in two before encrypting them with Juliet’s public key. He raises each block of size 2 to
the 3rd power and reduces modulo 11 · 71 to get the signed ciphertext: 550, 000, 343, 113, 729, 529,
027, 064, 008, 259, 027, 547, 219, 492, 166, 471 which he sends to Juliet.

b. Juliet knows that 467 is an inverse for 3 modulo φ(11 · 71) = 700. So she applies her decryption
functions to the numerical equivalents of her message: 00 03 08 04 20 05 14 17 04 21 04 17 to get 000
361 002 555 598 025 372 492 555 615 555 492. Since Romeo’s modulus is larger than hers, she pro-
ceeds to encrypt the message with Romeo’s key. She raises each block to the 5th power and reduces
modulo 19 · 67 to get 000 266 32 1119 225 442 900 1127 1119 999 1119 1127 as the signed ciphertext.

8.6.7. a. We have φ(23 · 47) = 1012 and 675 an inverse for 3 (mod 1012). The numerical equivalents for
CHEERS HAROLD are 02 07 04 04 17 18 07 00 17 14 11 03, using blocks of 2 since 25 < 1081 <
2525. The first step to perform the transformation D≡ P675 (mod 1081) on each block, which gives
us 0867 1003 0394 0394 0521 0625 1003 0000 0521 0477 1022 0357. Next we perform the transforma-
tion C≡d7 (mod 1829) which gives 0371 0354 0858 0858 0087 1369 0354 0000 0087 1543 1797 0535.

b. We have φ(31 · 59) = 1740 and 1243 an inverse for 7 modulo 1740. The numerical equivalents for
SINCERELY AUDREY are 18 08 13 02 04 17 04 11 24 0 20 03 17 04 24. We take each and perform
the transformation D≡ P1243 (mod 1829) and perform the transformation C≡D3 (mod 1081). This
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gives 0833 0475 0074 0323 0621 0105 0621 0865 0421 0000 0746 0803 0105 0621 0421.

8.6.8. a. The block size 2m is chosen so that every possible block of numerical equivalents is less than ni.
This ensures that each block will be unique modulo n. Since ni < H < nj∗ , then each block will be
unique modulo nj∗ as well.

b. Individual j knows ej modulo nj∗ , so he can compute Dkj∗ (Ekj∗ (dki
(P ))) = Dki

(P ). Since he also
knows ei, he can compute Eki

(Dki
(P )) = P . Since only individual i knows ei modulo ni, only he

could have produced Dki
(P ), and thereby make Eki

(dki
(P )) intelligible.

c. φ(781) = 700. 467 is the inverse for 3 modulo 700, so Dki(P ) ≡ P 467 (mod 781). So the plain-
text numbers for HELLO ADAM, 7 4 11 11 14 0 3 0 12, become 0138 0555 0033 0033 0372 0000
0361 0000 0419. Then apply Ekj∗ (D) = D7 (mod 1147) to each 4-digit block gives 0360 0851 0562
0562 0868 0000 0576 0000 0194. φ(893) = 828. 355 is the inverse for 7 modulo 828, so Dkj

(P ) ≡
P 355 (mod 828). Then Eki∗ ≡ D3 (mod 1189). This gives us 0921 0888 0888 0659 0001 0951 0575
0000 0890 1030 0700 0575 as the encryption for GOODBYE ALICE.

8.6.9. a. If ni < nj , the block sizes are chosen small enough so that each block is unique modulo ni. Since
ni < nj , each block will be unique modulo nj after applying the transformation Dkj

. Therefore we
can apply Ekj to Dki(P ) and retain uniqueness of blocks. If ni > nj the argument is similar.

b. If ni < nj , individual j receives Ekj (Dki(P )) and know an inverse for ej modulo φ(ni). So he can
apply Dkj (Ekj (Dki(P ))) = Dki(P ). Since he also knows ei, he can apply Eki(Dki(P )) = P and dis-
cover the plaintext P . If ni > nj , individual j receives Dki(Ekj (P )). Since he knows ei he can apply
Eki(Dki(Ekj (P ))) = Ekj (P ). Since he also knows ej he can apply Dkj (Ekj (P )) = P and discover
the plaintext P .

c. Since only individual i knows ei, only he can apply the transformation Dki and thereby make
Eki(Dki(P )) intelligible.

d. ni = 2867 > nj = 2537, so we compute Dki(Ekj (P )). Both ni and nj > 2525 so we use blocks of
4. REGARDS FRED becomes 1704 0600 1703 1805 1704 0323 (adding an X to fill out the last block.)
ei = 11 and φ(ni) = 2760, so ei = 251. We apply Ekj ≡ P ej ≡ P 13 (mod 2537) to each block and get
1943 0279 0847 0171 1943 0088. Then we apply Dki(E) = E251 (mod 2867) and get 0479 2564 0518
1571 0479 1064. Now since nj < ni individual j must send Eki(Dkj (P )), ej = 13, φ(2537) = 2436
and ej = 937. Then Dkj (P ) ≡ P 937 (mod 2537) and Eki(D) = D11 (mod 2867). The cipher text is
1609 1802 0790 2508 1949 0267.

8.6.10. Since t = 14, we compute K0 = K + tp = 5 + 14 · 7 = 103. The three shadows are given by k1 ≡ 103 ≡
4 (mod 11), k2 ≡ 103 ≡ 7 (mod 12) and k3 ≡ 103 ≡ 1 (mod 17).

8.6.11. Suppose the master key K = 3, p = 5,M1 = 8,m2 = 9,m3 = 11, and t = 13. Then M = m1m2 = 72 >

p ·m3 = 5 · 11 = 55 and t = 13 < M
p = 72

5 . We have K0 = K + tp; = 3 + 13 · 5 = 68. The shadows k1, k2,
and k3 are given by k1 ≡ 68 ≡ 4 (mod 8), k2 ≡ 68 ≡ 5 (mod 9), and k3 ≡ 68 ≡ 2 (mod 11).

8.6.12. The 3 shadows from Exercise 10 are k1 = 4, k2 = 7 and k3 = 1. If k1 and k2 are known, we solve the
system of congruences x ≡ 4 (mod 11), x ≡ 7 (mod 12) to get x = 103. If k1 and k3 are known, we solve
the system of congruences x ≡ 4 (mod 11), x ≡ 1 (mod 17) to get x = 103. If k2 and k3 are known, we
solve the system of congruences x ≡ 7 (mod 12), x ≡ 1 (mod 17) to get x = 103. In all three cases we
recover K0. Then K = K0 − tp = 103− 14 · 7 = 5.

8.6.13. The 3 shadows from Exercise 11 are k1 = 4, k2 = 5 and k3 = 2. If k1 and k2 are known, we solve the
system of congruences x ≡ 4 (mod 8), x ≡ 5 (mod 9) to get x = 68. If k1 and k3 are known, we solve the
system of congruences x ≡ 4 (mod 8), x ≡ 2 (mod 11) to get x = 68. If k2 and k3 are known, we solve
the system of congruences x ≡ 5 (mod 9), x ≡ 2 (mod 11) to get x = 68. In all three cases we recover
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K0. Then K = K0 − tp = 68− 13 · 5 = 3.

8.6.14. We choose p = 23 and mutually relatively prime moduli m1 = 41,m2 = 43,m3 = 45,m4 = 47, m5 =
49. Then since 41 · 43 · 45 = 79335 > 52969 = 23 · 47 · 49, the moduli satisfy inequality 8.7. Now M/p =
41 · 43 · 45/23 = 3449.34 . . . , so we may pick t = 33. Then K0 = 22 + 33 · 23 = 781. Then k1 ≡ 781 ≡
2 (mod 41), k2 ≡ 781 ≡ 7 (mod 43), k3 ≡ 781 ≡ 16 (mod 45), k4 ≡ 781 ≡ 29 (mod 47), and k5 ≡ 781 ≡
46 (mod 49). Suppose we have the shadows k1 = 2, k3 = 16 and k5 = 46. If we solve the system x ≡
2 (mod 41), x ≡ 16 (mod 45), and x ≡ 46 (mod 49), the Chinese remainder theorem gives us x = 781 =
K0. Then K = 781− 33 · 23 = 22.



CHAPTER 9

Primitive Roots

9.1. The Order of an Integer and Primitive Roots
9.1.1. a. Since the order of an integer modulo 5 divides φ(5) = 4, the order of an integer modulo 5 must

equal 1, 2, or 4. Since 22 ≡ 4 6≡ 1 (mod 5) the order of 2 modulo 5 is 4.

b. Since the order of an integer modulo 10 divides φ(10) = 4, the order of an integer modulo 10 must
equal 1, 2, or 4. Since 32 ≡ 9 6≡ 1 (mod 10), the order of 3 modulo 10 is 4.

c. Since the order of an integer modulo 13 divides φ(13) = 12, the order of an integer modulo 12 must
equal 1, 2, 3, 4, 6, or 12. We have 102 = (−3)2 ≡ 9 (mod 13), 103 ≡ 9 · (−3) ≡ −1 (mod 13), 104 ≡
(−1) · (−3) ≡ 3 (mod 13), and 106 = 103 · 103 ≡ (−1)2 = 1 (mod 13). If follows that the order of 10
modulo 13 is 6.

d. Since the order of an integer modulo 10 divides φ(10) = 4, the order of an integer modulo 10 must
equal 1, 2, or 4. We have 72 = 49 ≡ 9 ≡ 1 (mod 10), hence the order of 7 modulo 10 is 4.

9.1.2. a. Since ord113 must divide φ(11) = 10, 32 ≡ −2 (mod 11), and 35 ≡ 1 (mod 11), we have ord113 = 5.

b. We have φ(17) = 16. Then 24 ≡ −1 (mod 17), so 28 ≡ 1 (mod 17). Therefore, ord172 = 8.

c. We have φ(21) = 12. Then 102 ≡ −5 (mod 21), 103 ≡ 13 (mod 21), 104 ≡ 4 (mod 21), and 106 ≡ 1
(mod 21). Therefore, ord2110 = 6.

d. We have φ(25) = 20. Then 92 ≡ 6 (mod 25), 94 ≡ 11 (mod 25), 95 ≡ −1 (mod 25), and 910 ≡ 1
(mod 25). Therefore, ord259 = 10.

9.1.3. a. We have φ(6) = 2, and 52 ≡ 1 (mod 6).

b. We have φ(11) = 10, 22 ≡ 4, 25 ≡ −1, 210 ≡ 1 (mod 11).

9.1.4. a. The order of 3 modulo 4 is φ(4) = 2. Hence 3 is a primitive root of 4.

b. The order of 2 modulo 5 is φ(5) = 4 since 22 ≡ −1 (mod 4). Hence 2 is a primitive root of 5.

c. The order of 3 modulo 10 is φ(10) = 3 from Exercise 1(b). Hence 3 is a primitive root of 10.

d. We have φ(13) = 12. The proper divisors of 12 are 1, 2, 3, 4, and 6. Then 22 ≡ 4, 23 ≡ 8, 24 ≡ 3, and
26 ≡ −1 (mod 13). So 2 is a primitive root modulo 13.

e. 3 is a primitive root modulo 14.

f. 2 is a primitive root modulo 18.

9.1.5. Only 1, 5, 7, 11 are prime to 12. Each one squared is congruent to 1, but φ(12) = 4.

9.1.6. We have φ(20) = 8. The proper divisors of 8 are 1, 2, and 4. The integers relatively prime to 20 are 1,
3, 7, 9, 11, 13, 17, and 19. Note that 14 ≡ 34 ≡ 74 ≡ 94 ≡ 114 ≡ 134 ≡ 174 ≡ 194 ≡ 1 (mod 20). Therefore,
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no element has order 8 and hence there are no primitive roots modulo 20.

9.1.7. Since φ(φ(14)) = φ(6) = 2, there are 2: 3 and 5.

9.1.8. There are φ(φ(13)) = φ(12) = 4 primitive roots modulo 13. The possible order for an integer modulo
13 is 1, 2, 3, 4, 6, or 12. We have 22 ≡ 4 (mod 13), 23 ≡ 8 (mod 13), 24 ≡ 16 (mod 13), and 26 = 12
(mod 13), so that 2 is a primitive root modulo 12. We know that the primitive roots of 12 are the least
positive residues of 2u where (u, φ(13)) = (u, 12) = 1. Hence 2, 25 ≡ 6 (mod 13), 27 ≡ 11 (mod 13), and
211 ≡ 7 (mod 13) are a set of 4 incongruent primitive roots of 13.

9.1.9. That ordna =ordna follows from the fact that at ≡ 1 (mod n) if and only if at ≡ 1 (mod n). To see
this, suppose that at ≡ 1 (mod n). Then at ≡ (atat)(at) ≡ (aa)tat ≡ 1t · 1 ≡ 1 (mod n). The converse is
shown in a similar manner.

9.1.10. Let r =ordna, s =ordnb, and r =ordnab. Then we have (ab)rs ≡ (ar)s(bs)r ≡ 1s1r ≡ 1 (mod n). So t |
rs. On the other hand, 1 ≡ (ab)t ≡ (ab)rt ≡ (ar)tbrt ≡ brt (mod n). By Theorem 9.1, s | rt, but (r, s) = 1,
so s | t. Similarly r | t. Again, since (r, s) = 1, we have rs | t. Therefore rs = t as desired.

9.1.11. We have [r, s]/(r, s) ≤ ordnab ≤ [r, s]

9.1.12. This is false. For a counterexample, let n = 8, so that φ(n) = φ(8) = 4. Since (a, 8) = 1 implies that a is
odd, and a2 ≡ 1 (mod 8) whenever a is odd, the order of an integer modulo 8 is no more that two, and
hence cannot equal 4.

9.1.13. Let r =ordmat, then atr ≡ 1 (mod m), hence tr ≥ ts and r ≥ s. Since 1 ≡ ast ≡ (at)s (mod n), we
have s ≥ r.

9.1.14. Suppose that m was not prime. Then φ(m) < m − 1. Since ordma | φ(m) it follows that ordma is less
than m− 1. This shows that if there is an integer a relatively prime to m such that ordma = m− 1 then
m is prime.

9.1.15. Suppose that r is a primitive root modulo the odd prime p. Then r(p−1)/q 6≡ 1 (mod p) for all prime
divisors q of p− 1 since no smaller power than the (p− 1)st of r is congruent to 1 modulo p. Conversely,
suppose that r(p−1)/q 6≡ 1 (mod p) for all prime divisors of p − 1. Suppose that r is not a primitive root
of p. Then there is an integer t such that rt ≡ 1 (mod p) with t < p − 1. Since t must divide p − 1, we
have p− 1 = st for some positive integer s greater than 1. Then (p− 1)/s = t. Let q be a prime divisor of
s. Then (p− 1)/q = t(s/q), so that r(p−1)/q = rt(s/q) = (rt)s/q ≡ 1 (mod p). This contradicts the original
assumption, so r is a primitive root modulo p.

9.1.16. Suppose ordmr = h. Then h | φ(m). Note that 1 ≡ rr ≡ (rr)h ≡ rh (mod m). Therefore, ordmr =
φ(m) | h. And so, h =ordmr, and r is a primitive root for m.

9.1.17. Since 222
+ 1 ≡ 0 (mod Fn), then 222 ≡ −1 (mod Fn). Squaring gives (222

)2 ≡ 1 (mod Fn). Thus,
ordFn2 ≤ 2n2 = 2n+1.

9.1.18. a. Let h =ordp2. Then h | φ(p) = p − 1. Note that 22n ≡ −1 (mod p), so (22n

)2 ≡ 22n+1 ≡ 1 (mod p).
Therefore, h | 2n+1, say h = 2k. But if k < n + 1 and 2h ≡ 22k ≡ 1 (mod p), then 22n ≡ 1 (mod p), a
contradiction. Therefore h = 2n+1.

b. Since 2n+1 =ordp2 | φ(p) = p− 1, we have 2n+1k = p− 1 or p = 2n+1k + 1.

9.1.19. Note that at < m = an − 1 whenever 1 ≤ t < n. Hence at cannot be congruent to 1 modulo m when t
is a positive integer less than n. However, an ≡ 1 (mod m) since m = (an − 1) | (an − 1). It follows that
ordma = n. Since ordma | m, we see that n | φ(m).
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9.1.20. a. If ordq2 | (p − 1) and ordp2 | (q − 1), then 2pq ≡ (2p)q ≡ 2q ≡ 2 (mod q), and similarly, 2pq ≡
2 (mod q). By the Chinese Remainder Theorem, there exists a unique solution modulo pq to the
system x ≡ 2 (mod q), x ≡ 2 (mod p). Since 2 and 2pq are both solutions, we must have 2 ≡ 2pq

(mod pq). Therefore, pq is a pseudoprime to the base 2. Conversely, if pq is a pseudoprime to the
base 2, then 2pq ≡ 2 (mod pq) and so 2pq ≡ 2 (mod p). But by Fermat’s Little Theorem, 2p ≡ 2
(mod p), so (2p)2 ≡ 2q ≡ 2 (mod p). Since (2, p) = 1, we have 2q−1 ≡ 1 (mod p) and so ordp2 |
(q − 1). Similarly, ordq2 | (p− 1).

b. 19 · 73 and 23 · 89 are pseudoprimes to the base 2. The other numbers are not.

9.1.21. First suppose that pq is a pseudoprime to the base 2. By Fermat’s Little Theorem, 2p ≡ 2 (mod p), so
there exists an integer k such that 2p−2 = kp. Then 2Mp−1−1 = 22p−1−1 = 2kp−1. This last expression
is divisible by 2p − 1 = Mp by Lemma 6.1. Hence, 2Mp−1 ≡ 1 (mod Mp), or 2Mp ≡ 2 (mod Mp). Since
pq is a pseudoprime to the base 2, we have 2pq ≡ 2 (mod pq), so 2pq ≡ 2 (mod p). But 2pq ≡ (2p)q ≡ 2q

(mod p). Therefore 2q ≡ 2 (mod p). Then there exists an integer l such that Mq − 1 = 2q − 2 = lp. Then
2Mq−1 − 1 = 22q−2 = 2lp − 1, so 2p − 1 = Mp divides 2Mq−1 − 1. Therefore 2Mq ≡ 2 (mod Mp). Then we
have 2MpMq ≡ (2Mp)Mq ≡ 2Mq ≡ 2 (mod Mp). Similarly, 2MpMq ≡ 2 (mod Mq). By the Chinese remain-
der theorem, noting that Mp and Mq are relatively prime, we have 2MpMq ≡ 2 (mod MpMq). Therefore
MpMq is a pseudoprime to the base 2. Conversely, suppose MpMq is a pseudoprime to the base 2.
From the reasoning in the proof of Theorem 6.6, we have that 2Mp ≡ 2 (mod p). Therefore 2MpMq ≡
2(Mp−1)Mq+Mq ≡ 2Mq ≡ 2 (mod p). But since Mp = 2p − 1 ≡ 0 (mod Mp), we have that the order of
2 modulo Mp is p. Therefore p|Mq − 1. In other words, 2q ≡ 2 (mod p). Then 2pq ≡ 2q ≡ 2 (mod p).
Similarly, 2pq ≡ 2 (mod q). Therefore, by the Chinese remainder theorem, 2pq ≡ 2 (mod pq). Therefore,
since pq is composite, it is a pseudoprime to the base 2.

9.1.22. We prove that Cj ≡ Cej

(mod n) for every positive integer j using mathematical induction. For j =
0 we have C0 = C ≡ Ce0

= C1 (mod n), so the basis step holds. Next we carry out the inductive step.
Assume that Cj ≡ Cej

(mod n). Then Cj+1 ≡ (Cej

)e = Cej+1
(mod n). This completes the proof.

9.1.23. Let j =ordφ(n)e. Then ej ≡ 1 (mod φ(n)). Since ordnP | φ(n), we have ej ≡ 1 (mod ordnP ). Then by
Theorem 8.2, P ej ≡ P (mod n), so Cej−1 ≡ (P e)ej−1 ≡ P ej ≡ P (mod n) and Cej ≡ P e ≡ C (mod n).

9.1.24. Computing the sequence, we have C1 = 150417 ≡ 2444 (mod 47 · 59), C2 = 244417 ≡ 470 (mod 47 ·
59), C3 = 47017 ≡ 2209 (mod 47 · 59), C4 = 220917 ≡ 1504 (mod 47 · 59). Therefore P = C − 3 = 2209
which is the numerical equivalent of WJ .

9.2. Primitive Roots for Primes
9.2.1. a. By Lagrange’s Theorem, there are at most 2 roots. Since (±3)2 + 2 ≡ 0 (mod 11), we have found all

the roots.

b. By Lagrange’s Theorem, there are at most 2 roots. Since (±1)2 + 10 ≡ 0 (mod 11), we have found
all the roots.

c. By Lagrange’s Theorem, there are at most 3 roots. Note that the polynomial factors thus x3 + x2 +
2x + 2 = x2(x + 1) + 2(x + 1) = (x2 + 2)(x + 1). So x = −1 is a solution, and the two solutions from
part (a) are solutions, and this must be all.

d. By Lagrange’s Theorem, there are at most 4 roots. Since the polynomial is an even function it suf-
fices to check only the numbers 0, 1, 2, 3, 4, and 5 as roots. We find that none of these work, so there
are no roots of the polynomial modulo 11.

9.2.2. a. We find that 52 + 1 ≡ 82 + 1 ≡ 0 (mod 13) are the only 2 solutions.
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b. We find that 112 + 3 · 11 + 2 ≡ 122 + 3 · 12 + 2 ≡ 0 (mod 13) are the only 2 solutions.

c. We find that 13 + 12 ≡ 33 + 12 ≡ 93 + 12 ≡ 0 (mod 13) are the only 3 solutions.

d. We find that 74 + 72 + 7 + 1 ≡ 0 (mod 13) is the only solution.

9.2.3. a. There are φ(7− 1) = φ(6) = 2 primitive roots modulo 7.

b. There are φ(13− 1) = φ(12) = 4 primitive roots of 13.

c. There are φ(17− 1) = φ(16) = 8 primitive roots of 17.

d. There are φ(19− 1) = φ(18) = 6 primitive roots of 19.

e. There are φ(29− 1) = φ(28) = 12 primitive roots of 29.

f. There are φ(47− 1) = φ(46) = 22 primitive roots of 47.

9.2.4. There must be φ(φ(7)) = 2 primitive roots modulo 7. Since 3 is one, the other must be 3 raised to a
power relatively prime to φ(7) = 6, so we take 35 ≡ 9 · 9 · 3 ≡ 2 · 2 · 3 ≡ 12 ≡ 4 (mod 7). Thus 3 and 5
make a complete set of primitive roots modulo 7.

9.2.5. There must be φ(φ(13)) = 4 primitive roots modulo 13. Since 2 is one, the others must be 2 raised to a
power relatively prime to φ(13) = 12. So we take 25 ≡ 6 (mod 13), 27 ≡ 6 · 4 ≡ 11 (mod 13), and 211 ≡
6 · 6 · 2 ≡ 7 (mod 13). So a complete set of primitive roots is 2, 6, 7, 11

9.2.6. There must be φ(φ(17)) = 8 primitive roots modulo 17. Since 3 is one, the other ones must be 3 raised
to powers relatively prime to φ(17) = 16, so we take 33, 35, 37, 39, 311, 313, and 315 modulo 17. Reducing
gives 10, 5, 11, 14, 7, 12, and 6.

9.2.7. Since φ(19) = 18 and φ(18) = 6, we seek 6 primitive roots for 19. Since 2 is one, we raise 2 to the pow-
ers which are relatively prime to 18, namely, 25, 27, 211, 213, and 217. Reducing modulo 19 gives us 2, 3,
10, 13, 14, 15, as a complete set of primitive roots.

9.2.8. Suppose that r is a primitive root of the prime p where p ≡ 1 (mod 4). Let t be the order of −r mod-
ulo p. We know that t | (p − 1). Let tu = p − 1. We first show that u cannot be odd. If u were odd
then t = (p − 1)/u is even, so that rt = (−r)t ≡ 1 (mod p) which is a contradiction since r is a prim-
itive root of p. Now suppose that u is even. Then (−r)t = (−r)(p−1)/u ≡ 1 (mod p). Since u is even,
(p− 1)/u | (p− 1)/2 so that (−r)(p−1)/2 ≡ 1 (mod p). But since p ≡ 1 (mod 4) it follows that (p− 1)/2 is
even. Hence (−r)(p−1)/2 = (−1)(p−1)/2r(p−1)/2 = r(p−1)/2 ≡ 1 (mod p). This is a contradiction since r is
a primitive root of p.

9.2.9. By Lagrange’s Theorem there are at most two solutions to x2 ≡ 1 (mod p), and we know x ≡ ±1 are
the two solutions. Since p ≡ 1 (mod 4), 4 | (p − 1) = φ(p) so there is an element x of order 4 modulo
p. Then x4 = (x2)2 ≡ 1 (mod p), so x2 ≡ ±1 (mod p). If x2 ≡ 1 (mod p) then x does not have order 4.
Therefore x2 ≡ −1 (mod p).

9.2.10. a. We have 02 − 0 ≡ 0 (mod 6), 12 − 1 ≡ 0 (mod 6), 22 − 2 ≡ 2 (mod 6), 32 − 3 ≡ 0 (mod 6), 42 − 4 ≡
0 (mod 6), and 52 − 5 ≡ 2 (mod 6). Hence there are 4 incongruent roots modulo 6.

b. This does not contradict Lagrange’s theorem since 6 is not prime.

9.2.11. a. Let f(x) = anxn + an−1x
n−1 + · · · a0 and let k be the largest integer such p does not divide ak. Let

g(x) = akxk + ak−1x
k−1 + · · · a0. Then f(x) ≡ g(x) (mod p) for every value of x. In particular g(x)

has the same set of roots as f(x). Since the number of roots is greater than n > k, this contradicts



9.2. PRIMITIVE ROOTS FOR PRIMES 151

Lagrange’s theorem. Therefore, no such k exists and p must divide every coefficient of f(x).

b. Note that the degree of f(x) is p− 2. By Fermat’s little theorem we have that xp−1− 1 ≡ 0 (mod p),
for x = 1, 2, . . . , p − 1. Further, each x in the same range is a zero for (x − 1)(x − 2) · · · (c − p + 1).
Therefore, each x = 1, 2, . . . , p− 1 is a root of f(x). Since f(x) has degree p− 2 and p− 1 roots, part
(a) tells us that all the coefficients of f(x) are divisible by p.

c. From part (b) we know that the constant term of f(x) is divisible by p. The constant term is given
by f(0) = (−1)(−2) · · · (−p + 1) + 1 ≡ (−1)p−1(p − 1)! + 1 ≡ (p − 1)! + 1 ≡ 0 (mod p), which is
Wilson’s theorem.

9.2.12. This is clearly true if p = 2. Now suppose that p > 2. Note that r is a primitive root of p if and only
if r is a primitive root of p where r is an inverse of r modulo p. Also note that r and r are incongruent
modulo p sinc r ≡ r (mod p) if and only if r ≡ ±1 (mod p). Hence the product of the φ(p− 1) primitive
roots of p is the product of φ(p − 1)/2 pairs of primitive roots r and r, each pair of which has a product
congruent to 1 modulo p. Hence the product of all these primitive roots is 1.

9.2.13. a. Since qti
i | φ(p) = p − 1, by Theorem 9.8 there exists φ(qti

i ) elements of order qti
i for each i =

1, 2, . . . , r. Let ai be a fixed element of this order.

b. Using induction and Exercise 10 of Section 9.1, we have ordp(a) = ordp(a1a2 · · · ar) = ordp(a1 · · · ar−1)
ord p(ar) = · · · = ordp(a1) · · · ordp(ar) since {ordp(a1), ordp(a2), . . . , ordp(ar)} = {qt1

1 , . . . , qtr
r } are

pairwise relatively prime.

c. φ(29) = 28 = 227, and 124 ≡ 1 (mod 29), so ord29(12) = 4. Also, 167 ≡ 1 (mod 29) so ord29(16) =
7. Then by part (b), ord29(12 · 16) = 4 · 7 = 28. Therefore 12 · 16 = 192 ≡ 18 (mod 29) is a primitive
root modulo 29.

9.2.14. Let b be an integer such that n is a pseudoprime to the base b. Then bn ≡ b (mod n). For each i, let
di = (n− 1, pi− 1). Then bn ≡ b (mod pai

i ), and since (b, p) = 1, we have bn−1 ≡ 1 (mod pai
i ). Therefore,

ordp
ai
i

b | (n− 1) and ordp
ai
i

b | φ(pai
i ). Hence, ordp

ai
i

b | (n− 1, pai−1
i (pi − 1)) = (n− 1, pi − 1) = di. Then

bdi ≡ 1 (mod pai
i ), and this last congrence has at most d solutions modulo pai

i , by Lagrange’s Theorem.
Let si be a primitive root modulo pai

i . Then st ≡ b (mod pai
i ) for some t. Then td = φ(pai

i ) and each of
st

i, s
2t
i , . . . , sdt

i is an incongruent solution to bdi ≡ 1 (mod pai
i ). Therefore, there are exactly di solutions.

If we choose a solution for each i = 1, . . . , r, then the Chinese Remainder Theorem guarantees a unique
solution modulo n. Since there are

∏r
i=1 di ways to choose the solutions, we have this many different b’s

modulo n.

9.2.15. If n is odd, composite and not a power of 3, then the product in Exercise 14 is
∏r

j=1(n − 1, pj − 1) ≥
(n− 1, 3− 1)(n− 1, 5− 1) ≥ 2 · 2 = 4. So there must be two bases other than −1 and +1.

9.2.16. We have φ(p) = p − 1 = 2q. so the possible orders or p − a2 are 1, 2, q and 2q. Computing, we have
(p − a2)2 ≡ p2 − 2pa2 + a4 ≡ a4 (mod p). If a4 ≡ 1 (mod p), then a2 ≡ 1 (mod p) since a can not have
order 4. Then a ≡ ±1 (mod p), but 1 < a < p − 1 so this is a contradiction. and p − a2 doesn’t have
order 2. Secondly, using the binomial theorem, (p − a2)q ≡ −(a2q) ≡ −1 (mod p), so (p − a2) doesn’t
have order q. Therefore, it has order 2q and must be a primitive root modulo p.

9.2.17. a. Suppose that f(x) is a polynomial with integer coefficients of degree n−1. Suppose that x1, x2, · · · , xn

are incongruent modulo p where p is prime. Consider the polynomial g(x) = f(x)−∑n
j=1

(
f(xj)

∏
i 6=j(x− xi)(xj − xi)

)
. Note that xj , j = 1, 2, · · · , n is a root of this polynomial mod-

ulo p since its value at xj is f(xj)−[0+0+· · ·+f(xj)
∏

i6=j(xj−xi)(xj−xi)+· · ·+0] ≡ f(xj)−f(xj)·
1 ≡ 0 (mod p). Since g(x) has n incongruent roots modulo p and since it is of degree n − 1 or less,
we can easily us Lagrange’s theorem (Theorem 8.6) to see that g(x) ≡ 0 (mod p) for every integer x.
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b. By part (a) we have f(5) ≡ f(1)(5 − 2)(1− 2)(5 − 3)(1− 3) + f(2)(5 − 1)(2− 1)(5 − 3)(2− 3) +
f(3)(5− 1)(3− 1)(5− 2)(3− 2) ≡ 8 · 3(−1)2 · (−2) + 2 · 4 · 1 · 2 · (−1) + 4 · 4 · 2 · 3 · 1 ≡ 8 · 3 · 10 · 2 ·
5 + 2 · 4 · 1 · 2 · 10 + 4 · 4 · 6 · 3 · 1 ≡ 10 (mod 11).

9.2.18. a. Given r shadows, we have f(x) evaluated at r incongruent integers modulo p. By Exercise 17, since
deg f = r − 1, we can determine f(0) ≡ K (mod p).

b. From Exercise 17 we have f(0) ≡ K ≡
r∑

j=1

kj

n∏
i=1
i 6=j

(−xi)(xj − xi) (mod p). Solving for kr gives

kr ≡ K −∑
ki

∏
(−xi)(xj − xi)∏

(−xi)(xj − xi)
(mod p) from which we can see that kr is determined by K and

k1, k2, . . . , kr−1. If only r − 1 shadows were needed, then k − r could take on any value without
effecting the value of K.

c. We have f(1) = 69 ≡ 22, f(2) = 131 ≡ 37, f(3) = 243 ≡ 8, f(4) = 429 ≡ 6, f(5) = 713 ≡ 8, f(6) =
1119 ≡ 38, and f(7) = 1671 ≡ 26 (mod 47).

d. K = f(0) = 22[(−2)(1− 2)(−3)(1− 3)(−4)(1− 4)] + 37[(−1)(2− 1)(−3)(2− 3)(−4)(2− 4)] +
8[(−1)(3− 1)(−2)(3− 2)(−4)(3− 4)] + 6[(−1)(4− 1)(−2)(4− 2)(−3)(4− 3)] ≡ 33 (mod 47).

9.2.19. By Exercise 23 of Section 9.1, j | ordφ(n)e. Here, φ(n) = φ(pq) = 4p′q′, so j | φ(4p′q′) = 2(p′−1)(q′−1).
Choose e to be a primitive root modulo p′. Then p′− 1 = φ(p′)|φ(φ(n)), so p′− 1|ordφ(n)e. The decrypter
needs ej ≡ 1 (mod n), but this choice of e forces j = p′ − 1, which will take quite some time to find.

9.3. The Existence of Primitive Roots
9.3.1. The positive integers that have a primitive root are 2,4 and integers of the form pt, and 2pt where p is

prime and t is a positive integer. Hence the integers in the list that have a primitive root are 4, 10 = 2 · 5,
and 22 = 2 · 11.

9.3.2. By Theorem 9.15, we only admit prime powers and twice prime powers. This leaves only 9, 26, 27,
and 31.

9.3.3. a. First note that 2 is a primitive root modulo 3. Since 23−1 = 22 = 4 6≡ 1 (mod 32), 2 is also a primi-
tive root modulo 32.

b. First note that 2 is a primitive root modulo 5. Since 25−1 = 24 = 16 6≡ 1 (mod 52), 2 is also a primi-
tive root modulo 52.

c. First note that 5 is a primitive root modulo 23. Since 523−1 = 522 ≡ 323 6≡ 1 (mod 232), 5 is also a
primitive root modulo 232.

d. First note that 2 is a primitive root modulo 29. Since 229−1 = 228 ≡ 30 6≡ 1 (mod 292), 2 is also a
primitive root modulo 292.

9.3.4. a. First note that 2 is a primitive root modulo 11. Since 211−1 = 210 = 1024 ≡ 56 6= 1 (mod 112), 2 is
also a primitive root modulo 112.

b. First note that 2 is a primitive root modulo 13. Since 213−1 = 212 = 4096 ≡ 40 6= 1 (mod 132), 2 is
also a primitive root modulo 132.

c. First note that 3 is a primitive root modulo 17. Since 317−1 = 38 = 6561 ≡ 203 6= 1 (mod 172), 3 is
also a primitive root modulo 172.
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d. First note that 2 is a primitive root modulo 19. Since 219−1 = 218 = 262144 ≡ 58 6= 1 (mod 192), 2 is
also a primitive root modulo 192.

9.3.5. a. We know that 2 is a primitive root of 3 and also of 32 since 2(3−1) = 4 6= 1 (mod 9). It follows that 2
is also a primitive root of 3k for all positive integers k.

b. From Exercise 2(a) we know that 2 is a primitive root modulo 112. It follows that 2 is a primitive
root modulo 11k for all positive integers k.

c. From Exercise 2(b) we know that 2 is a primitive root modulo 132. It follows that 2 is a primitive
root modulo 13k for all positive integers k.

d. From Exercise 2(c) we know that 3 is a primitive root modulo 172. It follows that 3 is a primitive
root modulo 17k for all positive integers k.

9.3.6. a. By Theorem 9.10, we need only find a primitive root for k = 1, 2. We find that 5 is a primitive root
modulo 23. Then by Theorem 9.9, either 5 or 23 − 5 = 18 is a primitive root modulo 232. We find
that 5 is also a primitive root modulo 232, therefore it is a primitive root modulo 23k for any posi-
tive integer k.

b. As in part (a) 2 is a primitive root modulo 29k for any positive integer k.

c. As in part (a), 3 works.

d. As in part (a), 2 works.

9.3.7. a. Since 2 is even and primitive root for 5, we have by Theorem 9.14 that 5 + 2 = 7 is a primitive root
for 10.

b. Since 3 is odd and a primitive root for 17, we have by Theorem 9.14 that 3 is also a primitive root
for 34.

c. Since 2 is even and a primitive root for 19, we have by Theorem 9.14 that 2 + 19 = 21 is a primitive
root for 38.

d. We have 50 = 2 · 52. By Exercise 3(b), 2 is a primitive root for 52. By Theorem 9.14, since 2 is even,
25 + 2 = 27 is a primitive root for 50.

9.3.8. a. By Theorem 9.14, since 2 is an even primitive root for 3, then 2 + 3 = 5 is a primitive root for 6.

b. By Theorem 9.14, and Exercise 3(a), since 2 is an even primitive root for 9, then 2+9 = 11 is a prim-
itive root for 18.

c. By Theorem 9.14, since 2 is an even primitive root for 13, then 2 + 13 = 15 is a primitive root for 26.

d. We have 338 = 2 · 132. By Exercise 4(b), 2 is a primitive root for 132. By Theorem 9.14, since 2 is
even, 169 + 2 = 171 is a primitive root for 338.

9.3.9. First note that 2 is primitive root of 11. Since 2 is even, Theorem 9.14 tells us that 2 + 11 = 13 is a
primitive root of 22. Hence the primitive roots of 22 are the least positive residues of 13k where 1 ≤ k <
φ(22) = 10 and (k, φ(12)) = (k, 10) = 1. These are the integers 131 = 13, 133 ≡ 19 (mod 22), 137 ≡ 7
(mod 22), and 139 ≡ 17 (mod 22). Hence the primitive roots of 22 are 7, 13, 17, and 19.

9.3.10. 2 is a primitive root modulo 25. There must be φ(φ(25)) = 8 of them, given by raising 2 to powers
relatively prime to φ(25) = 20. It follows that 21, 23, 27, 29, 211, 213, 217, and 219 become 2, 8, 3, 12, 23, 17,
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22, and 13 when reduced modulo 25.

9.3.11. By Exercise 7 in Section 9.1, a complete set of primitive roots modulo 19 is 2, 3, 10, 13, 14, 15. By The-
orem 9.14, the odd numbers in this set are primitive roots of 38, and if we add 19 to each of the even
numbers in this set, we also have primitive roots of 38. Thus we have 2 + 19, 3, 10 + 19, 13, 14 + 19, 15 as
all the primitive roots of 38. Reducing gives us 3, 13, 15, 21, 29, 33.

9.3.12. By Theorem 9.5, there are φ(φ(pt)) = φ(pt − pt−1) primitive roots modulo pt, and φ(φ(2pt)) = φ(pt −
pt−1) primitive roots modulo 2pt.

9.3.13. Suppose that r is a primitive root of m and suppose further that x2 ≡ 1 (mod m). Let x ≡ rt (mod m)
where 0 ≤ t ≤ p − 1. Then r2t ≡ 1 (mod m). Since r is a primitive root, it follows that φ(m) | 2t so that
2t = kφ(m) and t = kφ(m)/2 for some integer k. We have x ≡ rt = rkφ(m)/2 = r(φ(m)/2)k ≡ (−1)k ≡
±1 (mod m), since rφ(m)/2 ≡ −1 (mod m). Conversely, suppose that m has no primitive root. Then m
is not of one of the forms 2, 4, pa, or 2pa with with p and odd prime. So either 2 distinct primes divide
m or m = 2bM with M and odd integer and b > 1 or m = 2b with c > 2. In each of these cases we have
φ(m) = 2cN with N odd and c ≥ 3. From Theorem 9.12, we know there are at least 3 solutions y1, y2, y2

to y2 ≡ 1 (mod 2c) and certainly z ≡ 1 (mod N) is a solution of x2 ≡ 1 (mod N). By the Chinese re-
mainder theorem, there is a unique solution modulo 2cN of the system x ≡ yi (mod 2c), z ≡ 1 (mod N)
for i = 1, 2, 3. Since these solutions are distinct modulo m, at least one of them is not ±1 (mod m).

9.3.14. Let r be a primitive root modulo n. Note that rφ(n)/2 ≡ −1 (mod n). The integers r, r2, . . . , rφ(n) re-
duced modulo n , is the set of integers less than and relatively prime to n. Their product is r · r2 · · · rφ(n) =

r
Pφ(n)

i=1 i = rφ(n)(φ(n)−1)/2 ≡ (−1)φ(n)−1 ≡ −1 (mod n) since φ(n) is even.

9.3.15. By Theorem 9.12 we know that ord2k5 = φ(2k)/2. Hence the 2k−2 integers 5j , j = 0, 1, · · · , 2k−2 − 1,
are incongruent modulo 2k. Similarly the 2k−2 integers −5j , j = 0, 1, · · · , 2k−2 − 1, are incongurent
modulo 2k. Note that 5j cannot be congruent to −5i modulo 2k where i and j are integers since 5j ≡
1 (mod 4) but −5i ≡ 3 (mod 4). It follows that the integers 1, 5, · · · , 52k−2−1,−1,−5, · · · ,−52k−2−1 are
2k−1 incongruent integers modulo 2k. Since φ(2k) = 2k−1 and every integer of the form (−1)α5β is rela-
tively prime to 2k, it follows that every odd integer is congruent to an integer of this form with α = 0 or
1 and 0 ≤ β = 2k−2 − 1.

9.3.16. 2 is the smallest. To find the next case, we search tediously through the primes, in order, using Table
E.3 in the back of the text. We do the case, p = 19 as an example. The table gives 2 as a primitive root
modulo 19. Then all primitive roots are found by raising 2 to powers relatively prime to φ(19) = 18.
Reducing 2, 25, 27, 211, 213, 217 modulo 19 gives us 2, 13, 14, 3, and 10 as all the primitive roots modulo
19. If one of these were not a primitive root modulo 192, then it would have order equal to 19− 1 = 18.
(See the argument in the proof of Theorem 9.9.) We raise each of the primitive roots to the 18th power,
and reduce modulo 192 to get 58, 343, 305, 210, 343, 286. Since we didn’t get a 1, we continue our search
with the next prime. We finally find that 14 is a primitive root modulo 29, but not for 292.

9.4. Index Arithmetic
9.4.1. We first compute the least positive residues of the powers of 5 modulo 23. We have 51 ≡ 5 (mod 23),

52 ≡ 2 (mod 23), 53 ≡ 10 (mod 23), 54 ≡ 4 (mod 23), 55 ≡ 20 (mod 23), 56 ≡ 8 (mod 23), 57 ≡ 17
(mod 23), 58 ≡ 16 (mod 23), 59 ≡ 11 (mod 23), 510 ≡ 9 (mod 23), 511 ≡ 22 (mod 23), 512 ≡ 18
(mod 23), 513 ≡ 21 (mod 23), 514 ≡ 13 (mod 23), 515 ≡ 19 (mod 23), 516 ≡ 3 (mod 23), 517 ≡ 15
(mod 23), 518 ≡ 6 (mod 23), 519 ≡ 7 (mod 23), 520 ≡ 12 (mod 23), 521 ≡ 14 (mod 23), and 522 ≡ 1
(mod 23). Hence ind51 = 22, ind52 = 2, ind53 = 16, ind54 = 4, ind55 = 1, ind56 = 18, ind57 = 19,
ind58 = 6, ind59 = 10, ind510 = 3, ind511 = 9, ind512 = 20, ind513 = 14, ind514 = 21, ind515 = 17,
ind516 = 8, ind517 = 7, ind518 = 12, ind519 = 15, ind520 = 5, ind521 = 13, and ind522 = 11.

9.4.2. a. From Exercise 1, we can take indices base 5 modulo 23 and get ind53 + 5ind5x ≡ind51 (mod 22). If
y =ind5x, we have 16 + 5y ≡ 22 (mod 22) which has solution y ≡ 10 (mod 22). Therefore, x ≡ 9
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(mod 23).

b. Taking indices gives us ind53 + 14ind5x ≡ind52 (mod 22) or 16 + 14y ≡ 2 (mod 22) which has so-
lution y ≡ 10 or 21 (mod 22), so x ≡ 9 or 14 (mod 23).

9.4.3. a. Suppose that 3x ≡ 2 (mod 23). We take indices with respect to the primitive root 5 of 23. This gives
ind5(3x) = ind52 which implies that x ind53 ≡ ind52 (mod 22). Since ind5(3x) = 16 and ind52 = 2
it follows that 16 ≡ 2 (mod 22). Hence 8x ≡ 1 (mod 11). Since 7 is the inverse of 8 modulo 11, it
follows that x ≡ 7 (mod 11), so that x ≡ 7 or 18 (mod 22).

b. Taking indices gives us x ind513 ≡ ind55 (mod 22) or 14x ≡ 1 (mod 22) which has no solutions
since (14, 22) = 2 - 1.

9.4.4. Suppose that ax4 ≡ 2 (mod 13). Taking indices with respect to the primitive root 2 of 13, we have
ind2(ax4) ≡ ind22 (mod 12). Hence ind2a + 4· ind2x ≡ 1 (mod 12), or 4·ind2x ≡ 1− ind2a (mod 12).
There is a solution x if and only if (4, 12) = 4 divides 1− ind2a. This is true if ind2a = 1, 5 or 9, which
holds if and only if a ≡ 21 ≡ 2 (mod 13), a ≡ 25 ≡ 6 (mod 13), or a ≡ 29 ≡ 5 (mod 13). Hence this
congruence has a solution if and only if a ≡ 2, 5, or 6 (mod 13).

9.4.5. We use the table of indices on page 612 of the text. We see that 2 is a primitive root for 29. Taking
indices base 2 of the congruence and expanding gives us ind28 + 7ind2x ≡ ind2b (mod 28). From the
table we have 3 + 7ind2x ≡ ind2b (mod 28), which has a solution if and only if (7, 28) = 7 | (ind2b− 3).
So ind2b − 3 = 0, 7, 14, or 21, that is ind2b = 3, 10, 17, or 24. This corresponds to b = 8, 9, 21, or 20, re-
spectively.

9.4.6. Suppose that 2x ≡ x (mod 13). Taking indices of both sides to the base 2 modulo 13 gives ind2(2x) ≡
ind2x (mod 12). Since ind2(2x) ≡ x (mod 12), this implies that x ≡ ind2x (mod 12). Since ind2x de-
pends on the remainder when x is divided by 13, and we also need the remainder when ind2x is divided
by 12. By the Chinese remainder theorem we need to consider the remainder when x is divided by 13 ·
12 = 156. The solutions are given by the integers x such that x ≡ 0 (mod 12) and ind2x = 0 (mod 12);
x ≡ 1 (mod 12) and ind2x = 1 (mod 12); x ≡ 2 (mod 12) and ind2x = 2 (mod 12); x ≡ 3 (mod 12)
and ind2x = 3 (mod 12); x ≡ 4 (mod 12) and ind2x = 4 (mod 12); x ≡ 5 (mod 12) and ind2x = 5
(mod 12); x ≡ 6 (mod 12) and ind2x = 6 (mod 12); x ≡ 7 (mod 12) and ind2x = 7 (mod 12); x ≡ 8
(mod 12) and ind2x = 8 (mod 12); x ≡ 9 (mod 12) and ind2x = 9 (mod 12); x ≡ 10 (mod 12) and
ind2x = 10 (mod 12); and x ≡ 11 (mod 12) and ind2x = 11 (mod 12). These are the solutions to x ≡
0 (mod 12) and x ≡ 1 (mod 13); x ≡ 1 (mod 12) and x ≡ 2 (mod 13); x ≡ 2 (mod 12) and x ≡ 4
(mod 13); x ≡ 3 (mod 12) and x ≡ 8 (mod 13); x ≡ 4 (mod 12) and x ≡ 3 (mod 13); x ≡ 5 (mod 12)
and x ≡ 6 (mod 13); x ≡ 6 (mod 12) and x ≡ 12 (mod 13); x ≡ 7 (mod 12) and x ≡ 11 (mod 13);
x ≡ 8 (mod 12) and x ≡ 9 (mod 13); x ≡ 9 (mod 12) and x ≡ 5 (mod 13); x ≡ 10 (mod 12) and x ≡
10 (mod 13); and x ≡ 11 (mod 12) and x ≡ 7 (mod 13). We solve each of these 12 systems of simulta-
neous congruences to see that all solutions, in order of which set of congruence they satisfy, are given
by x ≡ 144, 145, 134, 99, 16, 149, 90, 115, 152, 57, 10, 59 (mod 156). Listing these in order, we see that all
solutions are given by those integers x that satisfy x ≡ 10, 16, 57, 59, 90, 99, 115, 134, 144, 145, 149, or 152
(mod 156).

9.4.7. Taking indices of the congruence gives us xindx ≡ indx (mod 22), so that 22 | (indx)(x − 1). If
(indx, 22) = 1, then 22 | (x − 1), which is the case for x = 5, 7, 10, 11, 14, 15, 17, 19, 20, and 21, from the
table on page 548. So any solution of the systems x ≡ 1 (mod 22), x ≡ a (mod 23), as a runs through
the list above, is a solution to the congruence. If (indx, 22) = 2, then x is one of 2, 3, 4, 6, 8, 9, 12, 13, 16,
or 18, and 11 | (x− 1), so any solution to the systems x ≡ 1 (mod 11), x ≡ b (mod 23), as b runs through
this list, is also a solution to the congruence. If (indx, 22) = 11, then indx = 11, so x ≡ 22 (mod 23), but
this is not a solution. Finally, if (indx, 22) = 22, then indx = 22, so x ≡ 1 (mod 23). Since 23 · 22 = 506,
we list the solutions modulo 506: 1, 12, 23, 24, 45, 46, 47, 67, 69, 70, 78, 89, 91, 92, 93, 100, 111, 115, 116,
133, 137, 138, 139, 144, 155, 161, 162, 177, 183, 184, 185, 188, 199, 207, 208, 210, 221, 229, 230, 231, 232, 243,
253, 254, 265, 275, 276, 277, 287, 299, 300, 309, 321, 322, 323, 331, 345, 346, 353, 367, 368, 369, 375, 386, 391,
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392, 397, 413, 414, 415, 419, 430, 437, 438, 441, 459, 460, 461, 463, 483, 484, 485, 496, 505.

9.4.8. Suppose that r is a primitive root modulo p. Then r(p−1)/2 ≡ −1 ≡ p − 1 (mod p) since r(p−1)/2 6≡
1 (mod p) and (r(p−1)/2)2 ≡ 1 (mod p). (This follows since the congruence x2 ≡ 1 (mod p) has exactly
two incongruent solutions modulo p, namely x ≡ 1 (mod p) and x ≡ −1 (mod p).) Hence indr(p− 1) =
(p− 1)/2.

9.4.9. Suppose that x4 ≡ −1 (mod p) and let y =indrx. Then, −x is also a solution and by Exercise 8,
indr(−x) ≡indr(−1)+indr(x) ≡ (p−1)/2+y (mod p−1). So without loss of generality we may take 0 <
y < (p−1)/2, or 0 < 4y < 2(p−1). Taking indices of both sides of the congruence yields 4y ≡indr(−1) ≡
(p−1)/2 (mod p−1), again using Exercise 8. So 4y = (p−1)/2+m(p−1) for some m. But 4y < 2(p−1),
so either 4y = (p − 1)/2 and so p = 8y + 1 or 4y = 3(p − 1)/2. In this last case, 3 must divide y, so we
have p = 8(y/3) + 1. So in either case, p is of the desired form. Conversely, suppose p = 8k + 1 and let r

be a primitive root of p. Take x = rk. Then x4 ≡ r4k ≡ r(p−1)/2 ≡ −1 (mod p) by Exercise 8. So this x is
a solution.

9.4.10. Suppose that p1, . . . , pn are all of the primes of the form 8k + 1. Let Q = (p1 · · ·Pn)4 + 1. Then Q ≡
(1)4 + 1 ≡ 2 (mod 8). So Q has an odd prime factor q. Then (p1 · · ·Pn)4 ≡ 1 (mod q). By Exercise 9, q is
of the form 8k + 1.

9.4.11. We have 7 ≡ (−1)152 (mod 24) and 9 ≡ (−1)052 (mod 24). Hence the index systems of 7 and 9 mod-
ulo 16 are (1, 2) and (0, 2), respectively.

9.4.12. Let x ≡ (−1)α5β and y ≡ (−1)γ5δ . Then xy ≡ (−1)α+γ5β+δ (mod 2k), and xn ≡ (−1)nα5nβ . So the
index system for xy is (α + γ, β + δ), and the index system for xn is (nα, nβ). Further, the first compo-
nents of the indices are modulo 2, while the second are modulo 2k−2.

9.4.13. Since 7 ≡ (−1)52 (mod 32) and 11 ≡ (−1)55 (mod 32), we have that the index systems for 7 and 11
are (1, 2) and (1, 5) respectively. Let the index system for x be (α, β). Then by the rules in Exercise 12, the
index system for 7x9 is (1 + 9α, 2 + 9β), which must equal the index system for 11. Therefore 1 + 9α ≡ 1
(mod 2), so α = 0. And 2 + 9β ≡ 5 (mod 8), so β = 3. Then x ≡ (−1)053 ≡ 29 (mod 32). For the second
congruence, we note that the index system for 3 and 17 are (1, 3) and (0, 4) respectively. Then the index
system for 3x is (x, 3x) and we must have x ≡ 0 (mod 2) while 3x ≡ 4 (mod 8). A solution to the sec-
ond congruence is necessarily a solution to the first. So all solutions are given by x ≡ 4 (mod 8).

9.4.14. We do only the case t0 ≤ 2. Suppose a and b have the same index system (γ0, . . . , γm) modulo n.
Then for each i, we have that a and b both solve the system given by γi ≡ indrix (mod φ(pti

i )), or
rγi

i ≡ x (mod pti
i ). By the Chinese remainder theorem, there is a unique solution to this system modulo

pt0
0 · · · ptm

m , therefore a ≡ b (mod pt0
0 · · · ptm

m ). The case t0 ≥ 3 is a concatenation of the case t0 ≤ 2 and the
solution to Exercise 15 of Section 9.3.

9.4.15. We have 120 = 23 · 3 · 5. The index system of 17 modulo 120 is (α, β, γ1, γ2) where 17 ≡ (−1)α5β

(mod 23), 17 ≡ 2γ1 (mod 3), and 17 ≡ 2γ2 (mod 5). We see that 17 ≡ 1 ≡ (−1)050 (mod 23), 17 ≡ 21

(mod 3), and 17 ≡ 21 (mod 5), so that α = 0, β = 0, γ1 = 1, and γ2 = 1. Hence the index system of
17 modulo 120 is (0, 0, 1, 1). The index system of 41 modulo 120 is (α, β, γ1, γ2) where 41 ≡ (−1)α5β

(mod 23), 41 ≡ 2γ1 (mod 3), and 41 ≡ 2γ2 (mod 5). We see that 41 ≡ 1 ≡ (−1)050 (mod 23), 41 ≡ 2 ≡
21 (mod 3), and 41 ≡ 1 ≡ 24 (mod 5). Hence α = 0, β = 0, γ1 = 1, and γ2 = 4. Hence the index system
of 41 modulo 120 is (0,0,1,4).

9.4.16. As in Exercises 12 and 14, we have (γ0, . . . , γm)·(δ0, . . . , δm) = (γ0+δ0, . . . , γm+δm), and (γ0, . . . , γm)n =
(nγ0, . . . , nγm).

9.4.17. We have 60 = 4 · 3 · 5. We take 3, 2, and 2 as primitive roots for 4, 3, and 5 respectively. Then we find
that the index system for 11 is (1, 1, 0), while the index system for 43 is (1, 0, 3). Let the index system for
x be (α, β, γ). Applying the rules from Exercise 16, we have (1 + 7α, 1 + 7β, 0 + 7γ) = (1, 0, 3). Therefore
1 + 7α ≡ 1 (mod φ(4)), so α = 0. Next, 1 + 7β ≡ 0 (mod φ(3)), so β = 1. Next, 0 + 7γ ≡ 3 (mod φ(3)),
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so γ = 1. Therefore the index system for x is (0, 1, 1). Using the Chinese remainder theorem, we solve
the system x ≡ 30 (mod 4), x ≡ 21 (mod 3), x ≡ 21 (mod 5), to get that x ≡ 17 (mod 60).

9.4.18. Suppose that p is a prime greater that 3. Suppose that a is relatively prime to p. By Theorem 8.17 the
congruence x3 ≡ a (mod p) has a solution if and only if a

(p−1)
d ≡ 1 (mod p), where d = (3, p − 1). It

follows that if 3 | (p − 1), or equivalently, if p ≡ 1 (mod 3), then x3 ≡ a (mod p) has a solution, that is
a is a cubic residue of p, if and only if a

(p−1)
3 ≡ 1 (mod p). Also, if (3, p − 1) = 1, or equivalently, if p ≡

2 (mod p), then x3 ≡ a (mod p) has a solution, that is a is cubic residue of p, if and only if ap−1 ≡ 1
(mod p), but this is satisfied by every integer a relatively prime to p. Hence every integer a with (a, p) =
1 is a cubic residue of p when p ≡ 2 (mod p).

9.4.19. We must have k odd for this exercise. We seek a solution to xk ≡ a (mod 2e). We take indices as de-
scribed before Exercise 11. Suppose a ≡ (−1)α5β and x ≡ (−1)γ5δ Then we have indxk = (kγ, kδ) and
inda = (α, β), so kγ ≡ α (mod 2) and kδ ≡ β (mod 2e−2). Since k is odd, both congruences are solvable
for γ and δ, which determine x.

9.4.20. Let k = 2nm, where m is odd. Note that if e ≤ n + 2, then bk ≡ b2nm ≡ 1 (mod 2e), by Euler’s The-
orem, and the only solution to bk ≡ 1 (mod (4k, 2e) = 2e) is b = 1. Therefore, we may assume that
e > n + 2. We need to show first that if b is an odd integer then a = bk ≡ 1 (mod (4k, 2e)). Note that
(4k, 2e) = 2n+2. Now ord2n+2b | φ(2n+2) = 2n+1, but there are no primitive roots modulo 2n+1, so
we have ord2n+2b | 2n. Then bk ≡ b2nm ≡ 1 (mod 22+n), as desired. To show the converse, note that
there are 2e/2n+2 = 2e−n−2 incongruent elements modulo 2e, of the form a = 1 + 2n+2r, that is a ≡ 1
(mod 2n+2). From Exercise 15 of Section 8.3, we have that 5 has order 2e−2 modulo 2e, and hence 5k has
order 2e/(k, 2e−2) = 2e−2−n. Therefore, the 2e−2−n numbers 5k, 52k, . . . , 52e−2−nk, are incongruent mod-
ulo 2e and each one is a kth power residue. Then from the first part of this proof, each of 5ki is of the
form 1+2n+2r, but since there are only 2e−n−2 of these, we must have them all. This completes the proof.

9.4.21. First we show that ord2e5 = 2e−2. Indeed, φ(2e) = 2e−1, so it suffices to show that the highest power
of 2 dividing 52e−2 − 1 is 2e. We proceed by induction. The basis step is the case e = 2, which is true.
Note that 52e−2 − 1 = (52e−3 − 1)(52e−3

+ 1). The first factor is exactly divisible by 2e−1 by the induction
hypothesis. The second factor differs from the first by 2, so it is exactly divisible by 2, therefore 52e−2 − 1
is exactly divisible by 2e, as desired. Hence, if k is odd, the numbers ±5k,±52k, . . . ,±52e−2k are 2e−1 in-
congruent kth power residues, which is the number given by the formula. If 2m exactly divides k, then
5k ≡ −5k (mod 2e), so the formula must be divided by 2, hence the factor (k, 2) in the denominator.
Further, 52m

has order 2e−2/2m if m ≤ e− 2 and order 1 if m > e− 2, so the list must repeat modulo 2e

every ord2e52m

terms, whence the other factor in the denominator.

9.4.22. Let r be a primitive root modulo p, and take indices base r to get 2ju ≡ N indrx ≡indr(−1) ≡ (p −
1)/2 ≡ 2s−1t (mod 2st). By Theorem 3.10 This congruence has solutions if and only if (2ju, 2st) | 2s−1,
that is, if and only if j ≤ s− 1. If there are solutions, then Theorem 3.10 gives us ((2ju, 2st) = 2j(u, t) of
them, as desired.

9.4.23. a. From the first inequality in Case (i) of the proof of Theorem 6.10, if n is not square-free, the prob-
ability is strictly less than 2n/9, which is substantially smaller than (n − 1)/4 for large n. If n is
square-free, the argument following inequality (9.6) shows that if n has 4 or more factors, then the
probability is less than n/8. The next inequality shows that the worst case for n = p1p2 is when
s1 = s2 and s1 is as small as possible, which is the case stated in this exercise.

b. We have n− 1 = 2 · 32 · 7 · 132 · 29 · 41 · 197, and p1 − 1 = 2 · 3 · 7 · 29 · 41 and p2 − 1 = 2 · 3 · 7 · 29 · 41.
So that, using the notation in the proof of Case (ii) of Theorem 6.10, t = 32 · 7 · 132 · 29 · 41 · 197, t1 =
t2 = ·3 · 7 · 29 · 41, and s1 = 1. Then the number of integers b with 1 ≤ b ≤ n − 1, for which n is a
strong pseudoprime to the base b is T1T2(1 +

∑0
j=0 2j2) = (3 · 7 · 29 · 41)2(2). so the probability that

n is a strong pseudoprime to the base b is 2(·3 · 7 · 29 · 41)2/(n− 1) = 2(·3 · 7 · 29 · 41)2/(2 · 32 · 7 · 132 ·
29 · 41 · 197) = 7 · 29 · 41/(132 · 197) = 0.24999 . . ..
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9.5. Primality Tests Using Orders of Integers and Primitive Roots
9.5.1. We have 22 ≡ 4 (mod 101), 25 ≡ 32 (mod 101), 210 ≡ (25)2 ≡ 322 ≡ 14 (mod 101), 220 ≡ (210)2 ≡

142 ≡ 95 (mod 101), 225 ≡ (25)5 ≡ 325 ≡ (322)232 ≡ 1024232 ≡ 14232 ≡ 196 · 32 ≡ −6 · 32 ≡ −192 ≡
10 (mod 101), 250 ≡ (225)2 ≡ 102 = 100 ≡ −1 (mod 101), 2100 ≡ (250)2 ≡ (−1)2 ≡ 1 (mod 101). Since
2

(101−1)
q 6≡ 1 (mod 101) for every proper divisor q of 100, and 2

(101−1)
q ≡ 1 (mod 101) it follows that 101

is prime.

9.5.2. Applying Theorem 9.18, we have 2210 ≡ 1 (mod 211). The prime divisors of 210 are 2, 3, 5, and 7.
Then 2(210/2) ≡ −1 (mod 211), 2(210/3) ≡ 196 (mod 211), 2(210/5) ≡ 107 (mod 211), and 2(210/7) ≡ 171
(mod 211). Therefore, 211 is prime.

9.5.3. Applying Corollary 9.18.1, we have 233−1 = 2329, 3116 ≡ −1 (mod 233), and 38 ≡ 27 6≡ 1 (mod 233).
So 233 is prime.

9.5.4. Applying Corollary 9.18.1, we have 3(256/2) ≡ −1 (mod 257). There are no odd prime divisors of 256,
therefore 257 is prime.

9.5.5. The first condition implies xFn−1 ≡ 1 (mod Fn). The only prime dividing Fn − 1 = 22n

is 2, and
(Fn− 1)/2 = 22n−1, so the second condition implies 2(Fn−1)/2 6≡ 1 (mod Fn). Then by Theorem 9.18, Fn

is prime.

9.5.6. Suppose that n− 1 = pa1···
1 pat

t and that there exist integers xj , for j = 1, 2, · · · , t, such that x
(n−1)/pj

j 6≡
1 (mod n) and xn−1

j ≡ 1 (mod n). Let N = [ordnx1, · · · ,ordnxt]. Then N | (n−1) but N does not divide

(n − 1)/pj for j = 1, 2, · · · , t. It follows from this observation that N = n − 1. Since x
φ(n)
j ≡ 1 (mod n)

for all j it follows that ordnxj | φ(n) for all j. We conclude that φ(n) ≥ N . It implies that n is prime since
φ(n) < n− 1 = N when n is not prime.

9.5.7. Let p be a prime dividing n. By the hypotheses, xn−1
j ≡ 1 (mod n), but (x(n−1)/qj

j − 1, n) = 1, so we
know that ordpxj divides n−1, but not (n−1)/qj . Therefore ordpxj is divisible by p

aj

j for some prime pj

dividing qj . But since ordpxj also divides p− 1 and since the qj are pairwise relatively prime, it follows
that

∏r
j=1 p

aj

j divides p− 1. Therefore, p ≥ 1 +
∏r

j=1 p
aj

j ≥ 1 +
∏r

j=1 b
aj

j >
√

n, by the last inequality of
the hypotheses. Therefore, n can have only one such prime divisor, namely itself.

9.5.8. Since n − 1 = 7056 = 243272, we take F = 2432 = 144 and R = 72 = 49, noting that F > R. We ap-
ply Pocklington’s test with a = 2. We check (using a calculator or computational software) that 27056 ≡
1 (mod 7057) and (27056/2 − 1, 7057) = 1 and (27056/3 − 1, 7057) = 1, since 2 and 3 are the only primes
dividing F . Therefore n passes Pocklington’s test and so is prime.

9.5.9. Since n − 1 = 9928 = 2317 · 73, we take F = 2317 = 136 and R = 73, noting that F > R. We apply
Pocklington’s test with a = 2. We check (using a calculator or computational software) that 29928 ≡ 1
(mod 9929) and (29928/2 − 1, 9929) = 1 and (29928/17 − 1, 9929) = 1, since 2 and 17 are the only primes
dividing F . Therefore n passes Pocklington’s test and so is prime.

9.5.10. Note that 449 = 267+1 and 7 < 26, so it is of the form which can be tested by Proth’s test. We compute
2(449−1)/2 ≡ 2224 ≡ 1 (mod 449) (using a calculator or computational software.) So Proth’s test fails for
a = 2. Next we try a = 3 and compute 3224 ≡ −1 (mod 449), which shows that 449 is prime.

9.5.11. Note that 3329 = 2813 + 1 and 13 < 28, so it is of the form which can be tested by Proth’s test. We try
2(3329−1)/2 ≡ 21664 ≡ 1 (mod 3329) (using a calculator or computational software.) So Proth’s test fails
for a = 2. Next we try a = 3 and compute 31664 ≡ −1 (mod 3329), which shows that 3329 is prime.

9.5.12. Suppose p is a prime dividing n, and let F have prime-power factorization F =
∏r

j=1 q
cj

j . Then, for
each qj , we have that an−1

j ≡ 1 (mod n), for some integer aj , and hence, an−1
j ≡ 1 (mod p). So ordpaj |

(n−1). But (a(n−1)/qj

j −1, n) = 1, so that ordpaj | (n−1)/qj . Therefore, q
cj

j | ordpaj | (p−1). Since the qj
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are distinct primes, we have F | (p−1). Likewise, ordpb | n−1, and since (bF −1, n) = (b(n−1)/R−1, n) =
1, we have that at least one prime divisor Q of R divides p− 1. Since (F, Q) = 1, we have FQ | (p− 1),
and Q ≥ B. Then p > FQ ≥ FB >

√
n. Therefore all prime divisors of n are greater than

√
n. But this

is only possible if n is prime.

9.5.13. We apply Pocklington’s test to this situation. Note that n− 1 = hqk, so we let F = qk and R = h and
observe that by hypothesis F > R. Since q is the only prime dividing F , we need only check that there
is an integer a such that an−1 ≡ 1 (mod n) and (a(n−1)/q − 1, n) = 1. But both of these conditions are
hypotheses, therefore n is prime by Pocklington’s test.

9.5.14. Let m = 78557 · 2n + 1. Note that 78557 ≡ 2 (mod 3), so if n = 2a is even, then m ≡ 2 · 22a + 1 ≡
2 · 1 + 1 ≡ 0 (mod 3). So 3 | m and 3 < m, so m is not prime. If n is odd, there are two cases. First, if
n = 4a + 1, then m = 78557 · 24a+1 + 1 ≡ 2 · 2 + 1 ≡ 0 (mod 5), so again, m is not prime. Second, if
n = 4a + 3, there are 3 cases, either n = 12a + 3, n = 12a + 7, or n = 12a + 11. If n = 12a + 7, then
m = 78557 · 212a+7 + 1 ≡ 3 · 27 + 1 ≡ 0 (mod 7), and so m is not prime. If n = 12a + 11 we have m =
78557 · 212a+11 + 1 ≡ 11 · 211 + 1 ≡ 0 (mod 13), and so m is not prime. If n = 12a + 3, there are 3 cases,
either n = 36a + 3, 36a + 15, or 36a + 27. If n = 36a + 3 we have m = 78557 · 236a+3 + 1 ≡ 9 · 23 + 1 ≡
0 (mod 73), and so m is not prime. If n = 36a + 15, we have m = 78557 · 236a+15 + 1 ≡ 11 · 215 + 1 ≡
0 (mod 19). Finally, if n = 36a + 27 we have m = 78557 · 236a+27 + 1 ≡ 6 · 227 + 1 ≡ 6 · (25)522 + 1 ≡
6 · (−5)54+1 ≡ 0 (mod 37), and again, m is not prime. (Note that the congruence classes represented by
the various arithmetic progressions for n constitute a system of covering congruences for the integers.)

9.6. Universal Exponents
9.6.1. a. Since the prime factorization of 100 is 100 = 2252 we have λ(100) = [λ(22), φ(52)] = [2, 20] = 20.

b. Since the prime factorization of 144 is 144 = 2432 we have λ(144) = [λ(24), φ(32)] = [4, 6] = 12.

c. Since the prime factorization of 22 is 222 = 2·3·37, we have λ(222) = [λ(2), φ(3), φ(37)] = [1, 2, 36] =
36.

d. Since the prime factorization of 884 is 884 = 22 · 13 · 17, we have λ(884) = [λ(22), φ(13), φ(17)] =
[2, 12, 16] = 48.

e. We have λ(24 · 33 · 52 · 7) = [λ(24), φ(33), φ(52), φ(7)] = [4, 18, 20, 6] = 180.

f. We have λ(25 · 32 · 52 · 73 · 112 · 13 · 17 · 19) = [λ(25), φ(32), φ(52), φ73), φ(112), φ(13), φ(17), φ(19)] =
[8, 6, 20, 294, 110, 12, 16, 18] = [23, 2 ·3, 22 ·5, 2 ·3 ·72, 2 ·5 ·11, 22 ·3, 24, 2 ·32] = 24 ·32 ·5 ·72 ·11 = 388080.

g. Since 10! = 28 · 34 · 52· we have λ(10!) = [λ(28), φ(34), φ(52), φ(7)] = [64, 54, 20, 6] = 8640.

h. Since 20! = 218·38·54·72·11·13·17·19, it follows that λ(20!) = [λ(218), φ(38), φ(54), φ(72), φ(11), φ(13),
φ(17), φ(19)] = [65536, 4374, 500, 42, 10, 12, 16, 18] = [216, 2 · 37, 2253, 2 · 3 · 7, 2 · 5, 22 · 3, 24, 2 · 32] =
216 · 37 · 53 · 7 = 125411328000.

9.6.2. a. We will use the following facts: φ(pt) is even for an odd prime p. λ(2t) = 2t−2 is even for t ≥ 3.
λ(4) = 2, and λ(2) = 1. If pt | n, then φ(pt) | λ(n).
If λ(n) = 1 there can be no even components in the least common multiple. Therefore, n = 1 or 2.

b. Since λ(pt) | 2, we can have only pt = 31, 21, 22, or 23. Therefore n = 8, 4, 3, 6, 12, or 24.

c. The only integers n giving odd λ(n) are given in part (a). Therefore, there are no solutions to λ(n) =
3.
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d. We must have λ(pt) | 4, so pt = 5, 3, 2, 22, 23, or 24. Therefore n = 5, 15, 16, 10, 30, 20, 60, 40, 120, 80,
or 240.

e. As in part (c), there are no solutions to λ(n) = 5.

f. We must have λ(pt) | 4, so pt = 2, 4, 8, 7, or 9. Therefore n = 7, 14, 28, 56, 9, 18, 36, 72.

9.6.3. We seek n = 2t0pt1
1 · · · ptm

m such that λ(n) = [λ(2t0), φ(pt1
1 ), . . . , φ(ptm

m )] = 12. So we must have λ(2t0) |
12. For t0 ≥ 3, we have λ(2t0) = 2t0−2 | 12, so the largest t0 can be is t0 = 4. We also must have φ(pti

i ) =
pti−1

i (pi − 1) | 12, so pi − 1 = 1, 2, 3, 4, 6, or 12, and pi = 2, 3, 4, 5, 7, or 13. But pi is an odd prime, so pi =
3, 5, 7, or 13 are the only possibilities for odd prime divisors of n. Also, pti−1

i | 12, so if ti > 1, we have
that pi = 3 and ti = 2. Therefore the largest such n is 2432 · 5 · 7 · 13 = 65520.

9.6.4. a. We have λ(12) = [λ(4), λ(3)] = 2, and 52 ≡ 1 (mod 12).

b. We have λ(15) = [λ(3), λ(5)] = 4, and 24 ≡ 1 (mod 15).

c. We have λ(20) = [λ(4), λ(5)] = 4, and 34 ≡ 1 (mod 20).

d. We have λ(36) = [λ(4), λ(9)] = 6, and 56 ≡ 1 (mod 36).

e. We have λ(40) = [λ(8), λ(5)] = 4, and 34 ≡ 1 (mod 40).

f. We have λ(63) = [λ(7), λ(9)] = 6, and 56 ≡ 1 (mod 63).

9.6.5. Suppose that m = 2t0pt1·
1 pts

s . Then λ(m) = [λ(2t0), φ(pt1
1 ), . . . , φ(pts)]. Furthermore, φ(m) =

φ(2t0)φ(pt1
1 · · ·φ(pts

s ). Since λ(2t0) = 1, 2, or 2t0−2 when t0 = 1, 2, or t0 ≥ 3, respectively, it follows
that λ(2t0) | φ(2t0) = 2t0−1. Since the least common multiple of a set of numbers divides the product of
these numbers, or their multiples, we see that λ(m) | φ(m).

9.6.6. Let M = [λ(m), λ(n)]. Then for any integer a with (a,m) = (a, n) = 1, we have aM ≡ 1 (mod m) and
aM ≡ 1 (mod n), since λ(m) | M and λ(n) | M . By the Chinese remainder theorem, this system has
a unique solution modulo mn, so we must have aM ≡ 1 (mod mn). Therefore, M is a universal expo-
nent of mn and hence λ(mn) | M . Now let b be an element of order λ(m) modulo m. Then bλ(mn) ≡ 1
(mod mn), so bλ(mn) ≡ 1 (mod m). So, λ(m) | λ(mn). Similarly, λ(m) | λ(mn), and so M = λ(mn).

9.6.7. For any integer x with (x, n) = (x,m) = 1 we have xa ≡ 1 (mod n) and xa ≡ 1 (mod m). Then the
Chinese remainder theorem gives us xa ≡ 1 (mod [n,m]). But since n is the largest integer with this
property, we must have [n,m] = n, so m|n.

9.6.8. We count solutions of the system in the proof of Theorem 9.21. For each pi there are φ(φ(pti
i )) primi-

tive roots, so there are this many choices for ri for each i. Similarly, by Exercise 15 of Section 8.3, there
are 2k−3 elements of maximal order modulo 2t0 , so in all there are 2k−3

∏m
i=1 φ(φ(pti

i )) ways to choose
the system. Each system gives a unique and different element with maximal order.

9.6.9. Suppose that ax ≡ b (mod m). Multiplying both sides of this congruence by aλ(m)−1 gives aλ(m)x ≡
aλ(m)−1b (mod m). Since aλ(m) ≡ 1 (mod m), it follows that x ≡ aλ(m)−1b (mod m). Conversely, let
x0 ≡ aλ(m)−1b (mod m). then ax0 ≡ aaλ(m)−1b ≡ aλ(m)b ≡ b (mod m), so x0 is a solution

9.6.10. Suppose p2 | m, where p is prime. We show that for no a is ac ≡ p (mod m). If this congruence holds,
then p | a. However, if c > 1, p2 | ac, but p2 - p, so since p2 | m this congruence is impossible modulo
p2, and hence, modulo m. If (c, λ(m)) > 1, let g = λ(m)/(c, λ(m)). We know that g is not a universal
exponent for m, because g < λ(m). So, if 1c, 2c, ..., (m − 1)c is a complete residue system, one of these
numbers raised to the g power is not congruent to 1 modulo m. This, however, is impossible, because
λ(m) | cg. Conversely, suppose ac ≡ bc (mod m), and let q be a prime dividing m. If q | (a − b) then
a ≡ b (mod q).If q - (a − b), then we note that φ(q) = (q − 1) | λ(m). Since (c, λ(m)) = 1, (c, q − 1) = 1.
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Therefore, ac ≡ bc (mod q), and hence a ≡ b (mod q). Since this is true for all such primes q dividing m,
we have a ≡ b (mod m), by the Chinese remainder theorem.

9.6.11. a. First suppose that m = pa. Then we have x(xc−1 − 1) ≡ 0 (mod pa). Let s be a primitive root for
pa, then the solutions to xc−1 ≡ 1 are exactly the powers sk with (c − 1)k ≡ 1 (mod φ(pa)), and
there are (c − 1, φ(pa)) of these. Also, 0 is a solution, so we have 1 + (c − 1, φ(pa)) solutions all to-
gether. Now if m = pa1

1 · · · par
r , we can count the number of solutions modulo pai

i for each i. There
is a one-to-one correspondence between solutions modulo m and the set of r-tuples of solutions to
the system of congruences modulo each of the prime powers. The correspondence is given by the
Chinese Remainder Theorem.

b. Suppose (c− 1, φ(m)) = 2, then c− 1 is even. Since φ(pa) is even for all prime powers, except 2, we
have (c− 1, φ(pai

i )) = 2 for each i. Then by part (a), we have the number of solutions = 3r. If 21 is a
prime factor, then φ(m) = φ(m/2), and since xc and x have the same parity, x is a solution modulo
m if and only if it is a solution modulo m/2, so the proposition still holds.

9.6.12. In an RSA cipher, m = pq, so r = 2. By part (b) of Exercise 11, there are exactly 33 = 9 solutions to
P ≡ P e (mod m). These are the 9 plaintext messages which stay unchanged.

9.6.13. Let n = 3pq, with p < q odd primes, be a Carmichael number. Then by Theorem 9.27, p− 1|3pq − 1 =
3(p − 1)q + 3q − 1, so p − 1|3q − 1, say (p − 1)a = 3q − 1. Since q > p, we must have a ≥ 4. Similarly,
there is an integer b such that (q − 1)b = 3p − 1. Solving these two equations for p and q yields q =
(2a + ab − 3)/(ab − 9), and p = (2b + ab − 3)/(ab − 9) = 1 + (2b + 6)/(ab − 9). Then since p is an odd
prime greater than 3, we must have 4(ab − 9) ≤ 2b + 6, which reduces to b(2a − 1) ≤ 21. Since a ≥ 4,
this implies that b ≤ 3. Then 4(ab− 9) ≤ 2b + 6 ≤ 12, so ab ≤ 21/4, so a ≤ 5. Therefore a = 4 or 5. If b =
3, then the denominator in the expression for q is a multiple of 3, so the numerator must be a multiple
of 3, but that is impossible since there is no choice for a which is divisible by 3. Thus b = 1 or 2. The
denominator of q must be positive, so ab > 9, which eliminates all remaining possibilities except a = 5,
b = 2, in which case p = 11 and q = 17. So the only Carmichael number of this form is 561 = 3 · 11 · 17.

9.6.14. The inequalities in the solution to Exercise 15, give us p, q ≤ (53 + 52 − 5 + 1)/(2) = 73, so we have
finitely many cases to check. Only 3 of the possible numbers are pseudoprimes to the base 2: 5 ·13 ·17, 5 ·
17 · 29, and 5 · 29 · 73. Of these, 5 · 17 · 29 is not a pseudoprime to the base 3, and 5 · 13 · 17 one fails to be
a pseudoprime to the base 6. However, 5 · 29 · 73 is a Carmichael number, as was shown in Exercise 16
of Section 6.2.

9.6.15. Assume q < r. By Theorem 9.23, q − 1|pqr − 1 = (q − 1)pr + pr − 1. Therefore q − 1|pr − 1, say
a(q − 1) = pr − 1. Similarly b(r − 1) = pq − 1. Since q < r, we must have a > b. Solving these two
equations for q and r yields r = (p(a− 1) + a(b− 1))/(ab− p2) and q = (p(b− 1) + b(a− 1))/(ab− p2) =
1+(p2 +pb−p− b)/(ab−p2). Since this last fraction must be an integer we have ab−p2 ≤ p2 +pb−p− b
which reduces to a(b − 1) ≤ 2p2 + p(b − 1) or a − 1 ≤ 2p2/b + p(b − 1)/b ≤ 2p2 + p. So there are only
finitely many values for a. Likewise, the same inequality gives us b(a−1) ≤ 2p2 +pb−p or b(a−1−p) ≤
2p2−p. Since a > b and the denominator of the expression for q must be positive, we have that a ≥ p+1.
If a = p + 1, we have (p + 1)(q − 1) = pq − p + q − 1 = pr − 1, which implies that p|q, a contradiction.
Therefore a > p + 1, and so a− 1− p is a positive integer. The last inequality gives us b ≤ b(a− 1− p) ≤
2p2 − p. Therefore there are only finitely many values for b. Since a and b determine q and r, we see that
there can be only finitely many Carmichael numbers of this form.

9.6.16. Since (e, φ(n)) = 1 and λ(n) | φ(n), we have (e, λ(n)) = 1. Therefore, and inverse d of e modulo λ(n)
exists. Then ed = kλ(n) + 1 for some integer k. Then, if P is a plaintext block, the cipher text is C ≡ P e

(mod n). Then Cd ≡ P ed ≡ P kλ(n)+1 ≡ 1kP ≡ P (mod n), since λ(n) is a universal exponent.

9.6.17. We have qn(ab) ≡ ((ab)λ(n) − 1)/n = (aλ(n)bλ(n) − aλ(n) − bλ(n) + 1 + aλ(n) + bλ(n) − 2)/n = (aλ(n) −
1)(bλ(n) − 1)/n + ((aλ(n) − 1) + (bλ(n) − 1))/n ≡ qn(a) + qn(b) (mod n). At the last step, we use the fact
that n2 must divide (aλ(n) − 1)(bλ(n) − 1), since λ(n) is the universal exponent.
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9.6.18. First, note that aλ(n)−1a ≡ aλ(n) ≡ 1 (mod n), so a ≡ aλ(n)−1 (mod n). Then by the Binomial Theo-
rem, we have, qn(a + nc) ≡ ((a + nc)λ(n) − 1)/(n) ≡ (aλ(n) + λ(n)aλ(n)−1nc +

(
λ(n)

2

)
aλ(n)−2(nc)2 + · · ·+

(nc)λ(n) − 1)/(n) ≡ aλ(n)/n + λ(n)ac− 1/n ≡ qn(a) + λ(n)ac (mod n).



CHAPTER 10

Applications of Primitive Roots and the Order of an
Integer

10.1. Pseudorandom Numbers
10.1.1. First term: 69; second term: 76, since 692 = 4761; third term: 77, since 762 = 5776; fourth term: 92,

since 772 = 5929; fifth term: 46, since 922 = 8464; sixth term: 11, since 462 = 2116; seventh term: 12,
since 112 = 0121; eighth term: 14, since 122 = 0144; ninth term: 19, since 142 = 0196; tenth term: 36,
since 192 = 0361; eleventh term: 29, since 362 = 1296; twelfth term: 84, since 292 = 0841; thirteenth
term: 05, since 842 = 7056; fourteenth term: 02, since 52 = 0025; fifteenth term: 00, since 022 = 0004;
sixteenth term and all remaining terms are 00, since 02 = 0000.

10.1.2. We have x0 = 6, x1 ≡ 5 ·6+2 = 32 ≡ 13 (mod 19), x1 ≡ 5 ·13+2 = 67 ≡ 10 (mod 19), x2 ≡ 5 ·10+2 =
52 ≡ 14 (mod 19), x3 ≡ 5 · 14+2 = 72 ≡ 15 (mod 19), x4 ≡ 5 · 15+2 = 77 ≡ 1 (mod 19), x5 ≡ 5 · 1+2 =
7 (mod 19), x6 ≡ 5 · 7+2 = 37 ≡ 18 (mod 19), x7 ≡ 5 · 18+2 = 92 ≡ 16 (mod 19), x8 ≡ 5 · 16+2 = 82 ≡
6 (mod 19), x9 ≡ 5 · 6 + 2 = 32 ≡ 1, 3 (mod 19), x10 ≡ 5 · 13 + 2 = 67 ≡ 10 (mod 19), x11 ≡ 5 · 10 + 2 =
52 ≡ 14 (mod 19), and since x11 = x2, it follows that xk = xk−9 for k ≥ 11. Hence the sequence is
13, 10, 14, 15, 1, 7, 18, 16, 6, 13, 10, 14, 15, 1, 7, 18, . . . and the period length is 9.

10.1.3. We compute x0 = 2, x1 = 15, x2 = 17, x3 = 0, x4 = 7, x5 = 10, x6 = 22, x7 = 20, x8 = 12, x9 = 15, and
x10 = 2 = x0. So the period length is 10.

10.1.4. If a = 0 we have xn+1 ≡ c (mod m) which means that the sequence is constant for n ≥ 1, clearly not
a good choice for a sequence of pseudorandom numbers. If a = 1 we have xn+1 ≡ xn + c (mod m),
which shows that the terms of the sequence differ by a constant modulo m, also not a good choice for a
sequence of pseudorandom numbers.

10.1.5. a. From Theorem 10.2, we must have a ≡ 1 (mod 4) since 4 | 1000, and since 5 is the only odd prime
dividing 1000, we must also have a ≡ 1 (mod 5). By the Chinese remainder theorem, we have a ≡
1 (mod 20).

b. We have 30030 = 2 · 3 · 5 · 7 · 11 · 13. So we solve the system a ≡ 1 (mod m), for m = 2, 3, 5, 7, 11, 13,
to get a ≡ 1 (mod 30030).

c. We have 106 − 1 = 327 · 11 · 13 · 37, so we must have a ≡ 1 (mod m) for m = 3, 7, 11, 13, 37. This
system has solutions a ≡ 1 (mod 111111), by the Chinese remainder theorem.

d. We have 225 − 1 = 31 · 601 · 1801, so we must have a ≡ 1 (mod m) for m = 31, 601, 1801. By the
Chinese remainder theorem, we have a ≡ 1 (mod 225 − 1).

10.1.6. We proceed by induction. y0 = 0, so y1 = 1, and by1 +x0 ≡ (a−1)x0 +c+x0 ≡ ax0 +c ≡ x1 (mod m),
so the basis step holds. Suppose xn−1 ≡ byn−1 + x0 (mod m). Then we have byn + x0 ≡ b(ayn−1 + 1) +
x0 ≡ abyn−1 + b+x0 ≡ a(xn−1−x0)+ b+x0 ≡ axn−1 + b− (a− 1)x0 ≡ axn−1 + c ≡ xn (mod m), which
completes the induction step.

10.1.7. a. Since 231 ≡ 1 (mod M31), the order of 2 must be a divisor of 31. Since 31 is prime, the order must
be 31, which is the period length.
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b. Using computational software, we compute 3(M31−1)/p (mod M31) for each prime power divisor
pk of M31 − 1. The residue is 1 only for p = 3, but not for pk = 32. Therefore the period length is
(M31 − 1)/3 = 715827882.

c. From part (a) we have 431 = (231)2 ≡ 1 (mod M31), so the order of 4, and hence the period length,
must be 31.

d. Using computational software, we compute 5(M31−1)/p (mod M31) for each prime power divisor pk

of M31−1. The residue is 1 only for p = 11. Therefore the period length is (M31−1)/11 = 195225786.

e. Using computational software, we compute 13(M31−1)/p (mod M31) for each prime power divisor
pk of M31 − 1. The residue is 1 only for p = 2. Therefore the period length is (M31 − 1)/2 =
1073741823.

f. Using computational software, we compute 17(M31−1)/p (mod M31) for each prime power divisor
pk of M31 − 1. The residue is 1 only for p = 2. Therefore the period length is (M31 − 1)/2 =
1073741823.

10.1.8. From Exercise 15 of Section 9.3, we know that 5 has order 2e−2 modulo 2e, but no element has higher
order, since that order would have to be 2e−1 which would imply the existence of a primitive root, con-
tradicting Theorem 9.15. Therefore, we have x2e−2 ≡ a2e−2

x0 ≡ x0 (mod 2e), and hence the maximum
period length is 2e−2. We also see that this is achieved for a = 5 ≡ −3 (mod 8). Then it is also achieved
for a = −5 ≡ 3 (mod 8).

10.1.9. We compute x1 ≡ 82 ≡ 64 (mod 77), x2 ≡ 642 ≡ 15 (mod 77), x3 ≡ 152 ≡ 71 (mod 77), x4 ≡ 712 ≡
36 (mod 77), and x5 ≡ 362 ≡ 64 ≡ x1 (mod 77). So the sequence of numbers is 8, 64, 15, 71, 36, 64, . . . .

10.1.10. We compute x1 ≡ 52 ≡ 25 (mod 1001), x2 ≡ 252 ≡ 625 (mod 1001), x3 ≡ 6252 ≡ 235 (mod 1001),
x4 ≡ 2352 ≡ 170 (mod 1001), x5 ≡ 1702 ≡ 872 (mod 1001), and x6 ≡ 8722 ≡ 625 ≡ x2 (mod 1001). So
the sequence of numbers is 5, 25, 625, 235, 170, 872, 625, . . . .

10.1.11. First we compute ord778. Since 8 ≡ 1 (mod 7) and 810 ≡ 1 (mod 11) by Fermat’s Little Theorem,
the Chinese remainder theorem shows that 810 ≡ 1 (mod 77). Since 85 ≡ 43 (mod 77), we know that
ord778 = 10. Therefore t = 1 and s = 5. Since 2 is a primitive root modulo 5, we know that ord52 = 4.
So by Theorem 10.4, the period length is 4.

10.1.12. First we compute ord10015. Since 56 ≡ 1 (mod 7), 55 ≡ 1 (mod 11), and 54 ≡ 1 (mod 13), then by the
Chinese remainder theorem, 560 ≡ 1 (mod 1001). Since 530 ≡ 155 (mod 1001), we have ord10015 = 60.
Therefore t = 2 and s = 15 in Theorem 10.4. Since 24 ≡ 1 (mod 15), we know the period length is 4.

10.1.13. Using the notation of Theorem 10.4, we have φ(77) = 60, so ord77x0 is a divisor of 60 = 223 · 5. Then
the only possible values for s are the odd divisors of 60, which are 3, 5, and 15. Then we note that 22 ≡ 1
(mod 3), 24 ≡ 1 (mod 5), and 24 ≡ 16 ≡ 1 (mod 15). In each case we have shown that ords2 ≤ 4. Hence
by Theorem 10.4 the maximum period length is 4.

10.1.14. Using the notation of Theorem 10.4, we have φ(989) = 924 = 223 ·7 ·11. So ord1001x0 is an odd divisor
of 924. Then the only possible values for s are 3, 7, 11, 21, 33, 77, and 231. We compute that ord2312 = 30.
Hence by Theorem 10.4 the maximum period length is 30.

10.1.15. We have x0 = 1 and x1 = 24. Using the definition of the Fibonacci generator, it follows that x2 ≡
x1 +x0 ≡ 1+24 = 25 (mod 31). Hence x2 = 25. Continuing, we find that x3 ≡ x2 +x1 ≡ 25+24 = 49 ≡
18 (mod 31), so x3 = 18. We compute successive terms in the same manner: x4 ≡ x3 + x2 ≡ 18 + 25 =
43 ≡ 12 (mod 31), so x4 = 12; x5 ≡ x4 + x3 ≡ 12 + 18 = 30 (mod 31), so x5 = 30; x6 ≡ x5 + x4 ≡
30 + 12 = 42 ≡ 11 (mod 31), so x6 = 11; x7 ≡ x6 + x5 ≡ 11 + 30 = 41 ≡ 10 (mod 31), so x7 = 10; and
x8 ≡ x7 + x6 ≡ 10 + 11 = 21 (mod 31), so x8 = 21. The terms xi with i = 0, 1, 2, . . . , 8 are 1, 24, 25, 18,
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12, 30, 11, 10, and 21.

10.1.16. From Table E.3 in the back of the text, we find that 2 is a primitive root modulo 101. Now (17, φ(101)) =
1, so 217 ≡ 75 is also a primitive root modulo 101. Since it is so large, it will make a good multiplier.

10.1.17. Check that 7 has maximal order 1800 modulo 225 − 1. To make a large enough multiplier, raise 7 to a
power relatively prime to φ(225 − 1) = 32400000, for example, to the 11th power.

10.1.18. We have 402 ≡ a + c (mod 1003) and 361 ≡ 402a + c (mod 1003). Multiply the first congruence by
402 and subtract the second to get 4022 − 361 ≡ 402c− c (mod 1003), or 401c ≡ 763 (mod 1)003, which
has solution c ≡ 197 (mod 1003). Then the first congruence gives us a ≡ 402− 197 ≡ 205 (mod 1003).

10.1.19. We must have 313a ≡ 145 (mod 1000). Solving this congruence yields a = 665.

10.1.20. a. We have x1 ≡ 32 ≡ 9 (mod 17), x2 ≡ 39 ≡ 14 (mod 17), x3 ≡ 314 ≡ 2 ≡ x0 (mod 17).

b. We have x1 ≡ 53 ≡ 31 (mod 47), x2 ≡ 531 ≡ 39 (mod 47), and the sequence continues: 39, 30, 36, 4,
14, 27, 33, 35, 29, 26, 16, 17, 38, 6, 21, 15, 41, 45, 19, 10, 12, 18, 2, 25, 22, 28, 24, 42, 37, 20, 3 = x33 = x0.

c. If we have a table of indices for the primitive root g modulo p, then we have indgxn ≡ xn−1

(mod p− 1). Since each xn < p, this will determine xn−1.

10.1.21. a. We compute x1 ≡ 23 ≡ 8 (mod 15), and x2 ≡ 83 ≡ 64 · 8 ≡ 4 · 8 ≡ 32 ≡ 2 (mod 15). Since x2 = x0,
the sequence is 8, 2, 8, 2, 8, 2, . . .

b. We compute x1 ≡ 32 ≡ 9 (mod 23), x2 ≡ 92 ≡ 81 ≡ 12 (mod 23), x3 ≡ 122 ≡ 6 (mod 23), x4 ≡
62 ≡ 13 (mod 23), x5 ≡ 132 ≡ 8 (mod 23), x6 ≡ 82 ≡ 18 (mod 23), x7 ≡ 182 ≡ 2 (mod 23), x8 ≡
22 ≡ 4 (mod 23), x9 ≡ 42 ≡ 16 (mod 23), x10 ≡ 162 ≡ 3 (mod 23). Since x10 = x0, the sequence is
9, 12, 6, 13, 8, 18, 2, 4, 16, 3, 9, 12, 6, . . .

10.2. The ElGamal Cryptosystem
10.2.1. We select k = 1234 for our random integer. Converting the plaintext into numerical equivalents results

in 0700 1515 2401 0817 1907 0300 2423, where we filled out the last block with an X. Using a calculator or
computational software, we find γ ≡ rk ≡ 61234 ≡ 517 (mod 2551). Then for each block P we compute
δ ≡ P · bk ≡ P · 331234 ≡ P · 651 (mod 2551). The resulting blocks are 0700 · 651 ≡ 1622 (mod 2551),
1515 · 651 ≡ 1579 (mod 2551), 2401 · 651 ≡ 1839 (mod 2551), 0817 · 651 ≡ 1259 (mod 2551), 1907 · 651 ≡
1671 (mod 2551), 0300 · 651 ≡ 1424 (mod 2551) and 2423 · 651 ≡ 855 (mod 2551). Therefore, the cipher-
text is (517, 1622), (517, 1579), (517, 1839), (517, 1259), (517, 1671), (517, 1424), (517, 855). To decrypt this
ciphertext, we compute γp−1−a ≡ 5172551−1−13 ≡ 5172537 ≡ 337 (mod 2551). Then for each block of the
cipher text we compute P ≡ 337·δ (mod 2551). For the first block we have 337·1622 ≡ 0700 (mod 2551)
which was the first block of the plaintext. The other blocks are decrypted the same way.

10.2.2. We select k = 1007 for our random integer. Converting the plaintext into numerical equivalents
results in 0314 1314 1915 0018 1806 1423, where we filled out the last block with an X. Using a calcu-
lator or computational software, we find γ ≡ 7k ≡ 71007 ≡ 1423 (mod 2591). Then for each block P
we compute δ ≡ P · bk ≡ P · 5911007 ≡ P · 1313 (mod 2591). The resulting blocks are 0314 · 1313 ≡
0313 (mod 2591), 1314 · 1313 ≡ 2267 (mod 2591), 1915 · 1313 ≡ 1125 (mod 2591), 0018 · 1313 ≡ 0315
(mod 2591), 1806 · 1313 ≡ 0513 (mod 2591), and 1423 · 1313 ≡ 0288 (mod 2591). Therefore, the cipher-
text is (1423, 0313), (1423, 2267), (1423, 1125), (1423, 0315), (1423, 0513), (1423, 0288). To decrypt this ci-
phertext, we compute γp−1−a ≡ 14232591−1−99 ≡ 14232491 ≡ 2443 (mod 2591). Then for each block of
the cipher text we compute P ≡ 2443 · δ (mod 2591). For the first block we have 2443 · 0313 ≡ 0314
(mod 2591) which was the first block of the plaintext. The other blocks are decrypted the same way.

10.2.3. We start by computing γa ≡ 21612713−1−17 ≡ 21612695 ≡ 167 (mod 2713). Then multiplying the
second number of each block and reducing yields 167 · 660 ≡ 1700 (mod 2713), 167 · 1284 ≡ 0101
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(mod 2713), and 167 · 1467 ≡ 0819 (mod 2713). So the plaintext is 170001010819 which is equivalent to
RABBIT.

10.2.4. We start by computing γa ≡ 10612677−1−133 ≡ 10612543 ≡ 1759 (mod 2677). Then multiplying the
second number of each block and reducing yields 1759 · 2185 ≡ 1920 (mod 2677), 1759 · 0733 ≡ 1710
(mod 2677), and 1759 · 1096 ≡ 0424 (mod 2677). So the plaintext is 192017100424 which is equivalent to
TURKEY.

10.2.5. First we compute γ ≡ 3101 ≡ 2022 (mod 2657). Using the Euclidean algorithm we can compute 101 ≡
973 (mod 2656) then the signature is given by s ≡ (823 − 211 · 2022)973 ≡ 833 (mod 2656). To verify
this signature, we compute V1 ≡ 20228338012022 ≡ 1014 (mod 2657) and V2 ≡ 3823 ≡ 1014 (mod 2657).
Since V1 = V2, the signature is verified.

10.2.6. First we compute γ ≡ 5257 ≡ 1344 (mod 2543). Using the Euclidean algorithm we can compute 257 ≡
999 (mod 2542) then the signature is given by s ≡ (2525 − 99 · 1344)999 ≡ 1589 (mod 2542). To verify
this signature, we compute V1 ≡ 1344158916151344 ≡ 614 (mod 2543) and V2 ≡ 52525 ≡ 614 (mod 2543).
Since V1 = V2, the signature is verified.

10.2.7. Let δ1 = P1b
k and δ2 = P2b

k as in the ElGamal cryptosystem. If P1 is known, it is easy to compute
an inverse for P1 modulo p. Then bk ≡ P1δ1 (mod p). Then it is also easy to compute an inverse for bk

(mod p). Then P2 ≡ bkδ2 (mod p). Hence the plaintext P2 is recovered.

10.2.8. We have knowledge of P1, P2, s1, s2, γ1, γ2, and the public key information. Note that γ1 ≡ rk ≡ γ2

(mod p), so we call this common value γ. Then we compute s1−s2 ≡ (P1−aγ)k−(P2−aγ)k ≡ (P1−P2)k
(mod p − 1). There are (p − 1, P1 − P2) solutions for k, which is hopefully a small number of solutions.
If k is a solution, then it is easy to find k by solving kx ≡ 1 (mod p − 1). Then it is easy to recover a by
solving s1 ≡ (P1 − aγ) (mod p− 1) for a, that is a ≡ −γ(S1k − P1) (mod p− 1).

10.3. An Application to the Splicing of Telephone Cables
10.3.1. a. Since 17 is prime it has a primitive root. Hence the maximal ±1-exponent of 17 is φ(17)/2 = 8.

b. Since 22 is of the form 2p where p is prime it has a primitive root. Hence the maximal ±1-exponent
of 22 is φ(22)/2 = 10/2 = 5.

c. We see that 24 = 23 · 3 does not have a primitive root since it is not a power of a prime nor twice a
power of a prime. Hence the maximal ±1-exponent of 24 is λ(24) = [λ(23), φ(3)] = [2, 2] = 2.

d. We see that 36 = 22 · 32 does not have a primitive root since it is not a power of a prime nor twice a
power of a prime. Hence the maximal ±1-exponent of 36 is λ(36) = [λ(22), φ(32)] = [2, 6] = 6.

e. We see that 99 = 32 · 11 does not have a primitive root since it is not a power of a prime not twice a
power of a prime. Hence the maximal ±1-exponent of 99 is λ(99) = [φ(32), φ(11)] = [6, 10] = 30.

f. We see that 100 = 2252 does not have a primitive root since it is not a power of a prime nor twice a
power of a prime. Hence the maximal ±1-exponent of 100 is λ(100) = [λ(22), φ(52)] = [2, 20] = 20.

10.3.2. a. Since 2 is a primitive root modulo 13, 26 ≡ −1 (mod 13). So 2 has maximal ±1-exponent.

b. Since 3 is a primitive root modulo 14, 36 ≡ −1 (mod 14). So 3 has maximal ±1-exponent.

c. We have λ(15) = 4, and 2 has order 4 modulo 15 without any lower power being congruent to −1.

d. Since 2 is a primitive root modulo 25, it does the job.
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e. We have λ(36) = 6, and 5 has order 6.

f. We have λ(60) = 4, and 7 has order 4.

10.3.3. a. By Theorems 10.6 and 9.23, the maximal ±1−exponent of 50 is λ0(50) = λ(50) = [λ(2), φ(25)] = 20.
We seek an integer with order 20 (mod 50) to be the spread. Since 3 is a primitive root for 5, either
3 or 8 is a primitive root for 25. It turns out that ord253 = 20 = φ(25). So it follows that ord503 = 20.
So we choose s = 3 for our spread.

b. We compute λ0(76) = [λ(4), φ(19)] = [2, 18] = 18. Since 2 is a primitive root modulo 19, we consider
s = 19 + 2 = 21 for our spread. A quick computation shows that ord7621 = 18.

c. We compute λ0(125) = φ(125) = 100. Since 2 is a primitive root for 5, we start there. Now 250 ≡ −1
(mod 125), so ord1002 = 100. Thus we use s = 2 as our spread.

10.3.4. In a section of cable, there are m adjacent pairs of wires. After [(m − 1)/2] sections of cable, we have
generated m[(m−1)/2] pairs of adjacent wires. But from a set of size m there are only

(
m
2

)
= m(m−1)/2

possible different pairs, so the above is the maximum. If two wires are adjacent in the first section and
in the kth section, then we have Sk(j) ≡ Sk(j ± 1) + 1 (mod m). Using Theorem 10.7, and assuming s
has maximal ±1-exponent, we have 1 + (j − 1)sk−1 ≡ 1 + (j ± 1 + 1)sk−1 + 1 (mod m) or sk−1 ≡ ±1
(mod m), which implies that k = λ0(m) + 1 = φ(m)/2 = (m + 1)/2. So we can have k − 1 = (m − 1)/2
sections of cable before we repeat a pair.





CHAPTER 11

Quadratic Residues

11.1. Quadratic Residues and Nonresidues
11.1.1. a. We have 12 ≡ 22 ≡ 1 (mod 3). Hence the quadratic residues of 3 are those integers congruent to 1

modulo 3.

b. We have 12 ≡ 42 ≡ 1 (mod 5) and 22 ≡ 32 ≡ 4 (mod 5). Hence the quadratic residues of 5 are those
integers congruent to 1 or 4 modulo 5.

c. We have 1 ≡ 122 ≡ 1 (mod 13), 22 ≡ 112 ≡ 4 (mod 13), 32 ≡ 102 ≡ 9 (mod 13), 42 ≡ 92 ≡
3 (mod 13), 52 ≡ 82 ≡ 12 (mod 13), and 62 ≡ 72 ≡ 10 (mod 13). Hence the quadratic residues of 13
are those integers congruent to 1, 3, 4, 9, 10, or 12 modulo 13.

d. We have 12 ≡ 182 ≡ 1 (mod 19), 22 ≡ 172 ≡ 4 (mod 19), 32 ≡ 162 ≡ 9 (mod 19), 42 ≡ 152 ≡
16 (mod 19), 52 ≡ 142 ≡ 6 (mod 19), 62 ≡ 132 ≡ 17 (mod 19), 72 ≡ 122 ≡ 11 (mod 19), 82 ≡ 112 ≡
7 (mod 19), and 92 ≡ 102 ≡ 5 (mod 19). Hence the quadratic residues of 19 are those integers con-
gruent to 1, 4, 5, 6, 7, 9, 11, 16, or 17 modulo 19.

11.1.2. a. We have 12 ≡ 62 ≡ 1 (mod 7), 22 ≡ 52 ≡ 4 (mod 7), and 32 ≡ 42 ≡ 2 (mod 7). Hence, the quadratic
residues of 7 are those integers congruent to 1, 2, or 4 modulo 7.

b. A reduced residue system modulo 8 is 1, 3, 5, and 7. We have 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8).
Hence 1 is the only quadratic residue modulo 8.

c. A reduced residue system modulo 15 is 1, 2, 4, 7, 8, 11, 13, and 14. We have 12 ≡ 142 ≡ 42 ≡ 112 ≡
1 (mod 15), and 22 ≡ 132 ≡ 72 ≡ 82 ≡ 4 (mod 15). Hence 1 and 4 are the only quadratic residues
modulo 15.

d. A reduced residue system modulo 18 is 1, 5, 7, 11, 13, and 17. We have 12 ≡ 172 ≡ 1 (mod 18),
52 ≡ 132 ≡ 7 (mod 18), and 72 ≡ 112 ≡ 13 (mod 18). Hence, the quadratic residues of 18 are those
integers congruent to 1, 7, or 13 modulo 18.

11.1.3. From Exercise 1 (b) we have
(

1
5

)
=

(
4
5

)
= 1 and

(
2
5

)
=

(
3
5

)
= −1.

11.1.4. We have 12 = 62 ≡ 1 (mod 7), 22 ≡ 52 ≡ 4 (mod 7), and 32 ≡ 42 ≡ 2 (mod 7). Hence the quadratic
residues of 7 are those integers congruent to 1,2,or 4 modulo 7. It follows that

(
1
7

)
= 1,

(
2
7

)
= 1,

(
3
7

)
=

−1,
(

4
7

)
= 1,

(
5
7

)
= −1, and

(
6
7

)
= −1.

11.1.5. a. We compute
(

7
11

)
≡ 7(11−1/2 ≡ 75 ≡ 492 · 7 ≡ 52 · 7 ≡ 3 · 7 ≡ −1 (mod 11)

b. We compute (7, 14, 21, 28, 35) ≡ (7, 3, 10, 6, 2) (mod 11) and three of these are greater than 11/2, so(
7
11

)
= (−1)3 = −1

11.1.6. Note that
(

a
p

)(
b
p

)
=

(
ab
p

)
. It follows that if either both or neither of a and b is a quadratic residue of

p then ab is a quadratic residue of p. On the other hand, if exactly one of a and b is a quadratic residue
of p then it follows that ab is also a nonresidue. We conclude that either one or all three of a, b, and ab is

169
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a quadratic residue of p.

11.1.7. We know that
(
−2
p

)
=

(
−1
p

)(
2
p

)
by Theorem 11.4 Using Theorems 11.5 and 11.6 we have: If p ≡

1 (mod 8) then
(
−2
p

)
= (1)(1) = 1. If p ≡ 3 (mod 8) then

(
−2
p

)
= (−1)(−1) = 1. If p ≡ −1 (mod 8) then(

−2
p

)
= (−1)(1) = −1. If p ≡ −3 (mod 8) then

(
−2
p

)
= (1)(−1) = −1.

11.1.8. Theorem 11.4 gives
(

n
q

)
=

(
p
2t1+1
1

q

)
· · ·

(
p
2tk+1
k

q

)
=

(
p
2t1
1
q

)(
p1
q

)
· · ·

(
p
2tk
k

q

)
≤ pkq. Since p2ti

i is a square,

we have
(

n
q

)
= 1 ·

(
p1
q

)
· 1

(
pz

q

)
· · · 1 ·

(
pk

q

)
.

11.1.9. Since p− 1 ≡ −1, p− 2 ≡ −2, . . . , (p + 1)/2 ≡ (p− 1)/2 (mod p), we have((p− 1)/2)!2 ≡ −(p− 1)! ≡
1 (mod p) by Wilson’s theorem. (since p ≡ 3 (mod 4) the minus signs cancel). By Euler’s criterion, ((p−
1)/2)!(p−1)/2 ≡

(
1
p

)(
2
p

)
· · ·

(
(p−1)/2

p

)
≡ (−1)t (mod p), by definition of the Legendre symbol. Since

(p− 1)/2! ≡ ±1 (mod p), and (p− 1)/2 is odd, we have the result.

11.1.10. Suppose that (b, p) = 1. Then
(

b
p

)
+

(
2b
p

)
+ · · · +

(
(p−1)b

p

)
=

(
b
p

) [(
1
p

)
+

(
2
p

)
+ · · ·+

(
(p−1)

p

)]
=(

b
p

)
· 0 = 0, because

(
1
p

)
+

(
2
p

)
+ · · · +

(
(p−1)

p

)
= 0 since it is the sum of an equal number of 1’s and

−1’s. (This follows since there are an equal number of quadratic residues and nonresidues modulo p
among the integers 1,2,· · · , p− 1).

11.1.11. If p ≡ 1 (mod 4),
(
−a
p

)
=

(
−1
p

)(
a
p

)
= 1 · 1 = 1. If p ≡ 3 (mod 4),

(
−a
p

)
=

(
−1
p

)(
a
p

)
= (−1) · 1 = −1.

11.1.12. a. If c ≡ 0 (mod 2) then x ≡ 0 is a solution. x ≡ 1 is a solution of x2 + 1 ≡ 0 (mod 2). 12 + 1 + 1 ≡ 1
and 02 + 0 + 1 ≡ 1 (mod 2) so x2 + x + 1 ≡ 0 (mod 2) has no solution.

b. y2 ≡ d (mod p) if and only if (2ax+b)2 ≡ b2−4ac (mod p) if and only if 4a2x2+4abx+b2−b2+4ac ≡
0 (mod p) if and only if a2x2 + abx + ac ≡ 0 (mod p) since (4, p) = 1, if and only if ax2 + bx + c ≡ 0
since (a, p) = 1. The conclusion follows.

11.1.13. a. We will use properties of congruence to complete the square. Suppose that x2 + x + 1 ≡ 0 (mod 7).
Adding −7x+8 to both sides give x2− 6x+9 ≡ −7x+8 ≡ 1 (mod 7). Hence (x− 3)2 ≡ 1 (mod 7).
Since the solutions of y2 ≡ 1 (mod 7) are y ≡ 1 and y ≡ −1 (mod 7), this implies that x − 3 ≡
1 (mod 7) or x− 3 ≡ −1 (mod 7). It follows that the solutions are those x satisfying x ≡ 4 (mod 7)
or x ≡ 2 (mod 7).

b. Suppose that x2+5x+1 ≡ 0 (mod 7). Adding−7x to both sides gives x2−2x+1 ≡ 7x ≡ 0 (mod 7).
Hence (x − 1)2 ≡ 0 (mod 7). It follows that x − 1 ≡ 0 (mod 7), so all solutions are given by x ≡
1 (mod 7).

c. Suppose that x2 + 3x + 1 ≡ 0 (mod 7). Then adding −7x + 3 to both sides gives x2 − 4x + 4 ≡
−7x + 3 ≡ 3 (mod 7). Hence (x − 2)2 ≡ 3 (mod 7). But 3 is a quadratic nonresidue of 7. Hence
there are no solutions.

11.1.14. Suppose that p is a prime that is at least 7. At least one of the three incongruent integers 2,5, and 10 is
a quadratic residue of p, because if neither 2 nor 5 is a quadratic residue of p then 10 = 2 ·5 is a quadratic
residue of p. If 2 is a quadratic residue of p then 1 and 2 are consecutive quadratic residues, if 5 is a qua-
dratic residue of p then 4 and 5 are consecutive quadratic residues, while if 10 is a quadratic residue of p
then 9 and 10 are consecutive quadratic residues.

11.1.15. Suppose that p is a prime that is at least 7. At least one of the three incongruent integers 2,3, and 6 is
a quadratic residue of p, because if neither 2 nor 3 is a quadratic residue of p then 2 · 3 = 6 is a quadratic
residue of p. If 2 is a quadratic residue, then 2 and 4 are quadratic residues that differ by 2; if 3 is a qua-
dratic residue, then 1 and 3 are quadratic residues that differ by 2; while if 6 is a quadratic residue then
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4 and 6 are quadratic residues that differ by 2.

11.1.16. Since 1 and 4 are quadratic residues for all primes greater than 3, and 4− 1 = 3, we’re done.

11.1.17. a. Since p = 4n + 3, 2n + 2 = (p + 1)/2. Then x2 ≡ (±an+1)2 ≡ a2n+2 ≡ a(p+1)/2 ≡ a(p−1)/2a ≡ 1 · a ≡
a (mod p) using the fact that a(p−1)/2 ≡ 1 (mod p) since a is a quadratic residue of p.

b. From Lemma 11.1, there are exactly two solutions to y2 ≡ 1 (mod p), namely y ≡ ±1 (mod p).
Since p ≡ 5 (mod 8),−1 is a quadratic residue of p and 2 is a quadratic nonresidue of p. Since p =
8n + 5, we have 4n + 2 = (p− 1)/2 and 2n + 2 = (p + 3)/4. Then (±an+1)2 ≡ a(p+3)/4 (mod p) and
(±22n+1an+1)2 ≡ 2(p−1)/2a(p+3)/4 ≡ −a(p+3)/4 (mod p) by Euler’s criterion. We must show that
one of a(p+3)/4 or−a(p+3)/4 ≡ a (mod p). Now a is a quadratic residue of p, so a(p−1)/2 ≡ 1 (mod p)
and therefore a(p−1)/4 solves x2 ≡ 1 (mod p). But then a(p−1)/4 ≡ ±1 (mod p), that is a(p+3)/4 ≡
±a (mod p) or ±a(p+3)/4 ≡ a (mod p) as desired.

11.1.18. Since 4n < p − 1, and r is a primitive root modulo p, we have r4n 6≡ 1 (mod p), and r8n ≡ rp−1 ≡
1 (mod p). Then r4n(r6n + r2n) ≡ r10n + r6n ≡ r8nr2n + r6n ≡ r2n + r6n (mod p). Since r4n 6≡ 1 (mod p)
we must have r6n + r2n ≡ 0 (mod p). Then (±(r7n ± rn))2 ≡ r14n ± 2r8n + r2n ≡ r6n ± 2 + r2n ≡
±2 (mod p) as desired.

11.1.19. Note x2 ≡ 1 (mod 15) if and only if x2 ≡ 1 (mod 3) and x2 ≡ 1 (mod 5). The solutions to x2 ≡
1 (mod 3) are x ≡ 1 and x ≡ 2 (mod 3) and the solutions to x2 ≡ 1 (mod 5) are x ≡ 1 and x ≡
4 (mod 5). We use the Chinese remainder theorem to solve the four sets of simultaneous congruences:
x ≡ 1 (mod 3) and x ≡ 1 (mod 5), x ≡ 1 (mod 3) and x ≡ 4 (mod 5), x ≡ 2 (mod 3) and x ≡ 1 (mod 5),
and x ≡ 2 (mod 3) and x ≡ 4 (mod 5). This yields the four incongruence solutions x ≡ 1, 4, 11, and
14 (mod 15).

11.1.20. Solving x2 ≡ 58 ≡ 2 (mod 7) yields x ≡ 3 or 4 (mod 7). Solving x2 ≡ 58 ≡ 3 (mod 11) yields x ≡
5 or 6 (mod 7). This gives 4 possibilities: If x ≡ 3 (mod 7) and x ≡ 5 (mod 11), then the Chinese Re-
mainder Theorem gives us x ≡ 38 (mod 77). Similarly, if x ≡ 3 (mod 7) and x ≡ 6 (mod 11), then x ≡
17 (mod 77). Similarly, if x ≡ 4 (mod 7) and x ≡ 5 (mod 11), then x ≡ 60 (mod 77). Similarly, if x ≡
4 (mod 7) and x ≡ 6 (mod 11), then x ≡ 39 (mod 77). So the solutions are 38, 17, 39, and 60 modulo 77.

11.1.21. Note that 1001 = 7·11·13, so we solve the congruence modulo each of these primes. First we have x2 ≡
207 ≡ 4 (mod 7), so x ≡ 2 or 5 (mod 7). Next we have x2 ≡ 207 ≡ 9 (mod 11), so x ≡ 3 or 8 (mod 11).
Next we have x2 ≡ 207 ≡ −1 (mod 13), so x ≡ 5 or 8 (mod 13). There are now 8 systems of three
congruences each to solve via the Chinese remainder theorem. The solution of x ≡ 2 (mod 7), x ≡
3 (mod 11), x ≡ 5 (mod 13) is x ≡ 135 (mod 1001). The solution of x ≡ 2 (mod 7), x ≡ 3 (mod 11), x ≡
8 (mod 13) is x ≡ 905 (mod 1001). The solution of x ≡ 2 (mod 7), x ≡ 8 (mod 11), x ≡ 5 (mod 13) is x ≡
954 (mod 1001). The solution of x ≡ 2 (mod 7), x ≡ 8 (mod 11), x ≡ 8 (mod 13) is x ≡ 723 (mod 1001).
The solution of x ≡ 5 (mod 7), x ≡ 3 (mod 11), x ≡ 5 (mod 13) is x ≡ 278 (mod 1001). The solu-
tion of x ≡ 5 (mod 7), x ≡ 3 (mod 11), x ≡ 8 (mod 13) is x ≡ 47 (mod 1001). The solution of x ≡
5 (mod 7), x ≡ 8 (mod 11), x ≡ 5 (mod 13) is x ≡ 96 (mod 1001). The solution of x ≡ 5 (mod 7), x ≡
8 (mod 11), x ≡ 8 (mod 13) is x ≡ 866 (mod 1001). In order, the solutions modulo 1001 are 47, 96, 135,
278, 723, 866, 905, and 954.

11.1.22. If x0 is a solution to x2 ≡ a (mod pe), then (−x0)2 ≡ a (mod pe) and x0 6= −x0 (mod pe) since pe -
2x0. So if there is one solution, there must be two. Now suppose x0 and x1 are solutions. Then x2

0 ≡
x2

1 (mod pe) so pe | (x2
0 − x2

1) = (x0 − x1). If p | x0 − x1 and p | x0 + x1. Then p | (x0 − x1) + (x0 + x1) =
2x0 which is impossible since p - a ≡ x2

0 so pe | x0 − x1 or pe | x0 + x1 and hence x0 ≡ ±x1 (mod pe). So
there are at most 2 solutions.

11.1.23. If x2
0 ≡ a (mod pe+1) then x2

0 ≡ a (mod pe). Conversely, if x2
0 ≡ a (mod pe) then x2

0 = a + bpe for some
integer b. We can solve the linear congruence 2x0y ≡ −b (mod p), say y = y0. Let x1 = x0 + y0p

e. Then
x2

1 ≡ x2
0 + 2x0y0p

e = a + pe(b + 2x0y0) ≡ a (mod pe+1) since p | 2x0y0 + b. This is the induction step in
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showing that x2 ≡ a (mod pe) has solutions if and only if (a
p ) = 1.

11.1.24. Finding a solution to x2 ≡ a (mod n) is equivalent to finding a solution to the system

x2 ≡ a (mod pt1
1 )

x2 ≡ a (mod pt2
2 )

...
x2 ≡ a (mod ptm

m )

So we count the solutions to the system. x2 ≡ a (mod pti
i ) has two solutions if

(
a
pi

)
= 1 and no solu-

tions if
(

a
pi

)
= −1. So if any

(
a
pi

)
= −1, there are no solutions to x2 ≡ a (mod n). Otherwise there are

2m solutions.

11.1.25. a. 75 = 523 and
(

31
5

)
=

(
1
5

)
= 1 and

(
31
3

)
=

(
1
3

)
= 1, so there are 22 = 4 solutions.

b. 105 = 3 · 5 · 7 and 16 is a quadratic residue of 3, 5, and 7, so there are 23 = 8 solutions.

c. 231 = 3·7·11 and
(

46
3

)
=

(
1
3

)
= 1,

(
46
7

)
=

(
4
7

)
= 1,

(
46
11

)
=

(
2
11

)
= 1 so there are 23 = 8 solutions.

d.
(

1156
3

)
=

(
1
3

)
= 1,

(
1156

5

)
=

(
1
5

)
= 1,

(
1156

7

)
=

(
1
7

)
= 1, and

(
1156
11

)
=

(
1
11

)
= 1 so there are 24 =

16 solutions.

11.1.26. If x2 ≡ (mod 2e) has a solution x0, then −x0 is also a solution, and (2e−1 ± x0)2 ≡ (2e ± 2 · 2e−1x0 +
x2

0) ≡ x2
0 (mod 2e). If x0 ≡ −x0 (mod 2e), then 2e | 2x0, but x0 is odd, so x0 - −x0. If x0 ≡ 2e−1 +

x0 (mod 2e) then 2e | 2e−1, so x0 6≡ 2e−1 + x0. If x0 ≡ 2e−1− x0 (mod 2e) then 2e | 2e−1 + 2x0, so 2e− 1 |
2x0 which is impossible, so x 6≡ 2e−1 − x0. Since any of the four solutions could have been x0, we have
shown there are four distinct solutions. Suppose x1 is a fifth solution. Then x2

0 − x2
1 ≡ 0 (mod 2e). Then

2e | (x2
0− x2

1) = (x0− x1)(x0 + x1). If 4 | (x0− x1) and (x0 + x1) then 4 | (x0− x1) + (x0− x1) = 2x0, but
x0 is odd, so gcd ((x0 − x1), (x0 + x1)) = 2 or 1. So either 2e | x0 − x1 and so x1 ≡ x0 (mod 2e), or 2e |
x0 + x1 and so x1 ≡ −x0 (mod 2e), or 2e−1 | x0 − x1 and so x1 ≡ 2e−1 + x0 (mod 2e) or 2e−1 | x0 + x1

and x1 ≡ 2e−1 − x0 (mod 2e), so x1 is one of the four solutions.

11.1.27. Suppose p1, p2, . . . , pn are the only primes of the form 4k + 1. Let N = 4(p1p2 · · · pn)2 + 1. Let q be an
odd prime factor of N . Then q 6= pi, i = 1, 2, . . . , n, but N ≡ 0 (mod q), so 4(p1p2 · · · pn)2 ≡ −1 (mod q)
and therefore (−1

q ) = 1, so q ≡ 1 (mod 4) by Theorem 11.5.

11.1.28. a. Let N = (p1, p2, . . . , pn)2 = 2. Then N ≡ 3 (mod 8) since(p1, p2, . . . , pn)2 is an odd square. The
product of integers of the form 8k + 1 is another integer of the same form. Therefore, N has an odd
prime divisor q not of the form 8k + 1. Then −2 ≡ (p1, p2 . . . , pn)2 (mod q) and so (−2

q ) = 1. By
Exercise 7, q ≡ 1 or 3 (mod 8) and we have excluded q ≡ 1, so q is of the form 8k + 3. If q = pi for
some i, then q | N and q | (p1, p2, . . . pn)2 so q | 2, a contradiction. Therefore q is a new prime of the
form 8k + 3.

b. Let N = (p1, p2, . . . pn)2 + 4. Then N ≡ 5 (mod 8). As in part (a), there must be an odd prime di-
visor q not of the form 8k + 1, and q 6= pi for any i. Then we have (p1, p2 . . . , pn)2 ≡ −4 (mod q),
and since 4 is a quadratic residue, −1 must be. Therefore q ≡ 1 (mod 4), but q 6≡ 1 (mod 8) so q ≡
5 (mod 8) as desired.

c. Let N = (4p1, p2, . . . , pn)2−2. Then N
2 ≡ 7 (mod 8), and must have an odd divisor q not of the form

8k + 1. We have 2 ≡ (4p1, p2 . . . , pn)2 (mod q), so ( 2
q ) = 1 and q ≡ ±1 (mod 8). Therefore q ≡ −1 ≡

7 (mod 8) as desired.

11.1.29. Let b1, b2, b3, and b4 be the four modular square roots of a modulo pq. Then each bi is a solution to
exactly one of the four systems of congruences given in the text. For convenience, let the subscripts
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correspond to the lower case Roman numerals of the systems. Suppose two of the bi’s were quadratic
residues modulo pq. Without loss of generality, say b1 ≡ y2

1 (mod pq) and b2 ≡ y2
2 (mod pq). Then from

systems (i) and (ii), we have that y2
1 ≡ b1 ≡ x2 (mod q) and y2

2 ≡ b2 ≡ −x2 (mod q). Therefore both x2

and −x2 are quadratic residues modulo q, but this is impossible since q ≡ 3 (mod 4). The other cases
are identical.

11.1.30. Let r be a primitive root modulo p and k = indra. If
(

a
p

)
= 1, then k = 2m for some integer m.

Then indra
(p−1)/2 ≡ ((p− 1)/2)2m ≡ 0 (mod p− 1). Since only 1 has index 0, we must have a(p−1)/2 ≡

1 (mod p). If
(

a
p

)
= −1, then k = 2m+1 for some integer m. Then indra

(p−1)/2 ≡ ((p− 1)/2)(2m+1) ≡
(p− 1)/2 (mod p− 1). Since only −1 has index (p− 1)/2, we must have a(p−1)/2 ≡ −1 (mod p).

11.1.31. Let r be a primitive root for p and let a ≡ rs (mod p) and b ≡ rt (mod p) with 1 ≤ s, t ≤ p − 1. If a ≡
b (mod p), then s = t and so s and t have the same parity. By Theorem 11.2, we have part (i). Further, we
have ab ≡ rs+t (mod p). Then the right hand side of (ii) is 1 exactly when s and t have the same parity,
which is exactly when the left hand side is 1. This proves part (ii). Finally, since a2 ≡ r2s (mod p) and
2s is even, we must have that a2 is a quadratic residue modulo p, proving part (iii).

11.1.32. By Exercise 31 we know that every primitive root of p is a quadratic nonresidue of p. Since there are
φ(p − 1) primitive roots of p and (p − 1)/2 − φ(p − 1) quadratic nonresidues of p that are not primitive
roots of p.

11.1.33. If r is a primitive root of q, then the set of all primitive roots is given by {rk : (k, φ(q)) = (k, 2p) =
1}. So the p − 1 numbers {rk : k is odd and k 6= p, 1 ≤ k < 2p} are all the primitive roots of q. On the
other hand, q has (q − 1)/2 = p quadratic residues, which are given by {r2, r4, . . . , r2p}. This set has no
intersection with the first one.

11.1.34. Let r be a primitive root of q and let rk = a. Since a is a nonresidue, k is odd. Since 4 6= ordqa =
4p/(k, 4p), we have (k, φ(q)) = (k, 4p) = 1 and hence a is a primitive root.

11.1.35. First suppose p = 22n

+ 1 is a Fermat prime and let r be a primitive root for p. Then φ(p) = 22n

.
Then an integer a is a nonresidue if and only if a = rk with k odd. But then (k, φ(p)) = 1, so a is also a
primitive root. Conversely, suppose that p is an odd prime and every quadratic nonresidue of p is also
a primitive root of p. Let r be a particular primitive root of p. Then, rk is a quadratic nonresidue and
hence a primitive root for p if and only if k is odd. But this implies that every odd number is relatively
prime to φ(p), so φ(p) must be a power of 2. Thus p = 2b +1 for some b. If b had a nontrivial odd divisor,
then we could factor p as a difference of b powers, contradicting the primality of of p. Therefore b is a
power of 2 and so p is a Fermat prime.

11.1.36. Note that 22n ≡ −1 (mod p) and 22n+1 ≡ 1 (mod p) so ordp2 = 2n+1. Now 22n

+ 1 ≡ 1 (mod 8), so
2(p−1)/2 ≡ 1 (mod p) by Theorem 11.6. Therefore 2n+1 | (p − 1)/2, say k2n+1 = (p − 1)/2. Then p =
2n+2k + 1.

11.1.37. a. We have q = 2p+1 = 2(4k +3)+1 = 8k +7, so ( 2
q ) = 1 by Theorem 11.6. Then by Euler’s criterion,

2(q−1)/2 ≡ 2p ≡ 1 (mod q). Therefore q | 2p − 1.

b. 11 = 4(2)+3 and 23 = 2(11)+1, so 23 | 211− 1 = M11, by part (a); 23 = 4(5)+3 and 47 = 2(23)+1,
so 47 | M23; 251 = 4(62) + 3 and 503 = 2(251) + 1, so 503 | M251.

11.1.38. If n ≡ 0 (mod 4) then 2n + 1 ≡ 1 (mod 8). If n ≡ 3 (mod 4) then 2n + 1 ≡ 7 (mod 8). In either case,(
2

2n+1

)
= 1 by Theorem 11.6. Therefore 2(2n+1−1)/2 ≡ 2n ≡ 1 (mod 2n + 1), and hence 2n + 1 | 2n− 1 =

Mn. If n ≡ 1 (mod 4) then 2n + 1 ≡ 3 (mod 8). If n ≡ 2 (mod 4) then 2n + 1 ≡ 5 (mod 8). In either
case,

(
2

2n+1

)
= −1 by Theorem 11.6. Therefore 22n+1−12 ≡ 2n ≡ −1 (mod 2n + 1), and hence 2n + 1 |

2n + 1 = Mn + 2.
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11.1.39. Let q = 2k + 1. Since q does not divide 2p + 1, we must have, by Exercise 38, that k ≡ 0 or 3 (mod 4).
That is, k ≡ 0, 3, 4 or 7 (mod 8). Then q ≡ 2(0, 3, 4 or 7) + 1 ≡ ±1 (mod 8).

11.1.40. By Theorem 7.12, every prime divisor of M17 = 217 − 1 must be of the form 2 · 17k + 1, where k is
a positive integer. Further, by Exercise 39, every prime divisor must be of the form 8l ± 1, where l is a
positive integer. Therefore 2 · 17k + 1 ≡ ±1 (mod 8). Whence, k ≡ 0 or 3 (mod 4). Therefore we would
need only check prime divisors of the forms 2 ·4 ·17m+1 = 136m+1 and 2(4m+3)17+1 = 136m+103.

11.1.41. Note that
(

j(j+1)
p

)
=

(
j·j(1+j)

p

)
=

(
j2(1+j)

p

)
=

(
(1+j)

p

)
since j2 is a perfect square. Then,

∑p−2
j=1

(
j(j+1)

p

)
=

∑p−2
j=1

(
j+1

p

)
=

∑p−1
j=2

(
j
p

)
=

∑p−1
j=1

(
j
p

)
− 1 = −1. Here we have used the method

in the solution to Exercise 10 to evaluate the last sum, and the fact that as j runs through the values 1
through p− 2, so does j.

11.1.42. a. If we add the number of pairs of consecutive quadratic residues among the integers 1,2,. . . , p − 1
and the number of pairs of a quadratic residue followed by a nonresidue among these integers, we
obtain the number of quadratic residues other than perhaps p− 1 among the integers 1,2,. . . , p− 1.
When p ≡ 1 (mod 4)−1 is a quadratic residue of p and the number of quadratic residues of p among
the first p − 1 positive integers is (p − 1)/2 − 1 = (p − 3)/2 = (p − 2 − (−1)((p−1))/2)/2. When p ≡
−1 (mod 4),−1 is a quadratic nonresidue of p and the number of quadratic residues of p among the
first p − 1 positive integers is (p − 1)/2 = (p − 2 − (−1)(p−1)/2))/2. Hence (RR)+(RN)= (p − 2 −
(−1)((p−1))/2)/2. Similarly, if we add the number of pairs of consecutive quadratic nonresidues and
the number of pairs of a quadratic nonresidue followed by a quadratic residue, we obtain the num-
ber of quadratic nonresidues other than perhaps p−1 among the integers 1,2,. . . , p−1. An analysis
similar to that given above shows that (NR)+(NN) = (p − 2 + (−1)(p−1)/2)/2. If we add the num-
ber of pairs of consecutive quadratic residues and the number of pairs of a quadratic nonresidue
followed by a quadratic residue is the number of quadratic residues other than 1. Since there are
(p − 1)/2 − 1 quadratic residues other than 1, we have (RR)+(NR) = (p − 1)/2 − 1. If we add the
number of pairs of a quadratic residue followed by a quadratic nonresidue and the number of pairs
of quadratic nonresidues, we obtain the number of pairs of quadratic nonresidues among the inte-
gers 2,. . . , p− 1.

b. Note that
(

j(j+1)
p

)
= 1 if and only if

(
j
p

)
=

(
j+1

p

)
= 1 or if

(
j
p

)
=

(
j+1

p

)
= −1. Hence

∑p−2
j=1

(
j(j+1)

p

)
= (RR) + (NN)− (RN)− (NR) = −1, since this sum is −1 from Exercise 35.

c. The system of 5 equations in 4 unknown determines the solution (RR) = 1
4

(
p− 4− (−1)(p−1)/2

)
,

(RN) = 1
4

(
p− (−1)(p−1)/2

)
, (NR) = (NN)= 1

4

(
p− 2 + (−1)(p−1)/2

)
.

11.1.43. Let r be a primitive root of p. Then x2 ≡ a (mod p) has a solution if and only if 2 indrx ≡ indra (mod p−
1) has a solution in indrx. Since p− 1 is even, the last congruence is solvable if and only if indra is even,
which happens when a = r2, r4, . . . , rp−1,i.e. (p− 1)/2 times.

11.1.44. If p is of the form 4k + 1, then q = 4(4k + 1) + 1 = 8n + 5. If p is of the form 4k + 3, then q =
4(4k + 3) + 1 = 8n + 5. So by Theorem 11.6, 2 is a quadratic nonresidue of q. Therefore 2(q−1)/2 ≡ 22p ≡
−1 (mod q), and so 22 6≡ 1, 2p 6≡ 1 and 22p 6≡ 1 (mod q). Hence ordq2 = 4p.

11.1.45. q = 2(4k + 1) + 1 = 8k + 3, so 2 is a quadratic nonresidue of q. By Exercise 33, 2 is a primitive root.

11.1.46. Since q = 2(4k − 1) + 1 = 8k − 1, −2 is a quadratic nonresidue of q, by Exercise 7. By Exercise 33, -2 is
a primitive root.

11.1.47. Check that q ≡ 3 (mod 4), so −1 is a quadratic nonresidue of q. Since 4 = 22, we have
(
−4
q

)
=(

−1
q

)(
22

q

)
= (−1)(1) = −1. Therefore −4 is a nonresidue of q. By Exercise 33, −4 is a primitive root.
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11.1.48. Note that 482 ≡ −49 (mod 59), and
(
−49
59

)
=

(
−1
59

)(
72

59

)
=

(
−1
59

)
= −1 since 59 ≡ 3 (mod 4), so there

are no solutions.

11.1.49. a. By adding (2b)2 to both sides of the congruence C ≡ P (P + b) (mod n), we have C +a ≡ P 2 +Pb+
(2b)2 ≡ (P + 2b)2 (mod n).

b. There are 4 solutions to x2 ≡ C + a (mod pq). From each, subtract 2b, which gives the 4 messages.

c. First we solve 2x ≡ 1 (mod 2773) to get 2 = 1387. Then 2b ≡ 1338 (mod 2773), and (2b)2 ≡
2082 (mod 2773). For the first block of ciphertext, we have 1819 ≡ P (P + 3) (mod 2773). we add
2082 to both sides to get 1128 ≡ (P + 1388)2 (mod 2773). We solve x2 ≡ 1128 (mod 2773) to find
the two solutions 1692 and 1081. Subtracting 1388 from both of these and reducing gives us the
two possible values for P , 0304 and 2466. Since 66 is not the numerical equivalent of a letter, we
know the solution must be 0304 which is equivalent to DE. Similarly we find that 0459 has P =
0856, 1796, 1914, or 0974. Of these, only 1914 has letter equivalents, so the second digraph is TO. Fi-
nally, we find that 0803 has P = 2346, 2017, 0424, or 0753. Two of these have letter equivalents: 0424
is equivalent to EY, which makes the message DETOEY; 2017 is equivalent to UR, which makes the
message DETOUR. We guess that the message is DETOUR.

11.1.50. Suppose that P is a quadratic residue of p. Then there is an integer x such that x2 ≡ P (mod p). Hence
C ≡ P e ≡ (x2)e = (xe)2 (mod p). It follows that C is also a quadratic residue of p. Now suppose that
C is a quadratic residue of p. Then there is an integer y such that y2 ≡ C (mod p). Then P ≡ Cd ≡
(y2)d (mod p), where d is an inverse of e modulo p− 1. Hence P is also a quadratic residue of p.

11.1.51. a. By noting this, the second player can tell which cards dealt are quadratic residues, since the cipher-
text will also be quadratic residues modulo p.

b. All ciphers will be quadratic residues modulo p.

11.1.52. We complete the square in j. Since (b, m) = 1, and inverse b of b exists modulo m. Then 4hj(K) ≡
4h(K)+4aj+bj2 (mod m). Then 4hj(K)−4h(K)+ba2 ≡ b(2j−ba)2 (mod m) or (2j−ba)2 ≡ 4bhj(K)−
4bh(K) + b

2
(mod m). Since there are only m/2 quadratic residues modulo m the right-hand side can

take on only m/2 values. For each of these values, the congruence is linear in hj(K), and so has only
one solution for hj(K), giving only m/2 locations searched.

11.1.53. The quadratic residues modulo 11 are 1, 3, 4, 5, and 9. So there are several chains: 1 + 3 = 4, 4 + 5 = 9,
and 9 + 5 = 14 ≡ 3 (mod 11), for example.

11.1.54. The quadratic residues modulo 7 are 1, 2, and 4. Since the sum of no two of these is congruent to the
other modulo 7, there is no chain of quadratic residues modulo 7.

11.2. The Law of Quadratic Reciprocity

11.2.1. a. Since 53 ≡ 1 (mod 4) the law of quadratic reciprocity shows that
(

3
53

)
=

(
53
3

)
. We have

(
53
3

)
=(

2
3

)
= −1. Hence

(
3
53

)
= −1.

b. Since 79 ≡ 1 (mod 4) the law of quadratic reciprocity shows that
(

7
79

)
=

(
79
7

)
. We have

(
79
7

)
=(

2
7

)
= 1 since 2 is a quadratic residue of 7.

c. We have
(

15
101

)
=

(
3

101

)(
5

101

)
. Since 101 ≡ 1 (mod 4), the law of quadratic reciprocity shows that(

3
101

)
=

(
101
3

)
and

(
5

101

)
=

(
101
5

)
. We have

(
101
3

)
=

(
2
3

)
= −1 and

(
101
5

)
=

(
1
5

)
= 1. Hence



176 11. QUADRATIC RESIDUES

(
15
101

)
= −1 · 1 = 1.

d.
(

31
641

)
=

(
641
31

)
=

(
21
31

)
=

(
3
31

)(
7
31

)
=

(
−

(
31
3

))(
−

(
31
7

))
=

(
1
3

)(
3
7

)
= 1

(
−

(
7
3

))
= −

(
2
3

)
= 1.

e.
(

111
991

)
=

(
3

991

)(
37
991

)
= −

(
991
3

)(
991
37

)
= −

(
1
3

)(
29
37

)
= −

(
29
37

)
= −

(
37
29

)
= −

(
8
29

)
= −

(
2
29

)(
4
29

)
=

−
(

2
29

)
= −(−1) = 1.

f.
(

105
1009

)
=

(
3

1009

)(
5

1009

)(
7

1009

)
=

(
1009

3

)(
1009

5

)(
1009

7

)
=

(
1
3

)(
4
5

)(
1
7

)
= 1.

11.2.2. First suppose that p is a prime with p ≡ 1 (mod 4). Then by the law of quadratic reciprocity it fol-
lows that

(
3
p

)
=

(
p
3

)
. We see that if p ≡ 1 (mod 3), so that p ≡ 1 (mod 12), then

(
3
p

)
=

(
p
3

)
= 1. If

p ≡ 2 (mod 3), so that p ≡ 5 (mod 12), then
(

3
p

)
=

(
p
3

)
= −1. Next suppose that p is a prime with

p ≡ 3 (mod 4). Then by the law of quadratic reciprocity it follows that
(

3
p

)
= −

(
p
3

)
. We see that if p ≡

1 (mod 3) so that p ≡ 7 ≡ −5 (mod 12) then
(

3
p

)
= −

(
p
3

)
= −1. If p ≡ 2 (mod 3), so that p ≡ 11 ≡

−1 (mod 12), then
(

3
p

)
= −

(
p
3

)
= 1.

11.2.3. If p ≡ 1 (mod 6) there are 2 cases: If p ≡ 1 (mod 4) then
(
−1
p

)
= 1 and

(
3
p

)
=

(
p
3

)
=

(
1
3

)
= 1.

So
(
−3
p

)
= 1. If p ≡ 3 (mod 4) then

(
−1
p

)
= −1 and

(
3
p

)
= −

(
p
3

)
, so

(
−3
p

)
= (−1)(−1) = 1. If p ≡

−1 (mod 6) and p ≡ 1 (mod 4), then
(
−3
p

)
=

(
−1
p

)(
3
p

)
= 1 ·

(
p
3

)
=

(
−1
3

)
= −1. If p ≡ 3 (mod 4), then(

−3
p

)
=

(
−1
p

)(
3
p

)
= (−1)

(
−

(
p
3

))
=

(
p
3

)
=

(
−1
3

)
= −1.

11.2.4. By the law of quadratic reciprocity it follows that
(

5
p

)
=

(
p
5

)
. We find that

(
1
5

)
=

(
4
5

)
= 1 and

(
2
5

)
=(

3
5

)
= −1. It follows that 5 is a quadratic residue of the odd prime p if and only if p ≡ 1 (mod 5) or p ≡

4 (mod 5).

11.2.5. Suppose that p is an odd prime. By the law of quadratic reciprocity it follows that
(

7
p

)
=

(
p
7

)
if p ≡

1 (mod 4) and
(

7
p

)
= −

(
p
7

)
if p ≡ 3 (mod 4). So, 7 is a quadratic residue of a prime p with p ≡ 1 (mod 4)

if
(

p
7

)
= 1. This is the case when p ≡ 1, 2 or 4 (mod 7). Using the Chinese remainder theorem we see

that 7 is a quadratic residue of p when p ≡ 1, 9 or 25 (mod 28), and 7 is a quadratic nonresidue of p when
p ≡ 5, 13 or 17 (mod 28). Also, 7 is a quadratic residue of a prime p with p ≡ 3 (mod 4) if

(
p
7

)
= −1.

This is the case when p ≡ 3, 5 or 6 (mod 7). Using the Chinese remainder theorem we see that 7 is a qua-
dratic residue of p when p ≡ 3, 19 or 27 (mod 28) and 7 is a quadratic nonresidue of p when p ≡ 11, 15
or 23 (mod 28). It follows that 7 is a quadratic residue of p if and only if p ≡ 1, 3, 9, 19, 25 or 27 (mod 28).

11.2.6. If every prime divisor of Q = 5(n!) − 1 were of the form 5k + 1, then Q ≡ 1 (mod 5), which it isn’t,
so Q has a prime divisor p not of the form 5k + 1. Also, if p ≤ n, then p | 5(n!)2 and p | 5(n!)2 − Q = 1,
a contradiction, so p > n. Now 5(n!)2 ≡ 1 (mod p), so 1 =

(
1
p

)
=

(
5(n!)2

p

)
=

(
5
p

)(
(n!)2

p

)
=

(
5
p

)(
p
5

)
.

Therefore p ≡ 4 or 1 (mod 5) and we have excluded the latter case.

11.2.7. a. We have F1 = 221
+ 1 = 5. We find that 3(F1−1)/2 = 3(5−1)/2 = 32 = 9 ≡ −1 (mod F1). Hence by

Pepin’s test we come (to the already obvious) conclusion that F1 = 5 is prime.

b. We have F3 = 223
+ 1 = 257. We find that 3(F3−1)/2 = 3(257−1)/2 = 3128 ≡ (38)16 ≡ 13616 ≡

(1364)4 ≡ 644 ≡ (642)2 ≡ 2412 ≡ 256 ≡ −1 (mod 257). Hence by Pepin’s test we see that F3 = 257
is prime.

c. Using a calculator we find 3255 ≡ 94 (mod F4). 332768 ≡ 3255·1283128 ≡ 941283128 ≡ −1 (mod F4).
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11.2.8. If Fm = 22m

+ 1 is prime, then φ(Fm) = 22m

, so ordFm
3 is a power of 2, say 2k. Then 32n ≡ 32k2n−k ≡

(1)2
n−k ≡ 1 (mod Fm) if n ≥ k. But by Pepin’s test, 3(fm−1)/2 ≡ −1 (mod Fm) and (Fm − 1)/2 = 22m−1.

So ordFm
3 = 22m

= φ(Fm).

11.2.9. a. The lattice points in the rectangle are the points (i, j) where 0 < i < p/2 and 0 < j < q/2. There are
the lattice points (i, j) with i = 1, 2, . . . , (p − 1)/2 and j = 1, 2, . . . , (q − 1)/2. Consequently, there
are (p− 1)/2 · (q − 1)/2 such lattice points.

b. The points on the diagonal connecting O and C are the points (x, y) where y = (q/p)x. Suppose
that x and y are integers with y = (q/p)x. Then py = qx. Since (p, q) = 1 it follows that p | x which
is impossible if 0 < x < p/2. Hence there are no lattice points on this diagonal.

c. The number of lattice points in the triangle with vertices O,A, and C is the number of lattice points
(i, j) with i = 1, 2, . . . , (p−1)/2 and 1 ≤ j ≤ iq/p. For a fixed value of i in the indicated range, there
are [iq/p] lattice points (i, j) in the triangle. Hence the total number of lattice points in the triangle
is

∑(p−1)/2
i=1 [iq/p].

d. The number of lattice points in the triangle with vertices O,B, and C is the number of lattice points
(i, j) with j = 1, 2, . . . , (q−1)/2 and 1 ≤ i < jp/q. For a fixed value of j in the indicated range, there
are [jp/q] lattice points (i, j) in the triangle. Hence the total number of lattice points in the triangle
is

∑(q−1)/2
j=1 [jp/q].

e. Since there are (p− 1)/2 · (q− 1)/2 lattice points in the rectangle, and no points on the diagonal OC,
the sum of the numbers of lattice points in the triangles OBC and OAC is (p − 1)/2 · (q − 1)/2. By
parts (b) and (c) it follows that

∑(p−1)/2
j=1 [jq/p] +

∑(q−1)/2
j=1 [jp/q] = (p− 1)/2 · (q − 1)/2. By Lemma

11.3 it follows that
(

p
q

)
= (−1)T (p,q) and

(
q
p

)
= (−1)T (q,p) where T (p, q) =

∑(p−1)/2
j=1 [jp/q] and

T (q, p) =
∑(q−1)/2

j=1 [jq/p]. We conclude that
(

p
q

)(
q
p

)
= (−1)(p−1)/2 · (q − 1)/2. This is the law of

quadratic reciprocity.

11.2.10. Without loss of generality, assume p > q are odd primes. First assume that p ≡ q (mod 4). Then
p = q + 4a for some positive integer a, and p ≡ q (mod 4a). Then

(
p
q

)
=

(
q+4a

q

)
=

(
4a
q

)
=

(
a
q

)
. Like-

wise,
(

q
p

)
=

(
p−4a

p

)
=

(
−1
p

)(
4
p

)(
a
p

)
= (−1)(p−1)/2

(
a
p

)
. From these two equations we have

(
p
q

)(
q
p

)
=(

a
q

)
(−1)(p−1)/2

(
a
p

)
. By Theorem 11.8, we have

(
a
p

)
=

(
a
q

)
, so

(
p
q

)(
q
p

)
= (−1)(p−1)/2. But since

(p − 1)/2 = (q − 1)/2 = 2a, we know that (p − 1)/2 and (q − 1)/2 have the same parity. Therefore
(−1)(p−1)/2 = (−1)((p−1)/2)((q−1)/2). This proves the first case. Now assume p 6≡ q (mod 4). Then we
must have p ≡ −q (mod 4), so that p = −q + 4a for some positive integer a, and so p ≡ −q (mod 4a).
Then

(
p
q

)
=

(
−q+4a

q

)
=

(
a
q

)
, and

(
q
p

)
=

(
−p+4a

p

)
=

(
a
p

)
. By Theorem 11.8,

(
a
p

)
=

(
a
q

)
, so

(
p
q

)(
q
p

)
=(

a
q

)(
a
p

)
= 1. But (p − 1)/2 + (q − 1)/2 = 2a− 1, so (p− 1)/2, and (q − 1)/2 have opposite parity, so at

least one of them is even. Noting that then (−1)((p−1)/2)((q−1)/2) = 1 completes the second case.

11.2.11. First suppose a = 2. Then we have p ≡ ±q (mod 8) and so
(

a
p

)
=

(
a
q

)
by Theorem 11.6 Now

suppose a is an odd prime. If p ≡ q (mod 4a), then p ≡ q (mod a) and so
(

q
a

)
=

(
p
a

)
. And since

p ≡ q (mod 4), (p− 1)/2 ≡ (q − 1)/2 (mod 2). Then by Theorem 11.7,
(

a
p

)
=

(
p
a

)
(−1)(p−1)/2·(a−1)/2 =(

q
a

)
(−1)(q−1)/2·(a−1)/2 =

(
a
q

)
. But if p ≡ −q (mod 4a), then p ≡ −q (mod a) and so

(
−q
a

)
=

(
p
a

)
.

And since p ≡ −q (mod 4), (p − 1)/2 ≡ (q − 1)/2 + 1 (mod 2). Then by Theorem 11.7,
(

a
p

)
=(

p
a

)
(−1)(p−1)/2·(a−1)/2 =

(
−q
a

)
(−1)((q−1)/2+1)·(a−1)/2 =

(
−1
a

)
(−1)(a−1)/2

(
a
q

)
=

(
a
q

)
. The general case

follows from the multiplicativity of the Legendre symbol.
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11.2.12. To apply Gauss’s lemma to compute
(

a
p

)
we need to find the parity of the number of a, 2a, . . . , ((p−

1)/2)a which have least positive residue between p/2 and p. If ka is such a number, with 1 ≤ k ≤
(p − 1)/2, then (2t − 1)p/2 ≤ ka ≤ tp for some integer t. Since 1 ≤ k ≤ (p − 1)/2, the range for t is
1, 2, . . . , [a/2]. Let u = [a/2] = a/2 if a is even and (a − 1)/2 if a is odd. For t = 1, 2, . . . u, divide each
inequality by a to get (2t − 1)p/a ≤ k ≤ tp/a. We must find the parity of the number of integers k
satisfying these last conditions. Suppose p = 4am + r, with 0 < r < 4a. Then the conditions become
2(2t − 1)m + (2t − 1)r/(2a) ≤ k ≤ 4mt + tr/a, for t = 1, 2, . . . u. Since we are only concerned with the
parity of the number of k, we can drop the even integers in each of these inequalities, (thereby reducing
the count of k by even numbers and preserving parity.) Thus, the conditions reduce to (2t− 1)r/(2a) ≤
k ≤ tr/a, which depend only on r. Therefore, if p ≡ q ≡ r (mod 4a), then

(
a
p

)
=

(
a
q

)
. Now if p ≡

−q ≡ r (mod 4a), then q ≡ 4a − r (mod 4a). Then substituting 4a − r in for r in the conditions we get
(2t− 1)(4a− r)/2a ≤ k ≤ t(4a− r)/a which reduces to (2t− 1)2− (2t− 1)r/(2a) ≤ 4t− tr/a. Again we
may drop the even integers in each inequality. Multiplying through by −1 doesn’t change the number
of k, but it makes the conditions identical to the conditions for p above. Therefore,

(
a
p

)
=

(
a
q

)
.

11.2.13. a. Recall that exi = 1 if and only if x is a multiple of 2π. First we compute (e(2πi/n)k)n = e(2πi/n)nk =
(e(2πi))k = 1k = 1, so e(2πi/n)k is an nth root of unity. Now if (k, n) = 1, then ((2πi/n)k)a is a mul-
tiple of 2πi if and only if n|a. Therefore a = n is the least positive integer for which (e(2πi/n)k)a =
1. Therefore e(2πi/n)k is a primitive nth root of unity. Conversely, suppose (k, n) = d > 1. Then
(e(2πi/n)k)(n/d) = e(2πi)k/d = 1, since k/d is an integer, and so in this case e(2πi/n)k is not a primitive
nth root of unity.

b. Let m = l + kn where k is an integer. Then ζm = ζl+kn = ζlζkn = ζl. Now suppose ζ is a primitive
nth root of unity and that ζm = ζl, and without loss of generality, assume m ≥ l. From the first part
of this exercise, we may take 0 ≤ l ≤ m < n. Then 0 = ζm − ζl = ζl(ζm−l − 1). Hence, ζm−l = 1.
Since n is the least positive integer such that ζn = 1, we must have m− l = 0.

c. First, f(z + 1) = e2πi(z+1) − e−2πi(z+1) = e2πize2πi − e−2πize−2πi = e2πiz1 − e−2πiz1 = f(z). Next,
f(−z) = e−2πiz − e2πiz = −(e2πiz − e−2πiz) = −f(z). Finally, suppose f(z) = 0. Then 0 = e2πiz −
e−2πiz = e−2πiz(e4πiz − 1), so e4πiz = 1. Therefore 4πiz = 2πin for some integer n, and so z = n/2.

d. Fix y and consider g(x) = xn − yn and h(x) = (x − y)(ζx − ζ−1y) · · · (ζn−1x − ζ−(n−1)y) as poly-
nomials in x. Both polynomials have degree n. The leading coefficient in h(x) is ζ1+2+···+n−1 =
ζn(n−1)/2 = (ζn)(n−1)/2 = 1, since n− 1 is even. So both polynomials are monic. Further, note that
g(ζ−2ky) = (ζ−2ky)n − yn = yn − yn = 0 for k = 0, 1, 2, . . . , n − 1. Also h(ζ−2ky) has (ζkζ−2ky −
ζ−ky) = (ζ−ky − ζ−ky) = 0 as one of its factors. So g and h are monic polynomials sharing these n
distinct zeros (since −2k runs through a complete set of residues modulo n). By the Fundamental
Theorem of Algebra, g and h are identical.

e. Let x = e2πiz and y = e−2πiz in the identity from part (d). Then the right hand side becomes
n−1∏

k=0

(
ζke2πiz − ζ−ke−2πiz

)
=

n−1∏

k=0

(
e2πi(z+k/n) − e−2πi(z+k/n)

)
=

n−1∏

k=0

f

(
z +

k

n

)
=

f(z)
(n−1)/2∏

k=1

f

(
z +

k

n

) n−1∏

k=(n+1)/2

f

(
z +

k

n

)
. From the identities in part (c), this last product be-

comes
n−1∏

k=(n+1)/2

f

(
z +

k

n

)
=

(n−1)/2∏

k=1

f

(
z +

n− k

n

)
=

(n−1)/2∏

k=1

f

(
z + 1− k

n

)
=

(n−1)/2∏

k=1

f

(
z − k

n

)
.

So the product above is equal to f(z)
(n−1)/2∏

k=1

f

(
z +

k

n

) (n−1)/2∏

k=1

f

(
z − k

n

)
=

f(z)
(n−1)/2∏

k=1

f

(
z +

k

n

)
f

(
z − k

n

)
. Then noting that the left side of the identity in part (d) is (e2πiz)n−
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(e−2πiz)n = e2πinz − e−2πinz = f(nz) finishes the proof.

f. For l = 1, 2, . . . , (p − 1)/2, let kl be the least positive residue of la modulo p. Then
(p−1)/2∏

l=1

f
( la

p

)
=

(p−1)/2∏

l=1

f
(kl

p

)
by the perodicity of f established in part (c). We break this product into two pieces

∏

kl<p/2

f
(kl

p

) ∏

kl>p/2

f
(kl

p

)
=

∏

kl<p/2

f
(kl

p

) ∏

kl>p/2

−f
(−kl

p

)
=

∏

kl<p/2

f
(kl

p

) ∏

kl>p/2

−f
(p− kl

p

)
=

(p−1)/2∏

l=1

f
( l

p

)
(−1)N , where N is the number of kl exceeding p/2. But by Gauss’ lemma, (−1)N =

(
a
p

)
. This establishes the identity.

g. Let z = l/p and n = q in the identities in parts (e) and (f). Then we have
(q

p

)
=

(p−1)/2∏

l=1

f
( lq

p

)/
f
( l

p

)
=

(p−1)/2∏

l=1

(q−1)/2∏

k=1

f
( l

p

)
+

k

q
f
( l

p

)
− k

q
=

(p−1)/2∏

l=1

(q−1)/2∏

k=1

f
(k

q

)
+

l

p
f
(k

q

)
− l

p
(−1)(p−1)/2·(q−1)/2, where we

have used the fact that f(−z) = −f(z) and the fact that there are exactly (p− 1)/2 · (q − 1)/2 factors
in the double product. But, by symmetry, this is exactly the expression for

(q

p

)
(−1)(p−1)/2·(q−1)/2

which completes the proof.

11.2.14. Assume that n = k2m + 1 with k < 2m and m ≥ 2. Then n ≡ 1 (mod 4). If n is prime, then by the
Law of Quadratic Reciprocity, we have

(
p
n

)
=

(
n
p

)
= −1. Then by Euler’s Criterion, p(n−1)/2 ≡

(
p
n

)
≡

−1 (mod n) as desired. Conversely, suppose p(n−1)/2 ≡ −1 (mod n). Then n satisfies all the hypotheses
of Proth’s Primality Test, Theorem 9.20, and hence n is prime.

11.2.15. Since p ≡ 1 (mod 4), we have
(

q
p

)
=

(
p
q

)
. And since p ≡ 1 (mod q) for all primes q ≤ 23, then

(
p
q

)
=(

1
q

)
= 1.. Then if a is an integer with 0 < a < 29 and prime factorization a = p1p2 · · · pk, then each pi <

29 and
(

a
p

)
=

(
p1
p

)
· · ·

(
pk

p

)
= 1k = 1. So there are no quadratic nonresidues modulo p less than 29.

Further, since a quadratic residue must be an even power of any primitive root r, then r1 can not be less
than 29.

11.2.16. a. Since p ≡ 1 (mod 8), we have by Theorems 11.5 and 11.6 that
(
−1
p

)
=

(
2
p

)
= 1. Since p ≡

4 (mod p), by the Law of Quadratic Reciprocity and Theorem 11.4, we have, for each i = 2, 3, . . . , n

that
(

qi

p

)
=

(
p
qi

)
=

(
1+8q1q2···qn

qi

)
=

(
1
qi

)
= 1.

b. Let t be an arbitrary integer and let k be an integer such that −M ≤ t + kp ≤ M . Since q1, q2, . . . , qn

are all the primes not exceeding M , t + kp has a prime power factorization of the form
(−1)e0qe1

1 qe2
2 . . . qen

n , where 0 ≤ ei. Then by the complete multiplicativity of the Legendre symbol

and by part (a), we have
(

t+kp
p

)
=

(
−1
p

)e0
(

q1
p

)e1 · · ·
(

qn

p

)en

= 1. Therefore t + kp is a quadratic
residue modulo p and hence not a primitive root modulo p. Now let rp be the least primitive root
modulo p. If 0 ≤ rp ≤ M . By the above, rp + 0p = rp is a quadratic residue modulo p, a contradic-
tion. If p −M ≤ rp ≤ p, then −M ≤ rp − p ≤ 0, and from the above, rp − p is a quadratic residue
modulo p. But rp ≡ rp − p (mod p), so rp is also a quadratic residue modulo p, again a contradic-
tion. Therefore, we must have M < rp < p−M .

11.2.17. a. If a ∈ T then a = qk for some k = 1, 2, . . . (p − 1)/2. So 1 ≤ a ≤ q(p − 1)/2 < (pq − 1)/2. Further,
since k ≤ (p − 1)/2, and p is prime, we have (p, k) = 1. Since (q, p) = 1, then (a, p) = (qk, p) = 1,
so a ∈ S, and hence T ⊂ S. Now suppose a ∈ S − T . Then 1 ≤ a ≤ (pq − 1)/2 and (a, p) = 1, and
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since a 6∈ T , then a 6= qk for any k. Thus (a, q) = 1, so (a, pq) = 1, and so a ∈ R. Thus S − T ⊂ R.
Conversely, if a ∈ R, then 1 ≤ a ≤ (pq − 1)/2 and (a, pa) = 1, so certainly (a, q) = 1, and so a is not
a multiple of q and hence a 6∈ T . Hence a ∈ S − T . Thus R ⊂ S − T . Therefore R = S − T.

b. Since by part (a), R = S − T we have
∏

a∈S

a =
∏

a∈R

a
∏

a∈T

a = A(q · 2q · · · ((p− 1)/2)a) =

Aq(p−1)/2 ((p− 1)/2)! ≡ A

(
q

p

)
((p− 1)/2)! (mod p) by Euler’s criterion. Note that (pq − 1)/2 =

p(q − 1)/2 + (p − 1)/2, so that we can evaluate
∏

a∈S

a ≡ ((p− 1)!)(q−1)/2 ((p− 1)/2)! ≡

(−1)(q−1)/2 ((p− 1)/2)! (mod p) by Wilson’s Theorem. When we set these two expressions congru-
ent to each other modulo p and cancel we get A ≡ (−1)(q−1)/2

(
q
p

)
as desired.

c. Since the roles of p and q are identical in the hypotheses and in parts (a) and (b), the result follows
by symmetry.

d. Assume that (−1)(q−1)/2
(

q
p

)
= (−1)(p−1)/2

(
p
q

)
. Then A = ±1 so certainly A ≡ ±1 (mod pq).

Conversely, suppose A ≡ 1 (mod pq). Then A ≡ 1 (mod p) and A ≡ 1 (mod q). Then by parts
(b) and (c) we have (−1)(q−1)/2

(
q
p

)
= A = (−1)(p−1)/2

(
p
q

)
. The same argument works if A ≡ −1

(mod pq).

e. If a is an integer in R, it is in the range 1 ≤ a ≤ (pq− 1)/2 and therefore its additive inverse modulo
pq is in the range (pq + 1)/2 ≤ −a ≤ pq − 1 in the set of reduced residue classes. By the Chi-
nese Remainder Theorem, the congruence a2 ≡ 1 (mod pq) has exactly 4 solutions, 1,−1, b, and −b
(mod pq) and the congruence a2 ≡ −1 (mod pq) has solutions if and only p ≡ q ≡ 1 (mod 4), and in
this case it has exactly 4 solutions i,−i, ib, and−ib (mod pq). Now for each element a ∈ R, (a, pq) =
1, so a has a multiplicative inverse v. By the remark above, exactly one of v,−v is in R. We let U
be the set of those elements which are their own inverse or their own negative inverse, that is let
U = {a ∈ R|a2 ≡ ±1 (mod pq)}. Then when we compute A, all other elements will be paired with
another element which is either its inverse or the negative of its inverse. Thus we have A

∏

a∈R

a ≡

±
∏

a∈U

a (mod pq). So if p ≡ q ≡ 1 (mod pq), then A ≡ ±
∏

a∈U

a ≡ ±(1 · c · i · ic) ≡ c2i2 ≡ ∓1 (mod pq).

Conversely, in the other case, A ≡
∏

a∈U

a ≡ ±(1 · c) 6≡ ±1 (mod pq), which completes the proof.

f. By parts (d) and (e) we have that (−1)(q−1)/2

(
q

p

)
= (−1)(p−1)/2

(
p

q

)
if and only if p ≡ q ≡ 1

(mod 4). So if p ≡ q ≡ 1 (mod 4) we have
(

q

p

)
=

(
p

q

)
. But if p ≡ 1 (mod 4) while q ≡ 3 (mod 4)

then we must have −
(

q

p

)
6=

(
p

q

)
which means we must change the sign and have

(
q

p

)
=

(
p

q

)
.

The case where p ≡ 3 (mod 4) but q ≡ 1 (mod 4) is identical. If p ≡ q ≡ 3 (mod 4), then we must

have −
(

q

p

)
6= −

(
p

q

)
so that we must have −

(
q

p

)
=

(
p

q

)
, which concludes the proof.

11.3. The Jacobi Symbol

11.3.1. a. By the reciprocity law for Jacobi symbols, since 5 ≡ 1 (mod 4) we have
(

5
21

)
=

(
21
5

)
=

(
1
5

)
= 1.

b. We have
(

27
101

)
=

(
3

101

)3

=
(

101
3

)3

=
(

2
3

)3

= (−1)3 = −1, where we have used the law of qua-

dratic reciprocity to replace
(

101
3

)
by

(
3

101

)
since 101 ≡ 1 (mod 4).
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c. Since 1001 ≡ 1 (mod 4), by the reciprocity law of Jacobi symbols we have
(

11
1001

)
=

(
1001
111

)
=(

2
111

)
= 1 since 111 ≡ 7 (mod 4).

d. Since 1009 ≡ 1 (mod 4) by the reciprocity law for Jacobi symbols we have
(

1009
2307

)
=

(
2307
1009

)
=

(
289
1009

)
=

(
17

1009

)2

= 1.

e. Since 2663 ≡ 3299 ≡ 3 (mod 4) by the reciprocity law for Jacobi symbols we have
(

2663
3299

)
=(

3299
2663

)
=

(
636
2663

)
=

(
4

2663

)(
159
2663

)
= leg1592663 since 3229 ≡ 636 (mod 2663). Since 159 ≡ 2663 ≡

3 (mod 4), by the reciprocity law for Jacobi symbols we have
(

159
2663

)
= −

(
2663
159

)
= −

(
85
159

)
since

2663 ≡ 85 (mod 159). Since 85 ≡ 1 (mod 4), the reciprocity law for Jacobi symbols shows that(
85
159

)
≡

(
159
85

)
=

(
−11
85

)
=

(
−1
85

)(
11
85

)
=

(
11
85

)
, since 85 ≡ 1 (mod 4). By the reciprocity law for

Jacobi symbols we have
(

11
85

)
=

(
85
11

)
=

(
8
11

)
=

(
2
11

)3

= (−1)3 = −1 since 11 ≡ 3 (mod 8). It

follows that
(

2663
3299

)
= −1.

f. Since 10001 = 1 (mod 4) the reciprocity law for Jacobi symbols shows that
(

10001
20003

)
=

(
20003
10001

)
=(

1
10001

)
= 1, where we have used the periodicity of the Jacobi symbol and the congruence 20003 ≡

1 (mod 10001).

11.3.2. By the reciprocity law for Jacobi symbols it follows that if (15, n) = 1 then
(

15
n

)
=

(
n
15

)
if n ≡

1 (mod 4) and
(

15
n

)
= −

(
n
15

)
if n ≡ 3 (mod 4). Note that

(
n
15

)
=

(
n
3

)(
n
5

)
. We have

(
n
3

)
= 1 when

n ≡ 1 (mod 3) and
(

n
3

)
= −1 when n ≡ 2 (mod 3). We have

(
n
5

)
= 1 when n ≡ 1 or 4 (mod 5) and(

n
5

)
= −1 when n ≡ 2 or 3 (mod 5). It follows that

(
n
15

)
= 1 when n ≡ 1, 2, 4, or 8 (mod 15) and

(
n
15

)
=

−1 when n ≡ 7, 1, , 13, or 14 (mod 15). It follows by the Chinese remainder theorem that
(

15
n

)
= 1 if

and only if n ≡ 1, 7, 11, 17, 43, 49, 53, or 59 (mod 60).

11.3.3. We have
(

30
n

)
=

(
2
n

)(
15
n

)
. By Theorem 11.10(iv)

(
2
n

)
= 1 when n ≡ ±1 (mod 8). From Exer-

cise 2,
(

15
n

)
= 1 when n ≡ 1, 7, 11, 17, 43, 49, 53, or 59 (mod 60). By the Chinese remainder theorem,(

2
n

)
=

(
15
n

)
= 1, when n ≡ 1, 7, 17, 49, 61, 67, 77, or 109 (mod 120) and

(
2
n

)
=

(
15
n

)
= −1 when n ≡

13, 19, 29, 37, 71, 83, 91, 101, 103, 107, 113, or 119 (mod 120).

11.3.4. Since
(

a
n

)
=

(
a
p

)(
a
q

)
= 1, we know that

(
a
p

)
and

(
a
q

)
have the same sign. If they are both equal

to 1, then a ≡ x2 (mod p) and a ≡ y2 (mod q) for some integers x and y. We can solve the system of
congruences b ≡ x (mod p), b ≡ y (mod q). Then b2 ≡ a (mod p) and b2 ≡ a (mod q), so by the Chinese
remainder theorem, b2 ≡ a (mod pq), which shows that a is a quadratic residue of pq = n. This contra-
diction shows that

(
a
p

)
=

(
a
q

)
= −1.

11.3.5. We have 21 = 3·7. The only quadratic nonresidue of 3 is 2. The quadratic nonresidues of 7 are 3, 5, and
6. From Exercise 4, we need to solve each of the systems of congruences x ≡ a (mod 3), x ≡ b (mod 7)
where a is a quadratic nonresidue of 3 and b is a quadratic nonresidue of 7. For x ≡ 2 (mod 3), x ≡
3 (mod 7), we have x = 17. For x ≡ 2 (mod 3), x ≡ 5 (mod 7), we have x = 5. And for x ≡
2 (mod 3), x ≡ 6 (mod 7), we have x = 20. So the pseudo-squares modulo 21 are 5, 17 and 20.

11.3.6. We follow the strategy in the solution to Exercise 5. We have 35 = 5 · 7. The set of quadratic non-
residues modulo 5 is S = {2, 3} and the set of quadratic nonresidues modulo 7 is T = {3, 5, 6}. We form
the 6 systems of congruence x ≡ a (mod 5), x ≡ b (mod 7), where a ∈ S and b ∈ T , and solve them. We
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find that the pseudo-squares modulo 35 are: 3, 12, 13, 17, 27, and 33.

11.3.7. We follow the strategy in the solution to Exercise 5. We have 143 = 11 · 13. The set of quadratic
nonresidues modulo 11 is S = {2, 6, 7, 8, 10} and the set of quadratic nonresidues modulo 13 is T =
{2, 5, 6, 7, 8, 11}. We form the 30 systems of congruence x ≡ a (mod 11), x ≡ b (mod 13), where a ∈ S
and b ∈ T , and solve them. We find that the pseudo-squares modulo 143 are: 1, 3, 4, 9, 12, 14, 16, 23, 25,
27, 36, 38, 42, 48, 49, 53, 56, 64, 69, 75, 81, 82, 92, 100, 103, 108, 113, 114, 126, and 133.

11.3.8. Suppose that (a, b) = 1, b is odd and positive, and a = (−1)s2tq where q is odd. It follows that
(

a
b

)
=

(
(−1)s2tq

b

)
=

(
−1
b

)s(
2
b

)t(
q
b

)
= (−1)(b−1)/2(−1)(b

2−1)/8
(

q
b

)
= (−1)(b−1)/2+(b2−1)/8

(
q
b

)
.

11.3.9. Since n is odd and square-free, n has prime factorization n = p1p2 · · · pr. Let b be one of the (p− 1)/2

quadratic nonresidues of p1, so that
(

b
p1

)
= −1. By the Chinese Remainder Theorem, let a be a solution

to the system of linear congruences:

x ≡ b (mod p1)
x ≡ 1 (mod p2)

...
x ≡ 1 (mod pr)

Then
(

a
p1

)
=

(
b
p1

)
= −1,

(
1
p2

)
= 1, . . .

(
a
pr

)
=

(
1
pr

)
= 1. Therefore

(
a
n

)
=

(
a
p1

)(
a
p2

)
· · ·

(
a
pr

)
=

(−1) · 1 · · · 1 = −1.

11.3.10. a. Let a be the integer given in Exercise 9. If {k1, k2, . . . , kφ(n)} is a reduced residue system modulo n,
then so is {ak1, ak2, . . . , akφ(n)} by Theorem 6.13. Then we have

φ(n)∑

i=1

(ki

n

)
=

φ(n)∑

i=1

(aki

n

)
=

φ(n)∑

i=1

(a

n

)(ki

n

)
=

φ(n)∑

i=1

−
(ki

n

)
= −

φ(n)∑

i=1

(ki

n

)
.

Therefore
∑φ(n)

i=1

(
ki

n

)
= 0.

b. Let R =
∑(

k
n

)
where the sum is taken over all K in a reduced residue system with

(
k
n

)
= 1. Let

N =
∑(

k
n

)
where the sum is taken over all K in a reduced residue system with

(
k
n

)
= −1. By part

(a), R−N =
∑(

k
n

)
= 0. Therefore R = N .

11.3.11. a. Note that (a, b) = (b, r1) = (r1, r2) = · · · = (rn−1, rn) = 1 and since the qi are even, the ri are odd.
Since r0 = b and a ≡ ε1r1 (mod b) we have

(
a
b

)
=

(
ε1r1
r0

)
=

(
ε1
r0

)(
r1
r0

)
=

(
ε1
r0

)(
r0
r1

)
(−1)(r0−1)/2·(r1−1)/2

by Theorem 11.11. If ε1 = 1, then
(

a
b

)
= (−1)(r0−1)/2·(ε1r1−1)/2

(
r0
r1

)
If ε1 = −1, then

(
ε1
r0

)
=

(−1)(r0−1)/2 and we have
(

a
b

)
= (−1)(r0−1)/2·(r1+1)/2

(
r0
r1

)
= −1(r0−1)/2·(−r1−1)/2

(
r0
r1

)
=

(−1)(r0−1)/2·(ε1r1−1)/2
(

r0
r1

)
since (r1 + 1)/2 and (−r1− 1)/2 have the same parity. Similarly,

(
r0
r1

)
=

(−1)(r1−1)/2·(ε2r2−1)/2
(

r1
r2

)
, so

(
a
b

)
= (−1)(r0−1)/2·(ε1r1−1)/2+(r1−1)/2·(ε2r2−1)/2

(
r1
r2

)
. Proceed induc-

tively until the last step, when
(

rn

rn−1

)
=

(
1

rn−1

)
= 1.

b. If either ri−1 ≡ 1 (mod 4) or εiri ≡ 1 (mod 4), then (ri−1−1)/2 ·(ε1ri−1)/2 is even. Otherwise, that
is, if ri−1 ≡ εiri ≡ 3 (mod 4), then (ri−1 − 1)/2 · (εiri − 1)/2 is odd. Then (rn−1 − 1)/2 · (εnrn − 1)/2
the exponent in part (a) is even or odd as T is even or odd.
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11.3.12. If a > 0 and b > 0, then Theorem 11.11 says
(

a
b

)(
b
a

)
= (−1)(a−1)/2(b−1)/2. If a < 0 and b > 0, then

|a| = −a > 0 and |b| = b. Then
(

a
|b|

)(
b
|a|

)
=

(
−1
b

)(
−a
b

)(
b
−a

)
= (−1)(b−1)/2(−1)(−a−1)/2·(b−1)/2 by The-

orem 11.10(iii) and 11.11. The total exponent on−1 on the right hand side is (b− 1)/2+ (−a− 1)/2 · (b−
1)/2 = (1 + (−a− 1)/2(b− 1)/2) = (−a+1)/2 ·(b−1)/2 = (−1)(a−1)/2·(b−1)/2. Similarly if a > 0 and b <

0. If a < 0 and b < 0, we apply Theorems 11.10 and 11.11 to get
(

a
|b|

)(
b
|a|

)
=≤ −1−b

(
−a
−b

)(
−1
−a

)(
−b
−a

)
=

(−1)(−b−1)/2(−1)(−a−1)/2
(
−a
−b

)(
−b
−a

)
= (−1)(−b−1)/2+(−a−1)/2(−1)(−b−1)/2·(−a−1)/2. The total exponent

of −1 is (−b− 1)/2 + (−a− 1)/2 + (−b− 1)/2 · (−a− 1)/2 = (−a− 1)/2 ((−b− 1)/2 + 1) + (−b− 1)/2 =
(−a−1)/2 ((−b + 1)/2 + (−b + 1)/2)−1 = (−b+1)/2 ((−a− 1)/2 + 1)−1 = (−b+1)/2 ·(−a+1)/2−1 =
(a− 1)/2 · (b− 1)/2− 1. Then

(
a
|b|

)(
b
|a|

)
= (−1)(a−1)/2·(b−1)/2−1 = −(−1)(a−1)/2·(b−1)/2.

11.3.13. a. We have
(

5
12

)
=

(
5
2

)2(
5
3

)
= (−1)2 ·

(
2
3

)
= 1 · (−1) = −1.

b. We have
(

13
20

)
=

(
13
2

)2(
13
5

)
= (−1)2 ·

(
3
5

)
= 1 · (−1) = −1.

c. We have
(

101
200

)
=

(
101
2

)3(
101
5

)2

= (−1)3 · 12 = −1.

11.3.14. If a > 0, then
(

2
|a|

)
=

(
2
a

)
= (−1)(a

2−1)/8. If a < 0, then
(

2
|a|

)
=

(
2
−a

)
= (−1)((−a)2−1)/8 =

(−1)(a
2−1)/8. But a is odd a ≡ 1 (mod ()4) so a ≡ 1 or 5 (mod 8). (−1)(a

2−1)/8 = 1 if a ≡ 1 (mod 8) and
(−1)(a

2−1)/8 = −1 if a ≡ 5. Hence
(

2
|a|

)
=

(
a
2

)
.

11.3.15. Let n1 = pa1
1 pa2

2 · · · par
r and n2 = qb1

1 qb2
2 · · · qbs

s be the prime factorizations of n1 and n2. Then by the

definition of the Kronecker symbol, we have
(

a
n1n2

)
=

(
a
p1

)a1 · · ·
(

a
pr

)ar
(

a
q1

)b1 · · ·
(

a
qs

)bs

=
(

a
n1

)(
a
n2

)
.

11.3.16. Write n = 2km, where m is odd. Then if a is odd, we have
(

a
n

)
=

(
a

2km

)
=

(
a
2

)k(
a
m

)
by the defini-

tion. From Exercises 12 and 14
(

a
n

)
=

(
2
|a|

)k(
a
m

)
=

(
2
|a|

)k(
m
|a|

)
=

(
2km
|a|

)
=

(
n
|a|

)
. If a is even, then

n is odd, since (a, n) = 1. Write a = 2st with t odd. Then
(

a
n

)
=

(
2st
n

)
=

(
2
n

)s(
t
n

)
. By Exercise 12,(

a
n

)
=

(
2
n

)s

(−1)(n−1)/2·(t−1)/2
(

n
|t|

)
, as desired.

11.3.17. If a is odd, then by Exercise 16, we have
(

a
n1

)
=

(
n1
|a|

)
. By Theorem 11.10(i), we have

(
n1
|a|

)
=(

n2
|a|

)
=

(
a
n2

)
, using Exercise 16 again. If a is even, say a = 2st with t odd, Exercise 16 gives

(
a
n1

)
=(

2
n1

)s

(−1)(t−1)/2·(n1−1)/2
(

n1
|t|

)
and

(
a
n2

)
=

(
2

n2

)s

(−1)(t−1)/2·(n2−1)/2
(

n2
|t|

)
. Since n1 ≡ n2 (mod | t |),

we have
(

n1
|t|

)
=

(
n2
|t|

)
, and since 4 | a, m1 ≡ m2 (mod 4) and so (−1)(t−1)/2·(n1−1)/2 = (−1)(t−1)/2·(n2−1)/2.

Now a ≡ 0 (mod 4), so s ≥ 2. If s is 2, then certainly
(

2
n1

)2

=
(

2
n2

)2

. If s > 2, then 8 | a and m1 ≡
m2 (mod 8), so

(
2

n1

)
= (−1)(n

2
1−1)/8 = (−1)(n

2
2−1)/8 =

(
2

n2

)
. Therefore

(
a
n1

)
=

(
a
n2

)
.

11.3.18. If a is odd, then |a| is not a square. Then a has an odd prime divisor p which appears to an odd power
k, a = pkr, with r odd. Let m be a nonresidue modulo p. By the Chinese Remainder Theorem, let n be

a solution to the system n ≡ m (mod p), n ≡ 1 (mod r). Then
(

a
n

)
=

(
n
|a|

)
=

(
n
p

)k(
n
r

)
=

(
s
p

)k(
1
r

)
=

(−1)k = −1. If a is even, a = 2st with t odd and s ≥ 2. If s is odd, then s ≥ 3. Let n be a solution to

n ≡ 5 (mod 8), n ≡ 1 (mod | t |). Then
(

a
n

)
=

(
2
n

)s

(−1)(t−1)/2·(n−1)/2
(

m
|t|

)
=

(
2
n

)
· | ·

(
1
|t|

)
= −1. If s

is even, then t can’t be a square since a isn’t. If t ≡ 3 (mod 4), let n be a solution to n ≡ −1 (mod 4), n ≡
1 (mod | t |). Then

(
a
n

)
= (−1)(t−1)/2(n−1)/2

(
n
|t|

)
= −1 · 1 = −1. If t ≡ (mod 4), |t| is not a square

and |t| = pkr with k odd for some prime p. Let m be a nonresidue of p and let n be a solution to n ≡
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m (mod p), n ≡ 1 (mod r), n ≡ 1 (mod 2). Then
(

a
n

)
=

(
n

pkr

)
=

(
n
pk

)(
n
r

)
=

(
m
p

)k(
1
r

)
= (−1)k = −1.

11.3.19. If a ≡ 1 (mod 4), then |a| ≡ 1 (mod 4) if a > 0 and |a| ≡ −1 (mod 4) if a < 0, so by Exercise 16 we
have

(
a

|a|−1

)
=

(
|a|−1
|a|

)
=

(
−1
|a|

)
= (−1)(|a|−1)/2 = 1 if a > 0 and = −1 if a < 0. If a ≡ 0 (mod 4),

a = 2st with t odd and t ≥ 2, then by Exercise 16
(

a
|a|−1

)
=

(
2

|a|−1

)s

(−1)(t−1)/2
(
|a|−1
|t|

)
. Since s ≥ 2,

check that
(

2
|a|−1

)s

= 1, (| a | −1 ≡ 7 (mod 8) if s > 2). Also (−1)(t−1)/2
(
|a|−1
|t|

)
= (−1)(t−1)/2

(
−1
|t|

)
=

(−1)(t−1)/2+(|t|−1)/2 = 1 if t > 0 and = −1 if t < 0.

11.3.20. The essential operation at each step is division, so this computation is equivalent to the division
algorithm in complexity. Therefore, by Lame’s theorem, the Jacobi symbol

(
a
b

)
can be evaluated in

O((log2 b)2) bit operations.

11.4. Euler Pseudoprimes

11.4.1. We find that 2(561−1)/2 = 2280 =
(
210

)28 ≡ (−98)28 ≡ (−982
)14 ≡ 6714 ≡ (

672
)7 ≡ 17 = 1 (mod 561).

Furthermore, we see that
(

2
561

)
= 1 since 561 ≡ 1 (mod 8).

11.4.2. Note that 245 ≡ 1 (mod 15841), so 2(15841−1)/2 ≡ 27920 ≡ 245·176 ≡ 1 (mod 15841). Since 15841 ≡
1 (mod 8) we have

(
2

15841

)
= 1, so 15841 is an Euler pseudoprime. Now 15841− 1 = 24 · 990 and 2990 ≡

245·22 ≡ 122 ≡ 1 (mod 15841), so 15841 passes Miller’s test for the base 2. Therefore 15841 is a strong
pseudoprime to the base 2. Next, 15841 = 7 · 31 · 73, then 7 − 1 = 6 | 15840, 31 − 1 = 30 | 15840 and
73− 1 = 72 | 15840, so by Theorem 6.7, 15841 is a Carmichael number.

11.4.3. Suppose that n is an Euler pseudoprime to both the bases a and b. Then a(n−1)/2 ≡
(

a
n

)
and b(n−1)/2 ≡(

b
n

)
. It follows that (ab)(n−1)/2 ≡

(
a
n

)(
b
n

)
=

(
ab
n

)
. Hence n is an Euler pseudoprime to the base ab.

11.4.4. Since n is an Euler pseudoprime to the base b, we have b(n−1)/2 ≡
(

b
n

)
(mod n). Then (n−b)(n−1)/2 ≡

(−b)(n−1)/2 ≡ (−1)(n−1)/2(b)(n−1)/2 ≡
(
−1
n

)(
b
n

)
≡

(
−b
n

)
≡

(
n−b

n

)
(mod n). So n is an Euler pseudo-

prime to the base n− b.

11.4.5. Suppose that n ≡ 5 (mod 8) and n is an Euler pseudoprime to the base 2. Since n ≡ 5 (mod 8) we
have

(
2
n

)
= −1. Since n is an Euler pseudoprime to the base 2, we have 2(n−1)/2 ≡

(
2
n

)
= −1 (mod n).

Write n− 1 = 22t where t is odd. Since 2((n−1))/2 ≡ 22t ≡ −1 (mod n), n is a strong pseudoprime to the
base 2.

11.4.6. Write n = 12k+5. Then n−1 = 12k+4 = 22(3k+1) = 22t with t odd. Since n is an Euler pseudoprime
to the base 3, we have 3(n−1)/2 ≡ 36k+2 ≡ 32t ≡

(
3
n

)
(mod n). If

(
3
n

)
= −1, then n passes Miller’s test

for the base 3 since 32t ≡ −1 (mod n). If
(

3
n

)
= 1, then 32t ≡ 1 (mod n) and so 3t ≡ ±1 (mod n), and

again n passes Miller’s test for the base 3. Therefore n is a strong pseudoprime to the base 3.

11.4.7. Let n be an Euler pseudoprime to the base 5 such that n ≡ 5 (mod 20). Then n = 20k + 5 and n− 1 =

20k + 4 = 22(5k + 1) = 22t, and 5(n−1)/2 ≡ 52(5k+1) ≡ 52t ≡
(

5
n

)
(mod n). If

(
5
n

)
= −1, then n satisfies

Miller’s test to the base 5. If
(

5
n

)
= 1, then 52t ≡ 1 (mod n) and so 5t ≡ −1 and n satisfies Miller’s test

to the base 5. Therefore n is a strong pseudoprime to the base 5.

11.4.8. We sketch a proof. First note that the number of solutions to x(n−1)/2 ≡ 1 (mod p
aj

j ) is the same as
the number of solutions to ((n − 1)/2)indrx ≡ 0 (mod φ(paj

j )), which is ((n − 1)/2, p
aj−1
j (pj − 1)) =



11.5. ZERO-KNOWLEDGE PROOFS 185

((n− 1)/2, pj − 1), since pj - (n− 1). It suffices, then, to consider only the case where all the aj = 1. By
the Chinese remainder theorem, there are N =

∏m
j=1((n−1)/2, pj−1) solutions to x(n−1)/2 ≡ 1 (mod n).

Now suppose b(n−1)/2 ≡ 1 (mod n). Prove the following two facts: If kj ≥ k, then
(

b
pj

)
= 1 for all solu-

tions b, and if kj < k, then
(

b
pj

)
= 1 for exactly 1/2 of the solutions b and

(
b
pj

)
= −1 for the other 1/2.

(Use an argument similar to that in the proof of Theorem 11.17.) This shows that if k1 = k, then every
solution b of x(n−1)/2 ≡ 1 (mod (n− 1)/2) is a base for which n is an Euler pseudoprime, and if kj < k,
then exactly N/2 of the solutions b are bases for which n is an Euler pseudoprimes. Next, we count the
number of solutions b to x(n−1)/2 ≡ −1 (mod n) for which

(
b
n

)
= −1. Prove that if k1 = k then there

are N such b, and that if k1 6= k then there are no such b. (Do the cases k1 < k and k1 > k separately.)
Putting all these cases together yields the result.

11.4.9. Using Exercise 8, we compute 561 = 3 · 11 · 17. Then 561 = 1 + 2435, 3 = 1 + 2, 11 = 1 + 2 · 5, and
17 = 1 + 24, so k = 4, k1 = 1, k2 = 1, and k3 = 4. Since a1 = 1 is odd and k1 = 1 < k = 4, we see that
δn = 1/2. Then the number we seek is (1/2)((561−1)/2, 3−1)((561−1)/2, 11−1)((561−1)/2, 17−1) =
(1/2)(280, 2)(280, 10)(280, 16) = (1/2)2 · 10 · 16 = 80. So there are 80 different values for b.

11.4.10. Using Exercise 8, we compute 1729 = 7 ·13 ·19, and we have 7 = 1+2 ·3, 19 = 1+2 ·9, and 13 = 1+223.
Therefore, k1 = 1, k2 = 1, k3 = 2, q1 = 3, q2 = 9, and q3 = 3. Also n = 1729 = 1 + 2627, so k = 6 and q =
27. We compute δn = 1/2 since ki < k and all ai’s are odd. Then the number of integers b for which 1729
is an Euler pseudoprime to the base b is given by (1/2)(869, 6)(869, 12)(869, 18) = (1/2) · 6 · 12 · 18 = 648.

11.5. Zero-Knowledge Proofs
11.5.1. We check that both 47 and 67 are congruent to 3 modulo 4. If p is a prime congruent to 3 modulo

4, then (±x4)(p+1)/4 ≡ xp+1 ≡ x2 (mod p), by Fermat’s little theorem. In this case, we have x2 ≡
±2070(47+1)/4 ≡ ±212 ≡ 7 (mod 47), and x2 ≡ ±2070(67+1)/4 ≡ ±717 ≡ ±23 (mod 67). Next, since x2

is a quadratic residue modulo 3149, it must be a quadratic residue modulo each of the factors of 3149.
We compute

(
7
47

)
= 1,

(
−7
47

)
= −1,

(
23
67

)
= 1, and

(
−23
67

)
= −1. Therefore we solve the system x2 ≡

7 (mod 47), x2 ≡ 23 (mod 67), to find x2 = 1229.

11.5.2. Note that 103 · 107 = 11021, and we take x4 ≡ 1686 (mod 11021). As in Exercise 1, we compute x2 ≡
±1686(103+1)/4 ≡ ±168626 ≡ ±55 (mod 103). and x2 ≡ ±1686(107+1)/4 ≡ ±168627 ≡ ±9 (mod 107).
Then we compute

(
55
103

)
= 1,

(
−55
103

)
= −1,

(
9

107

)
= 1, and

(
−9
107

)
= −1. So we solve the system x2 ≡

55 (mod 103), x2 ≡ 9 (mod 107) to find x2 = 6750.

11.5.3. Since p, q ≡ 3 (mod 4), −1 is not a quadratic residue modulo p or q. If the four square roots are found
using the method in Example 9.19, then only one of each possibility for choosing + or− can yield a qua-
dratic residue in each congruence, so there is only one system which results in a square.

11.5.4. Paula sends x ≡ 11012 ≡ 303 (mod 1961). since 18632 ≡ 1760 (mod 1961), we have v = 1760, so she
sends y ≡ vx ≡ 1760 · 1385 ≡ 77 (mod 1961). Vince checks that xy ≡ 1760 (mod 1961) and sends 1 as his
random bit. Paula then sends s ≡ ur ≡ 1863 · 1188 ≡ 1236 (mod 1961) Vince checks that s2 ≡ 12362 ≡
77 (mod 1961).

11.5.5. Paula sends x = 1226, y = 625. After receiving a 1, she sends ur = 689.

11.5.6. Paula sends x = 8882 = 788544 ≡ 1388 (mod 2491). Vince chooses and sends the subset {2, 3, 5}.
Paula sends y ≡ rv2v3v5 ≡ 888 · 877 · 2001 · 101 ≡ 2101 (mod 2491). Vince computes y2s2s3s5 ≡ 21022 ·
2453 · 1553 · 494 ≡ 1388 ≡ x (mod 2491).

11.5.7. The prover sends x = 14032 = 1968409 ≡ 519 (mod 2491). The verifier sends {1, 5}. The prover sends
y = 1425. The verifier computes y2z = 14252 · 197 · 494 ≡ 519 ≡ x (mod 2491)
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11.5.8. a. First we find inverses modulo 2491 of the six numbers, getting 1688, 1741, 201, 1789, 161, and 214, re-
spectively. Next we square and reduce these numbers modulo 2491 to get s1 = 2131, s2 = 2025, s3 =
545, s4 = 2077, s5 = 1011, and s6 = 958.

b. Paula sends y ≡ 1091 · 1199 · 2144 · 557 · 2200 ≡ 1474 (mod 2491).

c. Vince computes 14742 · 2025 · 545 · 1011 · 958 ≡ 2074 (mod 2491), and then checks that 10912 ≡
2074 (mod 2491) also.

11.5.9. a. First we find inverses modulo 3953 of the six numbers, getting 3333, 753, 411, 1319, 705, and 1811, re-
spectively. Next we square and reduce these numbers modulo 3953 to get s1 = 959, s2 = 1730, s3 =
2895, s4 = 441, s5 = 2900, and s6 = 2684.

b. Paula sends y ≡ 403 · 1001 · 21 · 989 · 1039 ≡ 1074 (mod 3953).

c. Vince checks that 10742 · 959 · 1730 · 441 · 2684 ≡ 336 ≡ 4032 (mod 3953).

11.5.10. If an integer a is a quadratic residue modulo n then it is also a quadratic residue modulo p and q, and
so there are two square roots modulo each of p and q. The Chinese remainder theorem shows that there
are, therefore, 4 square roots of a modulo n. For our algorithm, we choose x and note that x2 is neces-
sarily a quadratic residue modulo n. Then x2 has 4 square roots modulo n, two of which are ±x, so if
we extract a square root b of x2, the probability is 2/4 = 1/2 that b is different from ±x. If so, then b2 ≡
x2 (mod n) and so (b − x)(b + x) ≡ 0 (mod n). So we expect that either (b − x, n) or (b + x, n) yields a
non-trivial factor for n. If the square root is not different from±x, we select a new integer and repeat the
process. The probability that we fail to find a square root different from ±x after k tries is 1/2k. There-
fore the probability that we succeed in factoring n is 1− 1/2k which approaches 1.

11.5.11. If Paula sends back a to Vince then a2 ≡ w2 (mod n), with a 6≡ w (mod n). Then a2−w2 = (a−w)(a+
w) ≡ 0 (mod n). By computing (a−w, n) and (a+w, n) Vince will likely produce a nontrivial factor of n.



CHAPTER 12

Decimal Fractions and Continued Fractions

12.1. Decimal Fractions
12.1.1. a. Using the recursive formulae from Theorem 12.1. Let γ0 = 2/5. Then c1 = [10 · (2/5)] = 4, and γ1 =

10 · (2/5)− 4 = 0, so we’re done, and the decimal expansion is 0.4.

b. Let γ0 = 5/12. Then c1 = [10 · (5/12)] = 4 and γ1 = 10 · (5/12)− 4 = 1/6. Then c2 = [10 · (1/6)] = 1,
and γ2 = 10 · (1/6)− 1 = 2/3. Then c3 = [10 · (2/3)] = 6, and γ3 = 10 · (2/3)− 6 = 2/3 = γ2, so the
sequence repeats and the decimal expansion is 0.416.

c. Let γ0 = 12/13. Then c1 = [10 · (12/13)] = 9, and γ1 = 10 · (12/13) − 9 = 3/13. Then c2 = [10 ·
(3/13)] = 2, and γ2 = 10 · (3/13)− 2 = 4/13. Then c3 = [10 · (4/13)] = 3, and γ3 = 10 · (4/13)− 3 =
1/13. Then c4 = [10 · (1/13)] = 0, and γ4 = 10 · (1/13)− 0 = 10/13. Then c5 = [10 · (10/13)] = 7, and
γ5 = 10 · (10/13)− 7 = 9/13. Then c6 = [10 · (9/13)] = 6, and γ6 = 10 · (9/13)− 6 = 12/13 = γ0. So
the decimal expansion is .923076.

d. Let γ0 = 8/15. Then c1 = [10 · (8/15)] = 5, and γ1 = 10 · (8/15)− 5 = 5/15. Then c2 = [10 · (5/15)] =
3, and γ2 = 10 · (5/15)− 3 = 5/15 = γ1. So the decimal expansion is 0.53.

e. Let γ0 = 1/111. Then c1 = [10 · (1/111)] = 0, and γ1 = 10 · (1/111) − 0 = 10/111. Then c2 =
[10 · (10/111)] = 0, and γ2 = 10 · (10/111) − 0 = 100/111. Then c3 = [10 · (100/111)] = 9, and γ3 =
10 · (100/111)− 9 = 1/111 = γ1. So the decimal expansion is 0.009.

f. Let γ0 = 1/1001. Then c1 = [10 · (1/1001)] = 0, and γ1 = 10 · (1/1001) − 0 = 10/1001. Then c2 =
[10·(10/1001)] = 0, and γ2 = 10·(10/1001)−0 = 100/1001. Then c3 = [10·(100/1001)] = 0, and γ3 =
10 · (100/1001)− 0 = 1000/1001. Then c4 = [10 · (1000/1001)] = 9, and γ4 = 10 · (1000/1001)− 9 =
991/1001. Then c5 = [10 · (991/1001)] = 9, and γ5 = 10 · (991/1001)− 9 = 901/1001. Then c6 = [10 ·
(901/1001)] = 9, and γ6 = 10 · (901/1001)− 9 = 1/1001 = γ0. So the decimal expansion is 0.000999.

12.1.2. a. Let γ0 = 1/3. Then c1 = [8 · (1/3)] = 2, and γ1 = 8 · (1/3) − 2 = 2/3. Then c2 = [8 · (2/3)] = 5, and
γ2 = 8 · (2/3)− 5 = 1/3 = γ0. So the base 8 expansion is (.25)8.

b. Let γ0 = 1/4. Then c1 = [8 · (1/4)] = 2, and γ1 = 8 · (1/4)− 2 = 0. So the base 8 expansion is (.2)8.

c. Let γ0 = 1/5. Then c1 = [8 · (1/5)] = 1, and γ1 = 8 · (1/5) − 1 = 3/5. Then c2 = [8 · (3/5)] = 4, and
γ2 = 8 · (3/5)−4 = 4/5. Then c3 = [8 · (4/5)] = 6, and γ3 = 8 · (4/5)−6 = 2/5. Then c4 = [8 · (2/5)] =
3, and γ4 = 8 · (2/5)− 3 = 1/5 = γ0. So the base 8 expansion is (.1463)8.

d. Let γ0 = 1/6. Then c1 = [8 · (1/6)] = 1, and γ1 = 8 · (1/6) − 1 = 1/3. Then c2 = [8 · (1/3)] = 2, and
γ2 = 8 · (1/3) − 2 = 2/3 Then c3 = [8 · (2/3)] = 5, and γ3 = 8 · (2/3) − 5 = 1/3 = γ1. So the base 8
expansion is (.125)8.

e. Let γ0 = 1/12. Then c1 = [8 · (1/12)] = 0, and γ1 = 8 · (1/12) − 0 = 2/3. Then c2 = [8 · (2/3)] = 5,
and γ2 = 8 · (2/3)− 5 = 1/3 Then c3 = [8 · (1/3)] = 2, and γ3 = 8 · (1/3)− 2 = 2/3 = γ1. So the base
8 expansion is (.052)8.

f. Let γ0 = 1/22. Then c1 = [8 · (1/22)] = 0, and γ1 = 8 · (1/22)− 0 = 4/11. Then c2 = [8 · (4/11)] = 2,
and γ2 = 8·(4/11)−2 = 10/11. Then c3 = [8·(10/11)] = 7, and γ3 = 8·(10/11)−7 = 3/11. Then c4 =

187
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[8 · (3/11)] = 2, and γ4 = 8 · (3/11)− 2 = 2/11. Then c5 = [8 · (2/11)] = 1, and γ5 = 8 · (2/11)− 1 =
5/11. Then c6 = [8 · (5/11)] = 3, and γ6 = 8 · (5/11)− 3 = 7/11. Then c7 = [8 · (7/11)] = 5, and γ7 =
8·(7/11)−5 = 1/11. Then c8 = [8·(1/11)] = 0, and γ8 = 8·(1/11)−0 = 8/11. Then c9 = [8·(8/11)] =
5, and γ9 = 8 · (8/11)− 5 = 9/11. Then c10 = [8 · (9/11)] = 6, and γ10 = 8 · (9/11)− 2 = 6/11. Then
c11 = [8·(6/11)] = 4, and γ11 = 8·(6/11)−4 = 4/11 = γ1. So the base 8 expansion is (.02721350564)8.

12.1.3. a. We reduce 12/100 to get 3/25.

b. Note that .12 = .1 + (2/100)
∑∞

n=1 1/10n = (1/10) + (2/100)(1/(1− 1/10)) = 11/90.

c. Let α = .12. Then 100α = 12.12, so that 99α = 12. Therefore α = 12/99 = 4/33.

12.1.4. a. We have (.123)7 = 1/7 + 2/72 + 3/73 = 66/343.

b. Let α = (.013)6. Then 62α = (1.313)6, so that (62 − 1)α = (1.3)6 = 1 + 3/6 = 3/2. Then α =
3/(2 · 35) = 3/70.

c. We have (.17)11 =
∑∞

n=1(17)11/(100)n
11 = (18/121)(1/(1− 1/121)) = 3/20.

d. Let α = (.ABC)16. Then 163α = (ABC.ABC)16, so that (163− 1)α = (ABC)16 = 10 · 162 +11 · 16+
12 = 2748. Then α = 2748/(163 − 1) = 916/1365.

12.1.5. All prime divisors of 210 = 2 · 3 · 5 · 7 must divide b, so b = 2r3s5t7u, with r, s, t, and u nonnegative
integers.

12.1.6. a. Since 12 = 223, we have T = 22|102, and U = 3. So the pre-period length is 2, and ord310 = 1, so
the period length is 1.

b. Since 30 = 20 · 3, we have T = 10|101, and U = 3. So the pre-period length is 1, and ord310 = 1, so
the period length is 1.

c. Since 75 = 523, we have T = 52|102, and U = 3. So the pre-period length is 2, and ord310 = 1, so
the period length is 1.

d. Since 23 = 1 · 23, we have T = 1|100, and U = 23. So the pre-period length is 0, and ord2310 = 22,
so the period length is 22.

e. Since 56 = 237, we have T = 23|103, and U = 7. So the pre-period length is 3, and ord710 = 6, so
the period length is 6.

f. Since 61 = 1 · 61, we have T = 1|100, and U = 61. So the pre-period length is 0, and ord6110 = 60,
so the period length is 60.

12.1.7. a. Since 4 = 22, we have T = 22|121, and U = 1. So the pre-period length is 1, and ord112 = 0, so the
period length is 0.

b. Since 8 = 23, we have T = 23|122, and U = 1. So the pre-period length is 2, and ord112 = 0, so the
period length is 0.

c. Since 10 = 2 · 5, we have T = 2|121, and U = 5. So the pre-period length is 1, and ord512 = 4, so the
period length is 4.

d. Since 24 = 233, we have T = 223|122, and U = 1. So the pre-period length is 2, and ord112 = 0, so
the period length is 0.
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e. Since 132 = 12 · 11, we have T = 12|121, and U = 11. So the pre-period length is 1, and ord1112 =
1, so the period length is 1.

f. Since 360 = 23325, we have T = 2332|122, and U = 5. So the pre-period length is 2, and ord512 = 4,
so the period length is 4.

12.1.8. If m is prime and b is a primitive root modulo m, then ordmb = m − 1, so the period length of 1/m
is m − 1. Conversely, if the period length is m − 1, then ordmb = m − 1, but ordmb|m so (m − 1)|φ(m),
which implies m is prime.

12.1.9. If p = 2 or 5, the period length is 0. Otherwise, ordpb = n is the period length. Now, ordpb = n for
exactly those primes dividing 10n−1, but not dividing 10m−1 for any m < n. Then, (a) 10−1 = 32, p =
3 (b) 102 − 1 = 3211, p = 11 (c) 103 − 1 = 3 · 11 · 37, p = 37 (d) p = 101 (e) p = 41 and 271 (f) p = 7 and 13.

12.1.10. a. We have 1/(b− 1) = (1/b) (1/(1− 1/b)) = (1/b)
∑∞

j=0(1/b)j = (.1)b.

b. We have 1/(b + 1) = (b − 1)/(b2 − 1) = (b − 1)/b2 · 1/(1 − 1/b2) = (b − 1)/b2
∑∞

j=0(1/b2)j = (b −
1)/b2(1.01)b = (b− 1)(.01)b = (.0b− 1)b.

12.1.11. Using the construction from Theorem 12.2 and Example 12.1, we use induction to show that ck = k−1
and γk = (kb−k+1)/(b−1)2. The induction step is as follows: ck+1 = [bγk] =

[
(kb2 − bk + b)/(b− 1)2

]
=[

(k(b− 1)2 + b(k + 1)− k)/(b− 1)2
]

=
[
k + (b(k + 1)− k)/(b− 1)2

]
= k, and γk+1 = (k + 1)b− k, if k 6=

b − 2. If k = b − 2, we have cb−2 = b, so we have determined b − 1 consecutive digits of the expansion.
From the binomial theorem, (x+1)a ≡ ax+1 (mod x2), so ord(b−1)2b = b−1, which is the period length.
Therefore we have determined the entire expansion.

12.1.12. By Theorem 12.4, a non-repeating expansion represents an irrational number. To see that (.0123 . . . (b−
1)10111213 . . .)b is non-repeating, notice that the sequence of digits contains arbitrarily long strings of
zeros.

12.1.13. The base b expansion is (.100100001 . . .)b which is non-repeating and therefore by Theorem 12.4 rep-
resents an irrational number.

12.1.14. Use the construction from Theorem 12.1 and Example 12.1, but replace b by bn at the nth step: cn =
[bnγn−1] and γn = bnγn−1 − cn. Then 0 ≤ cn < bn.

12.1.15. Let γ be a real number. Set c0 = [γ] and and γ1 = γ − c0. Then 0 ≤ γ1 < 1 and γ = c0 + γ1. From the
condition that ck < k for k = 1, 2, 3, . . ., we must have c1 = 0. Let c2 = [2γ1] and γ2 = 2γ1−c2. Then γ1 =
(c2 + γ2)/2, so γ = c0 + c1/1! + c2/2! + γ2/2! Now let c3 = [3γ2] and γ3 = 3γ2− c3. Then γ2 = (c3 + γ3)/3
and so γ = c0 + c1/1!+ c2/2!+ c3/3!+γ3/3!. Continuing in this fashion, for each k = 2, 3, . . ., define ck =
[kγk−1] and γk = kγk−1− ck. Then γ = c0 + c1/1! + c2/2! + c3/3! + · · ·+ ck/k! + γk/k!. Since each γk < 1,
we know that limk→∞ γk/k! = 0, so we conclude that γ = c0 + c1/1! + c2/2! + c3/3! + · · ·+ ck/k! + · · · .

12.1.16. Let r < s be integers. Then the rational number r
s −

(
c1
1! + c2

2! + · · ·+ cs−1
s−1!

)
, where the ci are given by

Exercise 15, has common denominator s!, so let cs be the corresponding numerator. Check that 0 ≤ cs <
1.

12.1.17. In the proof of Theorem 12.1, the numbers pγn are the remainders of bn upon division by p. The pro-
cess recurs as soon as some γi repeats a value. Since 1/p = (.c1c2 . . . cp−1) has period length p − 1, we
have by Theorem 12.4 that ordpb = p − 1, so there is an integer k such that bk ≡ m (mod p). So the re-
mainders of mbn upon division by p are the same as the remainders of bkbn upon division by p. Hence
the nth digit of the expansion of m/p is determined by the remainder of bk+n upon division by p. There-
fore, it will be the same as the (k + n)th digit of 1/p.

12.1.18. First note that bt ≡ −1 (mod p), since ordpb = 2t. Now pγj is the remainder of bj upon division by p,
and pγj+t is the remainder of bj+t upon division by p, which must be the same as the remainder of −bj
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upon division by p. By the division algorithm, bj = kp + r, so −bj = −kp − r = −(k − 1)p + (p − r).
Hence, cj = [br/p], and cj+t = [b(p− r)/p]. Let br/p = a + x where a is an integer and 0 < x < 1. Then
cj + cj+t = [br/p] + [b(p− r)/p] = [a + x] + [b− (a + x)] = a + b− a− 1 = b− 1, as desired.

12.1.19. Suppose n = TU , with T = 2k and U odd. Then the period length of the binary expansion of 1/n is
ordU2. If ordU2 = n− 1, then U = n. So n is prime, and 2 is a primitive root of n.

12.1.20. By Theorem 12.4, n = TU with (U, 10) = 1 and every prime factor of T divides b. Then the length of
the period of the decimal expansion of 1/n is ordU10 which can be no larger than U − 1, which occurs if
and only if U is prime and 10 is a primitive root modulo U . Thus T = 1 and n is a prime with primitive
root 10.

12.1.21. Suppose e = h/k. Then k!(e− 1− 1/1!− 1/2!− · · · − 1/k!) is an integer. But this is equal to k!(1/(k +
1)! + 1/(k + 2)! + · · · ) = 1/(k + 1) + 1/(k + 1)(k + 2) + · · · < 1/(k + 1) + 1/(k + 1)2 + · · · = 1/k < 1. But
k!(e− 1− 1/1!− 1/2!− · · · − 1/k!) is positive, and therefore cannot be an integer, a contradiction.

12.1.22. We have b = 14 and γ = 1/6 in the formula from Exercise 21. So the jth digit in the base 14 expan-
sion is given by cj = [14j1/6]− 14[14j−11/6]. The possible values for U in Theorem 12.4 are 1, 2, 3, and
6. Since φ of each of these numbers is less than or equal to 2, the expansion for 1/6 must have period
1 or 2. Computing, we have: c1 = [14 · 1/6] − 14[1/6] = 2; c2 = [1421/6] − 14[14 · 1/6] = 4; and c3 =
[1431/6]− 14[1421/6] = 9. Therefore we have 1/6 = (.2494949...)14.

12.1.23. Let α =
∞∑

i=1

(−1)ai

10i!
, and

pk

qk
=

k∑

i=1

(−1)ai

10i!
. Then

∣∣∣∣α−
pk

qk

∣∣∣∣ =

∣∣∣∣∣
∞∑

i=k+1

(−1)ai

10i!

∣∣∣∣∣ ≤
∞∑

i=k+1

1
10i!

. As in the proof

of Corollary 12.5.1, it follows that
∣∣∣∣α−

pk

qk

∣∣∣∣ <
2

10(k+1)!
, which shows that there can be no real number C

as in Theorem 12.5. Hence, α must be transcendental.

12.1.24. We mimic the proof of Theorem 12.6. The only changes are that each dij is either 0 or 1. Form a new
number r = 0.d1d2d3d4 . . . , by di = 0 if dii = 1 and di = 1 if dii = 0. Then r is different from every
number in the listing and so is not in the listing. Therefore, the listing, no matter what it was, could not
contain all the real numbers with decimal expansions consisting of only 0s and 1s.

12.1.25. Suppose e = h/k. Then k!(e − 1 − 1/1! − 1/2! − · · · 1/k!) is an integer. But this is equal to k!(1/(k +
1)! + 1/(k + 2)! + · · · ) = 1/(k + 1) + 1/(k + 1)(k + 2) + · · · < 1/(k + 1) + 1/(k + 1)2 + · · · = 1/k < 1. But
k!(1/(k + 1)! + 1/(k + 2)! + · · · ) is positive, and therefore can not be an integer, a contradiction.

12.1.26. a. We find 1/19 = (.024024024 . . .) 7, so starting at the 7th position we have 0, 2, 4, 0, 2, 4, 0, 2, 4, 0.

b. We find 1/21 = (.030303030303 . . .)8, so starting at the 6th position we have 3, 0, 3, 0, 3, 0, 3, 0, 3, 0.

12.2. Finite Continued Fractions
12.2.1. a. We have [2; 7] = 2 + 1/7 = 15/7.

b. We have [1; , 2, 3] = 1 +
1

2 + 1/3
= 1 + 3/7 = 10/7.

c. We have [0′5, 6] =
1

5 + (1/6)
= 6/31.

d. We have [3; 7, 15, 1] = 3 +
1

7 +
1

15 + 1

= 3 +
1

1 + 1/16
= 355/113. Note that this is a very good ap-

proximation for π.



12.2. FINITE CONTINUED FRACTIONS 191

e. We have [1; 1] = 1 + (1/1) = 2.

f. We have [1; 1, 1] = 1 +
1

1 + 1
= 3/2.

g. We have [1; 1, 1, 1] = 1 +
1

1 +
1

1 + 1

= 5/3

h. We have [1; 1, 1, 1, 1] = 1 +
1

1 +
1

1 +
1

1 + 1

= 8/5. Note that the numerators and denominators in

these last four exercises are Fibonacci numbers.

12.2.2. a. We have [10; 3] = 10 + 1/3 = 31/3.

b. We have [3; 2, 1] = 3 +
1

2 + 1/1
= 3 + 1/3 = 10/3.

c. We have [0; 1, 2, 3] = 0 +
1

1 +
1

2 + 1/3

= 3/10. Compare this with part (b).

d. We have [2; 1, 2, 1] = 2 +
1

1 +
1

2 + 1/1

= 11/4.

e. We have [2; 1, 2, 1, 1, 4] = 2 +
1

1 +
1

2 +
1

1 +
1

1 + 1/4

= 87/32.

f. We have [1; 2, 1, 2] = 1 +
1

2 +
1

1 + 1/2

= 11/8.

g. We have [1; 2, 1, 2, 1] = 1 +
1

2 +
1

1 +
1

2 + 1/1

= 15/11.

h. We have [1; 2, 1, 2, 1, 2] = 1 +
1

2 +
1

1 +
1

2 +
1

1 + 1/2

= 41/30.

12.2.3. a. Using the construction in the proof of Theorem 12.8, we let r0 = 18 and r1 = 13. Then 18 = 1 · 13 +
5, 13 = 2 · 5 + 3, 5 = 1 · 3 + 2, 3 = 1 · 2 + 1, and 2 = 2 · 1. The sequence of quotient gives us the
continued fraction [1; 2, 1, 1, 2].

b. We perform the Euclidean algorithm on 32 and 17 to get 32 = 1 · 17 + 15, 17 = 1 · 15 + 2, 15 =
7 · 2 + 1, 2 = 2 · 1. The sequence of quotients gives us [1; 1, 7, 2].

c. We perform the Euclidean algorithm on 19 and 9 to get 19 = 2 · 9 + 1, 9 = 9 · 1. The sequence of
quotients yields [2; 9].
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d. We perform the Euclidean algorithm on 310 and 99 to get 310 = 3 · 99 + 13, 99 = 7 · 13 + 8, 13 =
1·8+5, 8 = 1·5+3, 5 = 1·3+2, 3 = 1·2+1, 2 = 2·1. The sequence of quotients yields [3; 7, 1, 1, 1, 1, 2].

e. We perform the Euclidean algorithm on −931 and 1005 to get −931 = −1 · 1005 + 74, 1005 = 13 ·
74 + 43, 74 = 1 · 43 + 31, 43 = 1 · 31 + 12, 31 = 2 · 12 + 7, 12 = 1 · 7 + 5, 7 = 1 · 5 + 25 = 2 · 2 + 1, 2 =
2 · 1. The sequence of quotients yields [−1; 13, 1, 1, 2, 1, 1, 2, 2].

f. We perform the Euclidean algorithm on 831 and 8110 to get 831 = 0 · 8110 + 831, 8110 = 9 · 831 +
631, 831 = 1 · 631 + 200, 631 = 3 · 200 + 31, 200 = 6 · 31 + 14, 31 = 2 · 14 + 3, 14 = 4 · 3 + 2, 3 =
1 · 2 + 1, 2 = 2 · 1. The sequence of quotients gives us [0; 9, 1, 3, 6, 2, 4, 1, 2].

12.2.4. a. We have 6/5 = 1 + 1/5, so the continued fraction expansion is [1; 5].

b. We have 22/7 = 3 + 1/7, so the continued fraction expansion is [3; 7].

c. The Euclidean algorithm gives: 19 = 0(29) + 19; 29 = 1(19) + 10; 19 = 1(10) + 9; 10 = 1(9) + 1; 9 =
9(1). The quotients give the continued fraction expansion [0; 1, 1, 1, 9].

d. The Euclidean algorithm gives: 5 = 0(999) + 5; 999 = 199(5) + 4; 5 = 1(4) + 1; 4 = 4(1), so the con-
tinued fraction expansion is [0; 199, 1, 4].

e. The Euclidean algorithm gives: −943 = −1 · 1001 + 58, 1001 = 17 · 58 + 15, 58 = 3 · 15 + 13, 15 =
1 · 13 + 2, 13 = 6 · 2 + 1, 2 = 2 · 1, so the continued fraction expansion is [−1, 17, 3, 1, 6, 2].

f. The Euclidian algorithm gives: 873 = 0 · 4867 + 873, 4867 = 5 · 873 + 502, 873 = 1 · 502 + 371, 502 =
1 · 371 + 131, 371 = 2 · 131 + 109, 131 = 1 · 109 + 22, 109 = 8 · 22 + 21, 22 = 1 · 21 + 1, 21 = 21 · 1, so
the continued fraction expansion is [0; 5, 1, 1, 2, 1, 4, 1, 21].

12.2.5. a. We compute p0 = 1, p1 = 1 · 2 + 1 = 3, p2 = 1 · 3 + 1 = 4, p3 = 1 · 4 + 3 = 7, p4 = 2 · 7 + 4 = 18, and
q0 = 1, q1 = 2, q2 = 1 · 2 + 1 = 3, q3 = 1 · 3 + 2 = 5, q4 = 2 · 5 + 3 = 13. Then the convergents are
C0 = 1/1 = 1, C1 = 3/2, C2 = 4/3, C3 = 7/5, C4 = 18/13.

b. . We compute p0 = 1, p1 = 1·1+1 = 2, p2 = 7·2+1 = 15, p3 = 2·15+2 = 32, and q0 = 1, q1 = 1, q2 =
7 · 1 + 1 = 8, q3 = 2 · 8 + 1 = 17. Then the convergents are C0 = 1, C1 = 2, C2 = 15/8, C3 = 32/17.

c. We compute p0 = 2, p1 = 2 · 9 + 1 = 19, and q0 = 1, q1 = 9. Then the convergents are C0 = 2, C1 =
19/9.

d. We compute the sequence of pi to be 3, 22, 25, 47, 72, 119, 310, and the sequence of qi to be 1, 7, 8,
15, 23, 38, 99, so the convergents are 3, 22/7, 25/8, 47/15, 72/23, 119/38, 310/99.

e. We compute the sequence of pi to be −1,−12,−13,−25,−63,−88,−151,−390,−931, and the se-
quence of qi to be 1, 13, 14, 27, 68, 95, 163, 421, 1005, so the convergents are −1, −12/13, −13/14,
−25/27, −63/68, −88/95, −151/163, −390/421, −931/1005.

f. We compute the sequence of pi to be 0, 1, 1, 4, 25, 54, 241, 295, 831, and the sequence of qi to be
1, 9, 10, 39, 244, 527, 2352, 2879, 8110, so the convergents are 0, 1/9, 1/10, 4/39, 25/244, 54/527,
241/2352, 295/2879, 831/8110.

12.2.6. a. The convergents are C0 = 1, C1 = 1 + 1/5 = 6/5.

b. The convergents are C0 = 3, C1 = 3 + 1/7 = 22/7.

c. We compute the sequence of pi to be 0, 1, 1, 2, 19, and the sequence of qi to be 1, 1, 2, 3, 29, so the
convergents are 0, 1, 1/2, 2/3, 19/29.
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d. We compute the sequence of pi to be 0, 1, 1, 5, and the sequence of qi to be 1, 199, 200, 999, so the
convergents are 0, 1/199, 1/200, 5/999.

e. We compute the sequence of pi to be −1,−16,−49,−65,−439,−943, and the sequence of qi to be
1, 17, 52, 69, 466, 1001, so the convergents are −1,−16/17,−49/52,−65/69,−439/466,−943/1001.

f. We compute the sequence of pi to be 0, 1, 1, 2, 5, 7, 33, 40, 873, and the sequence of qi to be 1, 5, 6, 11,
28, 39, 184, 223, 4867, so the convergents are 0, 1/5, 1/6, 2/11, 5/28, 7/39, 33/184, 40/223, 873/4867.

12.2.7. For Exercise 5: (a) 3/2 > 7/5 and 1 < 4/3 < 18/13 (b) 2 > 32/17 and 1 < 15/8 (c) vacuously
true (d) 22/7 > 47/15 > 119/38 and 3 < 25/8 < 72/23, < 310/99 (e) −12/13 > −25/27 > −88/95 >
−390/421 and−1 < −13/14 < −63/68, < −151/163 < −931/1005 (f) 1/9 > 4/39 > 54/527 > 295/2879
and 0 < 1/10 < 25/244 < 241/2352 < 831/8110.

12.2.8. The recursion formula for the Fibonacci sequence tells us that the Euclidean algorithm for fk+1/fk

gives the following sequence of equations: fk+1 = 1(fk) + fk−1; fk = 1(fk−1) + fk−2; . . . ; f2 = 1(f1). So
fk+1/fk = [1; 1, 1, . . . , 1] (k-times).

12.2.9. Let α = r/s. The Euclidean Algorithm for 1/α = s/r < 1 gives s = 0(r) + s; r = a0(s) + a1, and con-
tinues just like for r/s.

12.2.10. The recursion formula for the pi tells us that the Euclidean algorithm for pk/pk−1 gives the following
sequence of equations: pk = akpk−1+pk−2; . . . ; p1 = a1p0+1; p0 = a0(1). So pk/pk−1 = [ak; ak−1, . . . , a0].
Similarly for the qk.

12.2.11. Proceed by induction. Assume qj ≥ fj for j < k. Then qk = akqk−1 + qk−2 ≥ akfk−1 + fk−2 ≥
fk−1 + fk−2 = fk, as desired.

12.2.12. Rewrite the last step of the Euclidean Algorithm: rn−1 = qnrn = (qn − 1)rn + rn; rn = qn+1rn, so
qn+1 = 1 and we have [a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1].

12.2.13. By Exercise 10, we have pn/pn−1 = [an; an−1, . . . , a0] = [a0; a1, . . . , an] = pn/qn = r/s if the contin-
ued fraction is symmetric. Then, qn = pn−1 = s and pn = r, so by Theorem 12.10 we have pnqn−1 −
qnpn−1 = rqn−1 − s2 = (−1)n−1. Then rqn−1 = s2 + (−1)n−1 and so r|s2 − (−1)n. Conversely, if
r|s2 + (−1)n−1, then (−1)n− 1 = pnqn−1 − qnpn−1 = rqn−1 − pn−1s. So r|pn−1s + (−1)n−1 and hence
r|(s2 + (−1)n−1)− (pn−1s + (−1)n−1) = s(s− pn−1). Since s, pn−1 < r and (r, s) = 1, we have s = pn−1.
Then [an; an−1, . . . , a0] = pn/pn−1 = r/s = [a0; a1, . . . , an].

12.2.14. If a, b are integers, then Section 1.5, Exercise 16 gives a = q0b + r1; b = q1r1 + r2; r1 = q2r2 +
r3; . . . ; rn−1 = qnrn, with −b/2 < r1 ≤ b/2 and rj−1/2 < rj ≤ rj−1/2 for each j. Then a/b =
[q0; q1, . . . , qn] following the construction in Theorem 12.6

12.2.15. Note that the notation [a0; a1, . . . , an] makes sense, even if the aj are not integers. Use induction. As-
sume the statement is true for k odd and prove it for k + 2. Define a′k = [ak; ak+1, ak+2] and check that
a′k < [ak; ak+1, ak+2 + x] = a′k + x′. Then [a0; a1, . . . , ak+2] = [a0; a1, . . . , a

′
k] > [a0; a1, . . . , a

′
k + x′] =

[a0; a1, . . . , ak+2 + x]. Proceed similarly for k even.

12.2.16. a. By Exercise 8 we have 13 = 8 + 5, all Fibonacci numbers, which gives 8/5 = [1; 1, 1, 1, 1].

b. We have 17 = 12 + 5 and 12/5 = [2; 2, 2].

c. We have 19 = 12 + 7 and 12/7 = [1; 1, 2, 2].

d. We check the continued fraction for each of (23− j)/j for j = 1, 2, . . . , 11 and find no solution.
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e. We have 27 = 18 + 9 and 18/9 = 2.

f. We have 29 = 21 + 8 and 21/8 = [2, 1, 1, 1, 2].

12.3. Infinite Continued Fractions
12.3.1. a. We compute a0 = [

√
2] = 1, α1 = 1/(

√
2 − 1) =

√
2 + 1, a1 = [α1] = 2, α2 = 1

(
√

2+1)−2
=
√

2 + 1 =

α1. Therefore the sequence repeats, and we have
√

2 = [1; 2, 2, . . .].

b. We compute a0 = [
√

3] = 1, α1 = 1/(
√

3 − 1) = (
√

3 + 1)/2, a1 = [α1] = 1, α2 = 1
(
√

3+1)/2−1
=√

3 + 1, a2 = [α2] = 2, α3 = 1
(
√

3+1)−2
= (

√
3 + 1)/2 = α1. Therefore the sequence repeats, and we

have
√

3 = [1; 1, 2, 1, 2, . . .].

c. We compute a0 = [
√

5] = 2, α1 = 1/(
√

5 − 2) =
√

5 + 2, a1 = [α1] = 4, α2 = 1/((
√

5 + 2) − 4) =√
5 + 2 = α1. Therefore the sequence repeats, and we have

√
5 = [2; 4, 4, . . .].

d. We compute a0 = [(
√

5 + 1)/2 = 1, α1 = 1
(
√

5+1)/2)−1
= (

√
5 + 1)/2 = α0. This gives (

√
5 + 1)/2 =

[1; 1, 1, . . .].

12.3.2. a. We compute a0 = [ 3
√

2] = 1, α1 = 1/( 3
√

2− 1),a1 = [α1] = 3, α2 = 1
1/( 3√2−1)−3

= ( 3
√

2− 1)/(3 3
√

2− 4),

a2 = [α2] = 1, α3 = 1
(1/α2)−a2

= (3 3
√

2 − 4)/(4 3
√

2 − 5), a3 = [α3] = 5, α4 = 1
(1/α3)−a3

= (4 3
√

2 −
5)/(23 3

√
2− 29), a4 = [α4] = 1, so the first five partial quotients are 1, 3, 1, 5, 1.

b. We compute a0 = [2π] = 6, α1 = 1/(2π − 6), a1 = [α1] = 3, α2 = 1
1/(2π−6)−3 = (−2π + 6)/(6π − 19),

a2 = [α2] = 1, α3 = 1
(1/α2)−a2

= (−6π + 19)/(8π − 25), a3 = [α3] = 1, α4 = 1
(1/α3)−a3

= (−14π +
44)/(106π − 333), a4 = [α4] = 1, so the first five partial quotients are 6, 3, 1, 1, 7.

c. We compute a0 = [(e−1)/(e+1)] = 0, α1 = 1/((e−1)/(e+1)) = (e+1)/(e−1), a1 = [α1] = 2, α2 =
1

1/(α1)−2 = −(e−1)/(e−3), a2 = [α2] = 6, α3 = 1
(1/α2)−a2

= −(e−3)/(7e−19), a3 = [α3] = 10, α4 =
1

(1/α3)−a3
= −(7e−19)/(71e−193), a4 = [α4] = 14, so the first five partial quotients are 0, 2, 6, 10, 14.

d. We compute a0 = [(e2− 1)/(e2 + 1)] = 0, α1 = 1/((e2− 1)/(e2 + 1)) = (e2 + 1)/(e2− 1), a1 = [α1] =
1, α2 = 1

1/(α1)−1 = −(e2 − 1)/2, a2 = [α2] = 3, α3 = 1
(1/α2)−a2

= 1/(e2 − 7), a3 = [α3] = 5, α4 =
1

(1/α3)−a3
= −(e2 − 7)/(5e2 − 37), a4 = [α4] = 7, so the first five partial quotients are 0, 1, 3, 5, 7.

12.3.3. From Example 12.11, we have π = [3; 7, 15, 1, 292, 1, 1, 1, 2, . . .]. We compute the convergents until
we have a denominator greater than 100000: 3, 22/7, 333/106, 355/113, 103933/33102, 104348/33215,
208341/66317, 312689/99532, 833719/265381, . . .. Therefore, the best approximation with denominator
less than 100000 is 312689/99532.

12.3.4. a. Using Theorem 12.9, we compute the sequence of pk and qk to get the following convergents:
2, 3, 8

3 , 11
4 , 19

7 , 87
32 , 106

39 , 193
71 .

b. The ninth convergent is 1264
465 . The tenth is 1457

536 , so the tenth is the best.

12.3.5. If a1 > 1, let A = [a2; a3, . . .]. Then [a0; a1, . . .] + [−a0 − 1; 1, a1 − 1, a2, a3, . . .] = a0 +
1

a1 + (1/A)
+


−a0 − 1 +

1

1 +
1

a1 − 1 + (1/A)


 = 0. Similarly if a1 = 1.
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12.3.6. Without loss of generality, k is odd. Theorem 12.11 says that the odd convergents decrease to α, and
the even convergents increase to α, so pk+1/qk+1 < α < pk/qk. The hint follows after Theorem 12.10.
Notice that (qk+1− qk)2 > 0, so q2

k+1 + q2
k > 2qk+1qk. Then dividing by 2q2

k+1q
2
k gives |α− (pk/qk)|+ |α−

(pk+1/qk+1)| = 1/(qkqk+1) < 1/(2q2
k) + 1/(2q2

k+1), and the proposition follows.

12.3.7. If α = [a0; a1, a2, . . .], then 1/α = 1/[a0; a1, a2, . . .] = 0 +
1

a0 +
1

a1 + · · ·

= [0; a0, a1, a2, . . .]. Then the

kth convergent of 1/α is [0; a0, a1, a2, . . . , ak−1] = 1/[a0; a1, a2, . . . , ak−1], which is the reciprocal of the
(k − 1)st convergent of α.

12.3.8. Suppose |α− (pk/qk)| ≥ 1/(
√

5q2
k), for k = j−1, j, j +1. Note that x+1/x ≥ √

5 implies (
√

5−1)/2 <

x < (
√

5 + 1)/2. Then as in the hint to Exercise 6, |α− (pj−1/qj−1)| + |α− (pj/qj)| = 1/(qj−1qj) >

1/(
√

5q2
j−1) + 1/(

√
5q2

j ), where the inequality is strict since the left side is rational. Then
√

5 > qj/qj−1 +
qj−1/qj , so by the note, (

√
5 − 1)/2 < qj/qj−1) < (

√
5 + 1)/2. Similarly, (

√
5 − 1)/2 < qj+1/qj < (

√
5 +

1)/2. Then using qj+1 = ajqj + qj−1 we have (
√

5 + 1)/2 > qj+1/qj = aj + (qj−1/qj) > 1 + (
√

5− 1)/2 =
(
√

5 + 1)/2, which is a contradiction.

12.3.9. By Theorem 12.17, such a p/q is a convergent of α. We have (
√

5 + 1)/2 = [1; 1, 1, . . .], so qn = fn (Fi-
bonacci) and pn = qn+1. Then limn→∞ qn−1/qn = limn→∞ qn−1/pn−1 = 2/(

√
5 + 1) = (

√
5 − 1)/2. So

limn→∞
(
(
√

5 + 1)/2 + (qn−1/qn)
)

= (
√

5 + 1)/2 + (
√

5− 1)/2 =
√

5. So (
√

5 + 1)/2 + (qn−1/qn) > c only
finitely often. Whence, 1/

(
(
√

5 + 1)/2 + (qn−1/qn)
)
q2
n < 1/(cq2

n). The following identity finishes the
proof. Note that αn = α for all n. Then |α− (pn/qn)| = |(αn+1pn + pn−1)/(αn+1qn + qn−1)− (pn/qn)| =
|(−(pnqn−1 − pn−1qn))/(qn(αqn + qn−1))| = 1/(q2

n(α + (qn−1/qn)).

12.3.10. Note that α = (1 · α + 0)/(0 · α + 1).

12.3.11. If β is equivalent to α, then β = (aα + b)/(cα + d). Solving for α gives α = (−dβ + b)/(cβ − a), so α is
equivalent to β.

12.3.12. Say β = (aα + b)/(cα + d) and γ = (eβ + f)/(gβ + h). Then γ = (e(aα + b)/(cα + d) + f)/(g(aα +
b)/(cα + d) + h) = ((ea + fc)α + (eb + df))/((ga + ch)α + (gb + dh)), so γ and α are equivalent.

12.3.13. If a 6= 0, then r/s = ((rb)a + 0)/((sa)b + 0), so r/s and a/b are equivalent. If a = 0 then r/s = (1 · a +
r)/(0 · b + s).

12.3.14. First note that with αj defined in the usual way, αj = 1/(aj+1 + αj+1), so αj is equivalent to αj+1.
From the transitivity of Exercise 12, we have α equivalent to αj for all j. The solution then follows easily.

12.3.15. Note that pk,tqk−1 − qk,tpk−1 = t(pk−1qk−1 − qk−1pk−1) +(pk−2qk−1 − pk−1qk−2) = ±1. Thus pk,t and
qk,t are relatively prime.

12.3.16. Consider the function f(t) = (at + b)/(ct + d), where a/b > c/d. Then f ′(t) = (ad− bc)/(ct + d)2 > 0
for all t. Therefore, f(x) is a strictly increasing function. Now as t goes from 0 to ak, we see that g(t) =
pk,t/qk,t goes from Ck−2 to Ck. Now if k is even, we have Ck−2 < Ck, and g(t) is a function of the same
form as f(t). Therefore, as t increases, so must the pseudoconvergents. If k is odd, the argument is sim-
ilar.

12.3.17. See, for example, the classic work by O. Perron, Die Lehre von den Kettenbrüchen, Leipzig, Teubner
(1929).

12.3.18. We have π = [3; 7, 15, . . .] for which the first convergents are 3/1, 33/7, 333/106, . . .. Then p2,t/q2,t =
(tp1 + p0)/(tq1 + q0) = (t22 + 3)/(t7 + 1) for t = 1, 2, . . . , 14, so the pseudoconvergents are: 25/8, 47/15,
69/22, 91/29, 113/36, 135/43, 157/50, 179/57, 201/64, 223/71, 245/78, 267/85, 289/92, and 311/99.
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12.3.19. Using Exercise 17, we test each of the pseudoconvergents in Exercise 18 and find that |π − 179/57| <
|π − 22/7|.

12.3.20. The smallest denominator of a pseudoconvergent greater than 71 is 39 + 71 > 100, so the 8th conver-
gent 193/71 is the best approximation.

12.3.21. (Proof by Rob Johnson.) Note first that if b < d, then |a/b−c/d| < 1/2d2 implies that |ad−bc| < b/2d <
1/2, but since b 6= d, |ad − bc| is a positive integer, and so is greater than 1/2. Thus b ≥ d. Now assume
that c/d is not a convergent of the continued fraction for a/b. Since the denominators of the convergents
increase to b, there must be two successive convergents pn/qn and pn+1/qn+1 such that qn < d < qn+1.

Next, by the triangle inequality we have 1/2d2 >
∣∣∣a
b
− c

d

∣∣∣ =
∣∣∣∣
c

d
− pn

qn

∣∣∣∣−
∣∣∣∣
a

b
− pn

qn

∣∣∣∣ ≥
∣∣∣∣
c

d
− pn

qn

∣∣∣∣−
∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣ ,

since the n + 1st convergent is on the other side of a/b from the nth convergent. Since the numerator of
the first difference is a nonzero integer, and applying Corollary 12.3 to the second difference, we have
the last expression greater than or equal to 1/dqn − 1/qn+1qn. If we multiply through by d2 we get
1
2

>
d

qn

(
1− d

qn+1

)
> 1− d

qn+1
since d/qn > 1. From which we deduce that 1/2 < d/qn+1.

Now the convergents pn/qn and pn+1/qn+1 divide the line into three regions. As c/d could be in any

of these, there are three cases. Case 1: If c/d is between the convergents, then
1

dqn
≤

∣∣∣∣
c

d
− pn

qn

∣∣∣∣ since the

numerator of the fraction is a positive integer and the denominators on both sides of the inequality are

the same. This last is less than or equal to
∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣ =
1

qn+1qn
since the n + 1st convergent is farther

from the nth convergent than c/d and where we have applied Corollary 12.3. But this implies that d ≥
qn+1, a contradiction. Case 2. If c/d is closer to pn/qn, then again

1
dqn

≤
∣∣∣∣
c

d
− pn

qn

∣∣∣∣ ≤
∣∣∣a
b
− c

d

∣∣∣ since a/b

is on the other side of the nth convergent from c/d. But this last is less than 1/2d2 and if we multiply
through by d we have 1/qn < 1/2d, which implies that qn > d, a contradiction. Case 3. If c/d is closer to

pn+1/qn+1, then with the same reasoning as in Case 2, we have
1

dqn+1
≤

∣∣∣∣
c

d
− pn+1

qn+1

∣∣∣∣ <
∣∣∣a
b
− c

d

∣∣∣ < 1/2d2.

But this implies that d/qn+1 < 1/2 contradicting the inequality established above. Having exhausted all
the cases, we must conclude that c/d must be a convergent of the continued fraction for a/b.

12.3.22. From the proof of Theorem 12.8, we see that finding the convergents of a rational number involves
exactly the same calculations as finding the greatest common divisor of the numerator and denomina-
tor. By Corollary 3.13.1 (to Lame’s Theorem) this takes O((log2 n)3) operations.

12.4. Periodic Continued Fractions
12.4.1. a. Using Theorem 12.20, we have α0 =

√
7, a0 = 2, P0 = 0, Q0 = 1, P1 = 2 · 1 − 0 = 2, Q1 = 7−22

1 =
3, α1 = 2+

√
7

3 , a1 = 1, P2 = 1 · 3− 2 = 1, Q2 = 7−12

3 = 2, α2 = 1+
√

7
2 , a2 = 1, P3 = 1 · 2− 1 = 1, Q3 =

7−12

2 = 3, α3 = 1+
√

7
3 , a3 = 1, P4 = 1 · 3− 1 = 2, Q4 = 7−22

3 = 1, α4 = 2+
√

7
1 , a4 = 4, P5 = 4 · 1− 2 =

2, Q5 = 7−22

1 = 3, α5 = α1, so
√

7 = [2; 1, 1, 1, 4].

b. As in part (a), we find
√

11 = [3; 3, 6].

c. As in part (a), we find
√

23 = [4; 1, 3, 1, 8].

d. As in part (a), we find
√

47 = [6; 1, 5, 1, 12].

e. As in part (a), we find
√

59 = [7; 1, 2, 7, 2, 1, 14].

f. As in part (a), we find
√

94 = [9; 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18].
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12.4.2. a. As in Exercise 1, we find
√

101 = [10; 20].

b. As in Exercise 1, we find
√

103 = [10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20].

c. As in Exercise 1, we find
√

107 = [10; 2, 1, 9, 1, 2, 20].

d. As in Exercise 1, we find
√

201 = [14; 5, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 1, 5, 28].

e. As in Exercise 1, we find
√

203 = [14; 4, 28].

f. As in Exercise 1, we find
√

209 = [14; 2, 5, 3, 2, 3, 5, 2, 28].

12.4.3. a. As in Exercise 1, we find 1 +
√

101 = [2; 2].

b. As in Exercise 1, we find (2 +
√

5/3 = [1; 2, 2, 2, 1, 12, 1].

c. . As in Exercise 1, we find (5−√7)/4 = [0; 1, 1, 2, 3, 10, 3].

12.4.4. a. α0 = (1+
√

3)/2, a0 = 1, P0 = 1, Q0 = 2, P1 = 1·2−1 = 1, Q1 = (3−12)/2 = 1, α1 = (1+
√

3)/1, a1 =
2, P2 = 2 · 1− 1 = 1, Q2 = (3− 12)/1 = 2, α2 = α0, so α = [1; 2].

b. α0 = (14 +
√

37)/3, a0 = 6, P0 = 14, Q0 = 3, P1 = 6 · 3 − 14 = 4, Q1 = (37 − 42)/3 = 7, α1 =
(4 +

√
37)/7, a1 = 1, P2 = 1 · 7 − 4 = 3, Q2 = (37 − 32)/7 = 4, α2 = (3 +

√
37)/4, a2 = 2, P3 =

2 · 4− 3 = 5, Q3 = (37− 52)/4 = 3, α3 = (5 +
√

37)/3, a3 = 3, P4 = 3 · 3− 5 = 4, Q4 = (37− 42)/3 =
7, α4 = (4 +

√
37)/7 = α1, so α = [6; 1, 2, 3].

c. 7 - 2 − 132, so apply Lemma 10.5 to get α = (−13 +
√

2)/ − 7 = (−91 +
√

98)/ − 49. Then a0 =
1, P0 = −91, Q0 = −49, etc. Then α = [1; 1, 1, 1, 8, 1, 18].

12.4.5. a. Let x = [2; 1, 5]. Then x = [2; 1, y], where y = [5; 5]. Since y = [5; y], we have y = 5 + 1/y, so

y2−5y−1 = 0, and since y is positive, y = (5+
√

29)/2. Then x = 2+
1

5 + (1/y)
= (3y+2)/(y+1) =

(23 +
√

29)/10.

b. Let x = [2; 1, 5], then x = [2; y], where y = [1; 5]. Then y = [1; 5, y] = 1+1/(1+1/y), so 5y2−5y−1 =
0, and y is positive, so y = (5 + 3

√
5)/10. Then x = 2 + 1/y = (−1 + 3

√
5)/2.

c. Let x = [2; 1, 5]. Then x = [2; 1, 5, x] = 2+
1

1 + 1/(5 + (1/x))
= (17x+3)/(6x+1), so 6x2−16x−3 =

0. Noting that x is positive gives x = (8 +
√

82)/6.

12.4.6. a. Let y = [3; 3], so that y = [3, y] = 3 + 1/y, which simplifies to y2 − 3y − 1, which has one solution
greater than 3, namely y = (3 +

√
13)/2. Then [1; 2, 3] = [1; 2, y] = 1 + 1/(2 + (1/y)) = (5 +

√
13)/6.

b. Let y = [2; 3, 2], so that y = [2; 3, y] = 2 + 1/(3 + (1/y)) = (7y + 2)/(3y + 1), which implies that
3y2 − 6y − 2 = 0, which has positive solution y = (3 +

√
15)/3. Then [1; 2, 3] = [1; y] = 1 + 1/y =

(−1 +
√

15)/2.

c. Let y = [1; 2, 3] = 1 +
1

2 + 1/(3 + (1/y))
= (10y + 3)/(7y + 2), so that 7y2 − 8y − 3 = 0, which has

positive solution y = (4 +
√

37)/7.

12.4.7. a. From Exercise 8, we have [3; 6] =
√

32 + 1 =
√

10.

b. From Exercise 8, we have [4; 8] =
√

42 + 1 =
√

17.
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c. From Exercise 8, we have [5; 10] =
√

52 + 1 =
√

26.

d. From Exercise 8, we have [6; 12] =
√

62 + 1 =
√

37.

12.4.8. a. We have α0 =
√

d2 + 1, a0 = [
√

d2 + 1] = d, P0 = 0, Q0 = 1, P1 = d,Q1 = ((d2− 1)−d2)/1 = 1, α1 =
d +

√
d2 + 1, a1 = 2d, P2 = 2d− d = d,Q2 = d2 + 1− d2 = 1, α2 = α1, so a1 = a2 = · · · = 2d. Thus,√

d2 + 1 = [d; 2d].

b. From part (a), we have
√

101 =
√

102 + 1 = [10; 20],
√

290 =
√

172 + 1 = [17; 34],
√

2210 =
√

472 + 1 =
[47; 94].

12.4.9. a. α0 =
√

d2 − 1, a0 = d− 1, P0 = 0, Q0 = 1, P1 = (d− 1)(1)− 0 = d− 1, Q1 = ((d2− 1)− (d− 1)2)/1 =
2d − 2, α1 = (d − 1 +

√
d2 − 1)/(2(d − 1)) = 1/2 + 1/2

√
(d + 1)/(d− 1), a1 = 1, P2 = 1(2d − 2) −

(d− 1) = d− 1, Q2 = (d2 − 1− (d− 1)2)/(2d− 2) = 1, α2 = (d− 1 +
√

d2 − 1)/1, a2 = 2d− 2, P3 =
2(d−1)(1)−(d−1) = d−1 = P1, Q3 = ((d2−1)−(d−1)2)/1 = 2d−2 = Q1, so α = [d−1; 1, 2(d− 1)].

b. α0 =
√

d2 − d, a0 = [
√

d2 − d] = d − 1, since (d − 1)2 < d2 − d < d2. Then P0 = 0, Q0 = 1, P1 =
d−1, Q1 = d−1, α1 = ((d−1)+

√
d2 − d)/(d−1) = 1+

√
d/(d− 1), a1 = 2, P2 = d−1, Q2 = 1, α2 =

((d− 1) +
√

d2 − d)/1, a2 = 2(d− 1), P3 = P1, Q3 = Q1. Therefore,
√

d2 − d = [d− 1; 2, 2(d− 1)].

c. Applying parts(a) and (b) we compute
√

99 =
√

102 − 1 = [9; 1, 18],
√

110 =
√

112 − 11 = [10; 2, 20],√
272 =

√
172 − 17 = [16; 2, 32], and

√
600 =

√
252 − 25 = [24; 2, 48].

12.4.10. a. Note that d − 1 <
√

d2 − 2 < d. We compute α0 =
√

d2 − 2, a0 = d − 1, P0 = 0, Q0 = 1, P1 =
d− 1, Q1 = 2d− 3, α1 = ((d− 1) +

√
d2 − 2)/(2d− 3), ((d− 1) + (d− 1))/(2d− 3) < α1 < ((d− 1) +

d)/(2d − 3), so a1 = 1, P2 = d − 2, Q2 = 2, α2 = (d − 2 +
√

d2 − 2)/2, a2 = d − 2, P3 = d − 2, Q3 =
2d−3, α3 = ((d−2)+

√
d2 − 2)/(2d−3), a3 = 1, P4 = d−1, Q4 = 1, α4 = ((d−1)+

√
d2 − 2)/1, a4 =

2d− 2, P5 = d− 1 = P1, Q5 = 2d− 3 = Q1. So α = [d− 1; 1, d− 2, 1, 2d− 2].

b. Note that d <
√

d2 + 2 < d + 1. We compute α0 =
√

d2 + 2, a0 = d, P0 = 0, Q0 = 1, P1 = d,Q1 =
2, α1 = (d +

√
d2 + 2)/2, (d + d)/2 < α1 < (d + d + 1)/2, a0 = d, P2 = d,Q2 = 1, α2 = (d +√

d2 + 2)/1, a2 = 2d, P3 = d = P1, Q3 = 2 = Q1. So α = [d; d, 2d].

c. Using parts (a) and (b), we compute
√

47 =
√

72 − 2 = [6; 1, 5, 1, 12],
√

51 =
√

72 + 2 = [7; 7, 14],√
287 =

√
172 − 2 = [16; 1, 15, 1, 32].

12.4.11. a. Note that d <
√

d2 + 4 < d + 1. We compute α0 =
√

d2 + 4, a0 = d, P0 = 0, Q0 = 1, P1 = d,Q1 =
4, α1 = (d +

√
d2 + 4)/4, a1 = [2d/4] = (d − 1)/2, since d is odd. Then, P2 = d − 2, Q2 = d, α2 =

(d − 2 +
√

d2 + 4)/d, ((d − 2) + d)/d < α2 < (d − 2 + d + 1)/d, so a2 = 1, P3 = 2, Q3 = d, α3 =
(2 +

√
d2 + 4)/d, a3 = 1, P4 = d− 2, Q4 = 4, α4 = (d− 2 +

√
d2 + 4)/4, (d− 2 + d)/4 = (d− 1)/2 <

α4 < (d− 2 + d + 1)/4, so a4 = (d− 1)/2, P5 = d,Q5 = 1, α5 = (d +
√

d2 + 4)/1, a5 = 2d, P6 = d =
P1, Q6 = 4 = Q1, so α = [d; (d− 1)/2, 1, 1, (d− 1)/2, 2d].

b. Note that d − 1 <
√

d2 − 4 < d. We compute α0 =
√

d2 − 4, a0 = d − 1, P0 = 0, Q0 = 1, P1 =
d − 1, Q1 = 2d − 5, α1 = (d − 1 +

√
d2 − 4)/(2d − 5), (d − 1 + d − 1)/(2d − 5) < α0 < (d − 1 +

d)/(2d− 5) and d > 3 so a1 = 1, P2 = d− 4, Q2 = 4, a2 = (d− 4 +
√

d2 − 4)/4, a2 = (d− 3)/2, P3 =
d − 2, Q3 = d − 2, α3 = (d − 2 +

√
d2 − 4)/(d − 2), a3 = 2, P4 = d − 2, Q4 = 4, α4 = (d − 2 +√

d2 − 4)/4, a4 = (d − 3)/2, P5 = d− 4, Q5 = 2d− 5, α5 = (d− 4 +
√

d2 − 4)/(2d− 5), a5 = 1, P6 =
d − 1, Q6 = 1, α6 = (d − 1 +

√
d2 − 4)/1, a6 = 2d − 2, P7 = d − 1 = P1, Q7 = 2d − 5 = Q1, so α =

[d− 1; 1, (d− 3)/2, 2, (d− 3)/2, 1, 2d− 2].

12.4.12. Let α =
√

a2 + 1. Then by Exercise 4 part (a), we have α = [a; 2a], which has period length one. Con-
versely, suppose the period length of the continued fraction for

√
d is one, say

√
d = [a; 2a], the form

required for the square root of an integer. Then [a; 2a] = [a; x], where x = [2a; 2a]. Then x = [2a;x] =
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2a + (1/x), and so x2 − 2ax − 1 = 0. Since x is positive, we have x = a +
√

a2 + 1. Then
√

d = [a;x] =
a + (1/x) =

√
a2 + 1. So d = a2 + 1.

12.4.13. Suppose
√

d has period length 2. Then
√

d = [a; c, 2a] from the discussion preceding Example 12.16.
Then

√
d = [a; y] with y = [c; 2a] = [c; 2a, y] = c + 1/(2a + (1/y)) = (2acy + c + y)/(2ay + 1). Then

2ay2 − 2acy − c = 0, and since y is positive, we have y = (2ac +
√

(2ac)2 + 4(2a)c)/(4a) = (ac +√
(ac)2 + 2ac)/(2a). Then

√
d = [a; y] = a + (1/y) = a + 2a/(ac +

√
(ac)2 + 2ac) =

√
a2 + 2a/c, so d =

a2 + 2a/c, and b = 2a/c is an integral divisor of 2a. Conversely, let α =
√

a2 + b and b|2a, say kb = 2a.
Then a0 = [

√
a2 + b] = a, since (a2 < a2 + b < (a + 1)2. Then P0 = 0, Q0 = 1, P1 = a,Q1 = b, α1 =

(a +
√

a2 + b)/b, a1 = 4k, P2 = a,Q2 = 1, α2 = (a +
√

a2 + b)/1, a2 = 2a, P3 = a = P1, Q3 = b = Q1, so
α = [a; 4k, 2a], which has period length 2.

12.4.14. a. We have (α1+α2)′ = ((a1+b1

√
d)/c1+(a2+b2

√
d)/c2)′ = (((a1c2+a2c1)+(b1c2+b2c1)

√
d)/c1c2)′ =

((a1c2 + a2c1)− (b1c2 + b2c1)
√

d)/c1c2 = (a1 − b1

√
d)/c1 + (a2 − b2

√
d)/c2 = α′1 + α′2.

b. We have (α1−α2)′ = ((a1+b1

√
d)/c1−(a2+b2

√
d)/c2)′ = (((a1c2−a2c1)+(b1c2−b2c1)

√
d)/c1c2)′ =

((a1c2 − a2c1)− (b1c2 − b2c1)
√

d)/c1c2 = (a1 − b1

√
d)/c1 − (a2 − b2

√
d)/c2 = α′1 − α′2.

c. (α1α2)′ = ((a1 + b1

√
d)/c1 · (a2 + b2

√
d)/c2)′ = (((a1a2 + b1b2d)+(a1b2 +a2b1)

√
d)/c1c2)′ = ((a1a2 +

b1b2d)− (a1b2 + a2b1)
√

d)/c1c2 = (a1(a2 − b2

√
d)− b1

√
d(a2 − b2

√
d))/c1c2 = (a1 − b1

√
d)/c1 · (a2 −

b2

√
d)/c2 = α′1α

′
2.

12.4.15. a. We have 1+
√

5 > 1, but (1+
√

5)′ = 1−√5 < −1. Hence, by Theorem 12.21, the continued fraction
of 1 +

√
5 is not purely periodic.

b. We have 2 +
√

8 > 1 and −1 < (2 +
√

8)′ = 2−√8 < 0, so by Theorem 12.21 the continued fraction
expansion of 2 +

√
8 is purely periodic.

c. We have 4 +
√

17 > 1 and −1 < (4 +
√

17)′ = 4 − √17 < 0, so by Theorem 12.21 the continued
fraction expansion of 4 +

√
17 is purely periodic.

d. We have (11−√10)/9 < 1, so by Theorem 12.21, the continued fraction expansion of (11−√10)/9
is not purely periodic.

e. We have (3 +
√

23)/2 > 1 and −1 < ((3 +
√

23)/2)′ = (3 − √23)/2 < 0, so by Theorem 12.21 the
continued fraction expansion of (3 +

√
23)/2 is purely periodic.

f. We have (17 +
√

188)/3 > 1 but ((17 +
√

188)/3)′ = (17 − √188)/3 > 0, so by Theorem 12.21 the
continued fraction expansion of (17 +

√
188)/3 is not purely periodic.

12.4.16. If α = (a +
√

b)/c is reduced, then 1 < (a +
√

b)/c and −1 < (a −
√

b)/c < 0. Adding the first two
inequalities gives 0 < 2a/c, so a and c have the same sign. If they were both negative, then (a −

√
b)/c

would be positive, contrary to assumption, so a and c are both positive. Then 1 < (a +
√

b)/c implies
c < a +

√
b. Also −1 < (a−

√
b)/c < 0 implies c >

√
b− a > 0. This gives us all the desired inequalities.

The converse is proved by reversing these steps.

12.4.17. Let α = (a+
√

b)/c. Then−1/α′ = −(c)/(a−
√

b) = (ca+
√

bc2)/(b−a2) = (A+
√

B)/C, say. By Exercise
16, 0 < a <

√
b and

√
b− a < c <

√
b + a < 2

√
b. Multiplying by c gives 0 < ca <

√
bc2 and

√
bc2 − ca <

c2 <
√

bc2 + ca < 2
√

bc2. That is, 0 < A <
√

B and
√

B − A < c2 <
√

B + A < 2
√

B. Multiply
√

b− a <

c by
√

b + a to get C = b− a2 <
√

bc2 + ca = A +
√

B. Multiply c <
√

b + a by
√

b− a to get
√

B − A =√
bc2 − ac < b− a2 = C. So, −1/α′ satisfies all the inequalities in Exercise 16, and therefore is reduced.

12.4.18. If y = [2A; 2, . . . , 2, y] with k 2’s (A an integer > 1), then the simple continued fraction for y has period
k + 1. Now prove by induction that [0; 2, . . . , 2, y] = (ak−1y + ak−2)/(aky + ak−1). For the basis steps,
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k = 1 and 2, take a0 = 1 and a−1 = 0. Thus y satisfies the equation y − 2A = (ak−1y + ak−2)/(aky +
ak−1) which simplifies to aky2 − 2Aaky = 2Aak−1 + ak−2. Define B by 2Aak−1 + ak−2 = Bak. Then
y2 − 2Ay = B or (y − A)2 = A2 + B. Thus if B is a positive integer, D = B + A2, and we have

√
D =

y − A = [A; 2, ..., 2, y] with a simple continued fraction expansion of period k + 1. Now using ak−2 =
ak − 2ak−1, the equation above becomes 2(A − 1)ak−1 = (B − 1)ak. This must be an integer divisible
by 2ak and ak−1, so let it be 2tak−1ak, where t is a positive integer. Then we have a solution with B =
1 + 2tak−1, A = 1 + tak, and D = (1 + tak)2 + 1 + 2tak−1. This completes the proof.

12.4.19. Start with α0 =
√

Dk + 3k + 1 (this will have the same period since it differs from
√

Dk by an integer)
and use induction. Apply the continued fraction algorithm to show α3i =

√
Dk + 3k − 2 · 3k−i + 2/(2 ·

3k−i), i = 1, 2, . . . , k, but α3k+3i =
√

Dk + 3k − 2/(2 · 3i), i = 1, 2, . . . , k − 1, and α6k =
√

Dk + 3k + 1 =
α0. Since αi 6= α0 for i < 6k we see that the period is 6k.

12.5. Factoring Using Continued Fractions
12.5.1. We have 192 − 22 = (19 − 2)(19 + 2) ≡ 0 (mod 119). Then (19 − 2, 119) = (17, 119) = 17 and (19 +

2, 119) = (21, 119) = 7 are factors of 119.

12.5.2. In expanding the continued fraction of
√

1537, we have P0 = 0, Q0 = 1, a0 = 39, P1 = 39, Q1 =
16, a1 = 4, P2 = 25, Q2 = 57, a2 = 1, P3 = 32, Q3 = 9, a3 = 7, and P4 = 31, Q4 = 64, a4 = 1. Since Q4 =
82 is a square and has even index, we examine the congruence p2

3 ≡ Q4 (mod 1537). The third conver-
gent of

√
1537 is 1529

39 , so p3 = 1529 and the congruence is 15292 ≡ 82 (mod 1537). This implies that
(15292 − 82) = (1529 − 8)(1529 + 8) ≡ 0 (mod 1537), which does not lead to a factor, since 1529 + 8 =
1537, so we continue: P5 = 33, Q5 = 7, a5 = 10, P6 = 37, Q6 = 24, a6 = 3, P7 = 35, Q7 = 13, a7 = 5, P8 =
30, Q8 = 49, a8 = 7. Since Q8 = 72 is a square and has even index, we examine the congruencep2

7 ≡
Q8 (mod 1537). Since p7 = 309089, we have 3090892 ≡ 72 (mod 1537), which implies that (3090892 −
72) = (309089− 7)(309089 + 7) ≡ 0 (mod 1537). Then we find that (309089− 7, 1537) = 309082, 1537) =
29 and (309089 + 7, 1537) = (309096, 1537) = 53 are factors of 1537.

12.5.3. Using a computer to generate lists [k, αk, ak, Pk, Qk,
√

Qk], we have [1,
√

13290059, 3645, 0, 1, 1],
[2, (3645 +

√
13290059)/4034, 1, 3645, 4034,

√
4034], [3, (389 +

√
13290059)/3257, 1, 389, 3257,

√
3257],

[4, (2868 +
√

13290059)/1555, 4, 2868, 1555,
√

1555], [5, (3352 +
√

13290059)/1321, 5, 3352, 1321,
√

1321],
[6, (3253 +

√
13290059)/2050, 3, 3253, 2050, 5

√
82], [7, (2897 +

√
13290059)/2389, 2, 2897, 2389,

√
2389],

[8, (1881 +
√

13290059)/4082, 1, 1881, 4082,
√

4082], [9, (2201 +
√

13290059)/2069, 2, 2201, 2069,
√

2069],
[10, (1937 +

√
13290059)/4610, 1, 1937, 4610,

√
4610], [11, (2673 +

√
13290059)/1333, 4, 2673, 1333,

√
1333],

[12, (2659 +
√

13290059)/4666, 1, 2659, 4666,
√

4666], [13, (2007 +
√

13290059)/1985, 2, 2007, 1985,
√

1985],
[14, (1963 +

√
13290059)/4754, 1, 1963, 4754,

√
4754], [15, (2791 +

√
13290059)/1157, 5, 2791, 1157,

√
1157],

[16, (2994 +
√

13290059)/3739, 1, 2994, 3739,
√

3739], [17, (745 +
√

13290059)/3406, 1, 745, 3406,
√

3406],
[18, (2661 +

√
13290059)/1823, 3, 2661, 1823,

√
1823], [19, (2808 +

√
13290059)/2965, 2, 2808, 2965,

√
2965],

[20, (3122 +
√

13290059)/1195, 5, 3122, 1195,
√

1195], [21, (2853 +
√

13290059)/4310, 1, 2853, 4310,
√

4310],
[22, (1457 +

√
13290059)/2591, 1, 1457, 2591,

√
2591], [23, (1134 +

√
13290059)/4633, 1, 1134, 4633,

√
4633],

[24, (3499 +
√

13290059)/226, 31, 3499, 226,
√

226], [25, (3507 +
√

13290059)/4385, 1, 3507, 4385,
√

4385],
[26, (878 +

√
13290059)/2855, 1, 878, 2855,

√
2855], [27, (1977 +

√
13290059)/3286, 1, 1977, 3286,

√
3286],

[28, (1309 +
√

13290059)/3523, 1, 1309, 3523,
√

3523], [29, (2214 +
√

13290059)/2381, 2, 2214, 2381,
√

2381],
[30, (2548 +

√
13290059)/2855, 2, 2548, 2855,

√
2855], [31, (3162 +

√
13290059)/1153, 5, 3162, 1153,

√
1153],

[32, (2603 +
√

13290059)/5650, 1, 2603, 5650, 5
√

226], [33, (3047 +
√

13290059)/709, 9, 3047, 709,
√

709],
[34, (3334 +

√
13290059)/3067, 2, 3334, 3067,

√
3067], [35, (2800 +

√
13290059)/1777, 3, 2800, 1777,

√
1777],

[36, (2531 +
√

13290059)/3874, 1, 2531, 3874,
√

3874], [37, (1343 +
√

13290059)/2965, 1, 1343, 2965,
√

2965],
[38, (1622 +

√
13290059)/3595, 1, 1622, 3595,

√
3595], [39, (1973 +

√
13290059)/2614, 2, 1973, 2614,

√
2614],

[40, (3255 +
√

13290059)/1031, 6, 3255, 1031,
√

1031], [41, (2931 +
√

13290059)/4558, 1, 2931, 4558,
√

4558],
[42, (1627 +

√
13290059)/2335, 2, 1627, 2335,

√
2335], [43, (3043 +

√
13290059)/1726, 3, 3043, 1726,

√
1726],

[44, (2135 +
√

13290059)/5059, 1, 2135, 5059,
√

5059], [45, (2924 +
√

13290059)/937, 7, 2924, 937,
√

937],
[46, (3635 +

√
13290059)/82, 88, 3635, 82,

√
82], [47, (3581 +

√
13290059)/5689, 1, 3581, 5689,

√
5689],

[48, (2108 +
√

13290059)/1555, 3, 2108, 1555,
√

1555], [49, (2557 +
√

13290059)/4342, 1, 2557, 4342,
√

4342],
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[50, (1785 +
√

13290059)/2327, 2, 1785, 2327,
√

2327], [51, (2869 +
√

13290059)/2174, 2, 2869, 2174,
√

2174],
[52, (1479 +

√
13290059)/5107, 1, 1479, 5107,

√
5107], [53, (3628 +

√
13290059)/25, 290, 3628, 25, 5].

So we have Q53 = 52. Using a computer again, we find that p52 = 3527010868224812925002106 ≡
2467124 (mod 13290059). Then (13290059, 2467124 − 5) = 4261 and (13290059, 2467124 + 5) = 3119, so
we have 13290059 = 3119 · 4261.

12.5.4. First, x2 =
∏r

j=1 x2
j ≡ ∏r

j=1

(
(−1)e0j

∏m
k=1 p

ekj

k

) ≡ (−1)e01+e02+···+e0r
∏m

k=1 pek1+ek2+···+ekr

k ≡
(−1)2e0

∏m
k=1 p2ek

k ≡ y2 (mod n). Once x1, x2, . . . , xr have been found satisfying the r congruences and
the m equations, we can form a solution to x2 ≡ y2 (mod n) and finish the factorization process as in
the continued fraction method.

12.5.5. We have 172 = 289 ≡ 3 (mod 143) and 192 = 361 ≡ 3 · 52 (mod 143). Combining these, we have
(17 · 19)2 ≡ 3252 (mod 143). Hence, 3232 ≡ 152 (mod 143). It follows that 3232 − 152 = (323− 15)(323 +
15) ≡ 0 (mod 143). This produces the two factors (323−15, 143) = (308, 143) = 11 and (323+15, 143) =
(338, 143) = 13 of 143.

12.5.6. We have a notational problem, since pi is used for two things. Let p1 etc. stand for the primes. Let
πk stand for the “pk’s” in the continued fraction development, as in Theorem 12.22. Then from Theo-

rem 12.22, we have π2
k ≡ (−1)k−1Qk+1 (mod n), for all k. Then πki−1 ≡ (−1)ki−2

r∏

j=1

p
kij

j (mod n). Then

(
t∏

i=1

πki−1

)2

≡
t∏

i=1

π2
ki−1 ≡

t∏

i=1


(−1)ki−2

r∏

j=1

p
kij

j


 ≡ (−1)

Pt
i=1 ki=2

t∏

i=1

r∏

j=1

p
kij

j (mod n) Since
t∑

i=1

ki = 2

is even we have the last term congruent to
t∏

i=1

r∏

j=1

p
kij

j ≡
r∏

j=1

p
Pt

i=1 kij

j ≡
r∏

j=1

pw
j (mod n) where w is even.

Therefore, this last term is a perfect square, say m2, and the very first expression is also a square, say P 2.
Then we have P 2 ≡ m2 (mod n) and now we may proceed as in Example 12.17.

12.5.7. We use a computer to find p0 ≡ 3465, p11 ≡ 1211442, p27 ≡ 6764708, p33 ≡ 6363593, and p40 ≡
8464787 (mod 12007001). The product of these reduces to P = 9815310 (mod 12007001). Then Q =√

Q1Q12Q28Q34Q40 = 1247455. Then the factors of 12007001 are (12007001, P − Q) = 3001 and
(12007001, P + Q) = 4001.

12.5.8. We compute Qi until we have a subset which has only prime factors of 2,3, and 5, each occurring an
even number of times, in total. We find Q4 = 720 = 24325 and Q10 = 405 = 345. Further p4 = 750943 and
p10 = 3143053051. Then, following Exercise 6, (7509432 · 31430530512 ≡ 720 · 405 ≡ 5402 (mod 197209).
Then (750943 · 3143053051 − 540, 197209) = 199, and (750943 · 3143053051 + 540, 197209) = 991, which
gives us 197209 = 199 · 991.





CHAPTER 13

Some Nonlinear Diophantine Equations

13.1. Pythagorean Triples
13.1.1. a. Since z = m2 + n2 ≤ 40, we have m ≤ 6. The triples we seek are those in Table 13.1 with z ≤ 40:

(3,4,5), (5,12,13), (15,8,17), (7,24,25), (21,20,29), and (35,12,37).

b. These would be triples which are multiples of the primitive triples. In addition to those in part (a),
we have (6,8,10), (9,12,15), (12,16,20), (15,20,25), (18,24,30), (21,28,35), (24,32,40), (10,24,26), (15,36,39),
and (30,16,34).

13.1.2. If 3 - x or y, then x2 ≡ y2 ≡ 1 (mod 3). But then z2 ≡ 1 + 1 ≡ 2 (mod 3) which is impossible.

13.1.3. By Lemma 13.1, 5 divides at most one of x, y, and z. If 5 - x or y, then x2 ≡ ±1 (mod 5) and y2 ≡
±1 (mod 5). Then, z2 ≡ 0, 2, or −2 (mod 5). But ±2 is not a quadratic residue modulo 5, so z2 ≡
0 (mod 5), whence 5 | z.

13.1.4. From Theorem 13.1, one of m and n must be even, so 2 | mn. Therefore, 4 | 2mn = y.

13.1.5. Let k be an integer ≥ 3. If k = 2n + 1, let m = n + 1. Then m and n have opposite parity, m > n and
m2 − n2 = 2n + 1 = k, so m and n define the desired triple. If k has an odd divisor d > 1, then use the
construction above for d and multiply the result by k/d. If k has no odd divisors, then k = 2j for some
integer j > 1. Let m = 2j−1 and n = 1. Then k = 2mn, m > n, and m and n have opposite parity, so m
and n define the desired triple.

13.1.6. Proceed by induction. The basis step is x2
1 = y2

1 = 32 + 42 = 52 = z2
1 . Assume that xn, yn, zn is a

Pythagorean triple. Then

x2
n+1 + y2

n+1 = (3xn + 2zn + 1)2 + (3xn + 2zn + 2)2

= 18x2
n + 8z2

n + 5 + 24xnyn + 18xn + 12zn

= (16x2
n + 9z2

n + 24xnyn + 16xn + 12zn + 4)
+(2x2

n − z2
n + 2xn + 1)

= z2
n+1 + (x2

n + 2xn + (x2
n − z2

n))

= z2
n+1 + (xn + 1)2 − y2

n

= z2
n+1

which completes the induction step.

13.1.7. Substituting y = x+1 into the Pythagorean equation gives us 2x2 +2x+1 = z2, which is equivalent to
m2− 2z2 = −1 where m = 2x + 1. Dividing by z2 yields m2/z2− 2 = −1/z2. Note that m/z ≥ 1, 1/z2 =
2 −m2/z2 = (

√
2 + m/z)(

√
2 −m/z) < 2(

√
2 −m/z). So by Theorem 12.18, m/z must be a convergent

of the continued fraction expansion of
√

2. Further, by the proof of Theorem 12.13, it must be one of the
even-subscripted convergents. Therefore each solution is given by the recurrence mn+1 = 3mn + 2zn,
zn+1 = 2mn +3mn. (See, e.g., Theorem 13.11.) Substituting x back in yields the recurrences of Exercise 6.

13.1.8. 2y2 = z2 − x2 = (z − x)(z + x). x and y have the same parity, so (z − x)/2 and (z + x)/2 are integers.
It suffices to assume (x, z) = 1. Then either ((z − x)/2, z + x) = 1, and then y2 = ((z − x)/2)(z + x) =
m2n2, and solving (z − x)/2 = m2 and z + x = n2 for x and y gives x = (m2 − 2n2)/2, y = mn, z =

203
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(m2 + 2n2)/2. Or ((z + x)/2, z − x) = 1 which gives x = (2m2 − n2)/2, y = mn, z = (2m2 + n2)/2.

13.1.9. See Exercise 15 with p = 3.

13.1.10. All primitive solutions are given as follows: Let r, s, t be arbitrary integers, with (r, s, t) = 1. Then let
x0 = 2rt, y0 = 2st, z0 = t2 − r2 − s2, and w0 = t2 + r2 + s2. Let d = (x0, y0, z0, w0). Then x = x0/d, y =
y0/d, z = z0/d,w = w0/d is a primitive solution.

13.1.11. We must find all primitive triples containing a divisor of 12: 2, 3, 4, 6, or 12. Such a triple must have
x = m2 − n2, y = 2mn, z = m2 + n2, and (m,n) = 1. So only y is even. If y = 2mn = 2, then m = n = 1,
and x = 0, which is not allowed. If y = 2mn = 4, then m = 2, and n = 1, so x = 3 and z = 5. If y = 6 =
2mn then m = 3, n = 1, which are not of opposite parity. If y = 12 = 2mn, then either m = 6, n = 1, x =
35, and z = 37; or m = 3, n = 2, x = 5, and z = 13. Now z 6= 3 since 9 is not the sum of two squares.
If x = 3 = m2 − n2 = (m + n)(m − n), then m = 2, n = 1, y = 4, and z = 5. Multiples of these triples
containing 12 are (9,12,15), (35,12,37), (5,12,13), and (12,16,20).

13.1.12. Let m be odd. Then all solutions are given by x = m, y = (x2 − 1)/2, z = (x2 + 1)/2.

13.1.13. If m is positive, then all solutions are given by x = 2m, y = m2 − 1, z = m2 + 1.

13.1.14. Suppose x is odd and has prime factorization x = pa1
1 · · · par

r . If x is part a Pythagorean triple, then it
can be factored as x = def where f is the greatest common divisor of x, y, and z, d = m − n, and e =
m + n, so that de = m2 − n2 where m and n are given by Theorem 13.1. We need to count the number
of such factorizations. Since (d, e) = 1, a prime factor pi of x can only divide one of d and e. Thus, there
are 2ai + 1 ways that the ai factors of pi can be distributed among d, e, and f , namely, either 0, 1, 2, . . . ,
or r of them divide d and the rest divide f or 0, 1, 2, . . . , or r of them divide e and the rest divide f . This
gives (2a1 + 1)(2a2 + 1) · · · (2ar + 1) = τ(x2) ways, except, we can not have f = x, and if d > e then d
and e reverse roles, so we have (τ(x2)− 1)/2 different ways. The argument for x even is similar.

13.1.15. Check that if m >
√

pn then x = (m2 − pn2)/2, y = mn, z = (m2 + pn2)/2 is a solution. Conversely, if
x, y, z is a primitive solution, then y2 = (z2 − x2)/p, so p | (z ± x). Take m2 = z ∓ x and n2 = (z ± x)/p.

13.1.16. Rewrite the equation as x2 + y2 = (xy/z)2. Then xy/z must be an integer and from Theorem 13.1, we
have x = m2 − n2, y = 2mn, and xy/z = m2 + n2, for some integers m and n. Then z = 2mn(m2 −
n2)/(m2 +n2), but to ensure that z in an integer, we multiply x, y, and z by (m2 +n2) and get x = (m2−
n2)(m2 +n2) = (m4−n4), y = 2mn(m2 +n2), and z = 2mn(m2−n2). This is the form of every solution.

13.1.17. Substituting fn = fn+2 − fn+1 and fn+3 = fn+2 + fn+1 into (fnfn+3)2 + (2fn+1fn+2)2 yields (fn+2 −
fn+1)2(fn+2+fn+1)2+4f2

n+1f
2
n+2 = (f2

n+2−f2
n+1)

2+4f2
n+1f

2
n+2 = f4

n+2−2f2
n+1f

2
n+2+f4

n+1+4f2
n+1f

2
n+2 =

f4
n+2 + 2f2

n+1f
2
n+2 + f4

n+1 = (f2
n+2 + f2

n+1)
2, which proves the result.

13.1.18. Let x, y, and z be the sides of such a triangle. Then (x, y, z) is a Pythagorean triple and there must be
integers (m, n) such that x = m2 − n2, y = 2mn and z = m2 + n2. Since the triangle is a right triangle
with legs x and y, its area is xy/2. If the area equals the perimeter, we have x + y + z = xy/2. Substi-
tuting the above relations gives us (m2 − n2) + 2mn + (m2 + n2) = (m2 − n2)2mn/2. Simplifying and
dividing through by m gives us 2m + 2n = (m2 − n2)n. We factor both sides and divide by m + n to get
2 = (m− n)n, which tells us that n = 1 or 2. If n = 1, then m− n = 2 and so m = 3, which implies that
(x, y, z) = (8, 6, 10). If n = 2, then m− n = 1 and so m = 3, which implies that (x, y, z) = (5, 12, 13) and
these are the only solutions.

13.2. Fermat’s Last Theorem
13.2.1. Assume without loss of generality that x < y. Then xn + yn = x2xn−2 + y2yn−2 < (x2 + y2)yn−2 =

z2yn−2 < z2zn−2 = zn.
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13.2.2. Let n ≥ 3 be an integer and x, y, z be a solution to xn + yn = zn. If n has an odd prime factor p, say
n = pk, then we have (xk)p + (yk)p = (zk)p, so xk, yk, zk is a solution to xp + yp = xp, a contradiction.
If n has no odd factor, then n is a power of 2. Since n > 2, 4 | n, say n = 4k. Now 4 plays the role of p
above to give a solution to x4 + y4 = z4, also a contradiction.

13.2.3. a. If p | x, y, or z, then certainly p | xyz. If not, then by Fermat’s Little Theorem, xp−1 ≡ yp−1 ≡ zp−1 ≡
1 (mod p). Hence, 1 + 1 ≡ 1 (mod p), which is impossible.

b. We know ap ≡ a (mod p) for every integer a. Then xp +yp ≡ zp (mod p) implies x+y ≡ z (mod p),
so p | x + y − z.

13.2.4. We have z2 + (y2)2 = (x2)2. If y2 = 2mn, then m = u2, and n = 2v2. Then z2 = m2 − n2 = u4 − v4,
and u4 = m2 < m2 + n2 < x2 < x4, so we have a smaller positive solution. If y2 = m2 − n2, z = 2mn,
and x2 = m2 + n2, then x2y2 = m4 − n4 which is a smaller solution, since m2 < x2.

13.2.5. Let x and y be the lengths of the legs and z be the hypotenuse. Then x2 + y2 = z2. If the area is a
perfect square, we have A = 1

2xy = r2. Then, if x = m2 − n2, and y = 2mn, we have r2 = mn(m2 − n2).
All of these factors are relatively prime, so m = a2, n = b2, and m2 − n2 = c2, say. Then, a4 − b4 = c2,
which contradicts Exercise 4.

13.2.6. It suffices to take x and z odd. We have (x2)2 + (2y2)2 = z2. Then x2 = m2 − n2 and 2y2 = 2mn, so
m = r2 and n = s2. Then, x2 = r4 − s4 which contradicts Exercise 4.

13.2.7. We use the method of infinite descent. Assume there is a nonzero solution with where |x| is mini-
mal. Then (x, y) = 1. Also x and z cannot both be even, because then y would be odd and then z2 ≡
8 (mod 18), but 8 is not a quadratic residue modulo 16. Therefore x and z are both odd, since 8y4 is
even. From here it is easy to check that (x, z) = 1. We may also assume (by negating if necessary) that
x ≡ 1 (mod 4) and z ≡ 3 (mod 4). Clearly x2 > |z|. We have 8y4 = x4 − z2 = (x2 − z)(x2 + z). Since z ≡
3 (mod 4), we have x2− z ≡ 2 (mod 4), so m = (x2− z)/2 is odd, and n = (x2 + z)/4 is an integer. Since
no odd prime can divide both m and n, we have (m,n) = 1, m,n > 0 and mn = y4, whence m = r4 and
n = s4, with (r, s) = 1. So now r4 + 2s4 = m + 2n = x2. This implies (x, r) = 1, since no odd prime
divides r and x but not s, and r and x are both odd. Also, |x| > r2 > 0. Now consider 2s4 = (x2 − r4) =
(x− r2)(x + r2). Then, s must be even since a difference of squares is not congruent to 2 (mod 4), so s =
2t and 32t4 = (x − r2)(x + r2). Recalling x ≡ 1 (mod 4) and r is odd, we have U = (x + r2)/2 is odd
and V = (x − r2)/16 is an integer. Again (U, V ) = 1 and UV = t4, but we don’t know the sign of x. So
U = ±u4 and V = ±v4, depending on the sign of x. Now r2 = ±(u4 − 8v4). But since u is odd, the sign
can’t be − (or else r2 ≡ 7 (mod 8).) So the sign is + (hence x is positive), and we have u4 − 8v4 = r2.
Finally, |v| > 0 because |x+ r2| > 0. So we haven’t reduced to a trivial case. Then, u4 = U < |x+ r2|/2 <
x, so |u| < x, and so |x|was not minimal. This contradiction shows that there are no nontrivial solutions.

13.2.8. For the basis step, note that f2/f1 = 1. Suppose that fk/fk−1 = [1; 1, 1, . . . , 1], where there are k − 1
1s in the continued fraction. Then we have fk+1/fk = (fk + fk−1)/fk = 1 + 1/ fk

fk−1
. Using Exercise 7 of

Section 10.3, we have that fk+1/fk = [1; 1, 1, . . . , 1], where there are k 1s in the continued fraction.

13.2.9. (Solution by John R. Ramsden.) First we mimic the construction of the solutions to the Pythagorean
equation to solve the 2nd-order diophantine equation x2 + 3y2 = z2 and find that all solutions are given
by ±2ex = m2 − 3n2, 2ey = 2mn, 2e = m2 + 3n2 for relatively prime integers m and n, where (i) x and
y are odd and z is even if and only if e = 1 and m and n are both odd, and (ii) x and z are odd and y is
even if and only if e = 0 and m and n have opposite parity.

Now consider the diophantine equation x4 +3y4 = z4 modulo 8. If x and y are odd and z is even, we
get a contradiction, so case (i) above doesn’t happen for the 4th-order specialization. Assume we have a
nontrivial solution with x, y and z pairwise relatively prime and z as small as possible. Then as above,
since we must be in case (ii), x2 = ±(m2−3n2), y2 = 2mn and z2 = m2 +3n2. If m were even and n odd,
then m2 would be divisible by 4 and n2 ≡ 1 (mod 4), so that z2 = m2+3n2 ≡ 3 (mod 4) a contradiction,
therefore m is odd and n is even. Then if x2 = −(m2 − 3n2) ≡ −1 (mod 4), also a contradiction, so we
have x2 = m2 − 3n2.
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Now, since (m,n) = 1 and n is even and y2 = 2mn, we have m = U2, n = 2V 2 and so y = 2UV , for
some integers U and V . Then x2 = U4−12V 4 and z2 = U4 +12V 4, both of which are diophantine equa-
tions which can be considered as 2nd-order of the type solved above. If we do, we find integers (p, q) =
(r, s) = 1, with p and q of opposite parity and r and s of opposite parity such that U2 = p2 − 3q2 =
r2 + 3s2 and V 2 = pq = rs. This last equation shows that p = P 2, q = Q2, r = R2, and s = S2 for some
integers P, Q,R and S. Since (p, q) = (r, s) = 1 and pq = rs, there must be integers (a, d) = (b, c) = 1
such that p = ab, q = cd, r = ac, s = bd (this is the so-called “Lucas Lemma”.) Then since p = P 2 = ab,
we let a = fA2, b = fB2 where f is squarefree. Then since r = R2 = ac = fA2c, we see that c = fC2

for some C. But since (b, c) = 1, we have that f = 1, so V 2 = pq = rs and (A,D) = (B,C) = 1. So we
have p = A2B2, q = C2D2, r = A2C2, and s = B2D2. When we substitute these in for U2 in the two
solutions above we get (A4−3D4)B4 = (A4 +3D4)C4. Since (B, C) = 1 we must have, for some integer
E, A4 − 3D4 = EC4 and A4 + 3D4 = EB4. Now, since U2 = r2 + 3s2, it’s easy to check that (r, 6) =
1 and hence (A, 6) = 1. If we add and subtract the last two equations we get 2A4 = E(B4 + C4) and
6D4(B4 − C4). Since (A, 6) = 1, we see that E divides 2 and 6 and since it’s positive, we conclude E =
1 or 2. If E = 1, then the second equation A4 + 3D4 = EB4 is an equation of the same type but with
smaller positive value for z, completing the descent argument. If E = 2, then we add the equations and
divide by 2 to get A4 = B4 +C4 and note that Fermat showed this equations has no nontrivial solutions.

13.2.10. We add 1 to both sides of the equation to get y2 + 1 = x3 + 8 Reducing modulo 4 yields y2 + 1 ≡ x3

(mod 4). Since y2 ≡ 0 or 1 (mod 4), then x3 ≡ 1 or 2 (mod 4), but the only solution to these last con-
gruences is x ≡ 1 (mod 4). Now x3 + 8 = (x + 2)(x2 + 2x + 4) and x2 + 2x + 4 ≡ 3 (mod 4). Therefore
x2 + 2x + 4 is divisible by a prime p ≡ 3 (mod 4), since a product of primes congruent to 1 modulo 4 is
again congruent to 1 modulo 4. But then p | y2 + 1, which implies that −1 is a quadratic residue modulo
p, which is not possible by Theorem 11.5. Therefore there are no solutions to the equation.

13.2.11. If x were even, the y2 = x3 + 23 ≡ 3 (mod 4), which is impossible, so x must be odd, making y even,
say y = 2v. If x ≡ 3 (mod 4), then y2 ≡ 33 +23 ≡ 2 (mod 4) which is also impossible, so x ≡ 1 (mod 4).
Add 4 to both sides of the equation to get y2 + 4 = 4v2 + 4 = x3 + 27 = (x + 3)(x2 − 3x + 9). Then z =
x2− 3x +9 ≡ 1− 3 + 9 ≡ 3 (mod 4), so a prime p ≡ 3 (mod 4) must divide z. Then 4v2 +4 ≡ 0 (mod p)
or v2 ≡ −1 (mod p). But this shows that a prime congruent to 3 modulo 4 has−1 as a quadratic residue,
which contradicts Theorem 11.5. Therefore, the equation has no solutions.

13.2.12. If x is even, then modulo 8 the equation becomes y2 ≡ 5 (mod 8) which is impossible, since 5 is not a
quadratic residue modulo 8. If x ≡ 1 (mod 4) then y2 ≡ 2 (mod 4), which is also impossible, since 2 is
not a quadratic residue modulo 4. Therefore x ≡ 3 or 7 (mod 8). Suppose x ≡ 3 (mod 8). Subtract 72 =
2 · 62 from both sides of the equation to get y − 2 · 62 = x3 − 27 = (x − 3)(x2 + 3x + 9). First note that
if 3 | x, then 3 | y so that x = 3a and y = 3b for some integers a and b. Then the equation becomes b2 =
3a3 + 5, which implies b2 ≡ 2 (mod 3), but 2 is not a quadratic residue modulo 3. Therefore 3 - x. Now
note that x2 +3x+9 ≡ 3 (mod 8). The product of integers congruent to 1 or 7 modulo 8 is again congru-
ent to 1 or 7 modulo 8. Therefore, a prime p congruent to 3 or 5 modulo 8 must divide x2 + 3x + 9. Then
the equation becomes y2 ≡ 2 · 62 (mod p) (since x − 3 6= 0) which implies that 2 is a quadratic residue
modulo p ≡ ±3 (mod 8), which is impossible. Therefore x 6≡ 3 (mod 8). Now suppose x ≡ 7 (mod 8).
Subtract 18 = 2 · 32 from both sides of the equation to get y = 2 · 32 = x3 + 27 = (x + 3)(x2 − 3x + 9).
Then x2 − 3x + 9 ≡ 5 (mod 8) and, as above, must be divisible by a prime p congruent to 3 or 5 modulo
8. Then we have y2 ≡ 2 · 32 which implies that 2 is a quadratic residue modulo p ≡ ±3 (mod 8), which
is impossible. Therefore, there are no solutions to the diophantine equation.

13.2.13. If there were two perfect squares in a Pythagorean triple, then we would have a solution of either the
equation in Theorem 13.3 or the equation in Exercise 4, both of which have no nontrivial solutions.

13.2.14. We compute x2 + y2 = (3k2 − 1)2 + (k(k2 − 3))2 = k6 + 3k4 + 3k2 + 1 = (k2 + 1)3 = z3.

13.2.15. Assume n - xyz, and (x, y, z) = 1. Now (−x)n = yn + zn = (y + z)(yn−1 − yn−2z + · · · + zn−1), and
these factors are relatively prime, so they are nth powers, say y+z = an, and yn−1−yn−2z+ · · ·+zn−1 =
αn, whence x = aα. Similarly, z + x = bn, and (zn−1 − zn−2x + · · · + xn−1) = βn, −y = bβ, x + y =
cn, and (xn−1 − xn−2y + · · · + yn−1) = γn, and −z = cγ. Since xn + yn + zn ≡ 0 (mod p), we have p |
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xyz, say p | x. Then γn = (xn−1 − xn−2y + · · · + yn−1) ≡ yn−1 (mod p). Also 2x ≡ bn + cn + (−a)n ≡
0 (mod p), so by the condition on p, we have p | abc. If p | b then y = −bβ ≡ 0 (mod p), but then p | x
and y, a contradiction. Similarly, p cannot divide c. Therefore, p | a, so y ≡ −z (mod p), and so αn ≡
(yn−1 − yn−2z + · · · + zn−1) ≡ nyn−1 ≡ nγn (mod p). Let g be the inverse of γ (mod p), then (ag)n ≡
n (mod p), which contradicts the condition that there is no solution to wn ≡ n (mod p).

13.2.16. Let k and z be any positive integers. Then substituting the suggested expressions gives us w3 + x3 +
y3 = 729k12z3 +

(
1− 9k3

)3
z3 + 27k3

(
1− 3k3

)3
z3 = 729k12z3 + z3 − 27k3z3 + 243k6z3 − 729k9z3 +

27k3z3 − 243k6z3 + 729k9z3 − 729 k12z3 = z3, as desired.

13.2.17. Note that 33 + 43 + 53 = 27 + 64 + 125 = 216 = 63.

13.2.18. Let m and n be positive integers. Substituting the suggested expressions yields a large, 28th degree
polynomial in m and n on each side of the equation. Inspection reveals both polynomials to be the same.

13.2.19. If m ≥ 3 then modulo 8 we have 3n ≡ −1 (mod 8) which is impossible, so m = 1 or 2. If m = 1, then
3n = 2− 1 = 1 which implies that n = 0 which is not a positive integer, so we have no solutions in this
case. If m = 2, then 3n = 22 − 1 = 3, which implies that n = 1, and this is the only solution.

13.2.20. If m ≥ 3, we have 3n − 1 ≡ 0 (mod 8), which implies that n = 2k for some integer k. Then 32k − 1 =
(3k−1)(3k +1) = 2m, so that 3k−1 and 3k +1 must be powers of 2 which differ by 2. Therefore 3k +1 =
4 and 3k− 1 = 2 and hence k = 1, n = 2 and m = 3. If m = 2, then 3n = 5 has no solution. If m = 1, then
3n = 2 + 1, and so n = 1. So the only solutions are m = 3, n = 2 and m = 1 = n.

13.2.21. a. Substituting the expressions into the left-hand side of the equation yields a2 + b2 + (3ab − c)2 =
a2 + b2 + 9a2b2 − 6abc + c2 = (a2 + b2 + c2) + 9a2b2 − 6abc. Since (a, b, c) is a solution to Markoff’s
equation, we substitute a2 + b2 + c2 = 3abc to get the last expression equal to 3abc + 9a2b2 − 6abc =
9a2b2 − 3abc = 3ab(3ab − c), which is the right-hand side of Markoff’s equation evaluated at these
expressions.

b. Case 1: If x = y = z, then Markoff’s equations becomes 3x2 = 3xyz so that 1 = yz. Then y = z = 1
and then x = 1 so the only solution in this case is (1, 1, 1).

Case 2: If x = y 6= z, then 2x2 + z2 = 3x2z which implies that x2|z2 or x|z, say dx = z. Then
2x2 + d2x2 = 3dx3 or 2 + d2 = 3dx or 2 = d(3x − d). So d|2, but since x 6= z, we must have d = 2.
Then 3x− d = 1 so that x = 1 = y and z = 2, so the only solution in this case is (1, 1, 2).

Case 3: Assume x < y < z. From z2− 3xyz + x2 + y2 + z2 we apply the quadratic formula to get
2z = 3xy ±

√
9x2y2 − 4(x2 + y2). Note that 8x2y2 − 4x2 − 4y2 = 4x2(y2 − 1) + 4y2(x2 − 1) > 0 so

in the “minus” case of the quadratic formula, we have 2z < 3xy −
√

9x2y2 − 8x2y2 = 3xy − xy =
2xy, or z < xy. But 3xyz = x2 + y2 + z2 < 3z2 so that xy < z, a contradiction, therefore we must
have the “plus” case in the quadratic formula and 2z = 3xy +

√
9x2y2 − 4(x2 + y2) > 3xy, so that

z > 3xy − z. This last expression is the formula for the generation of z in part (a). Therefore, by
successive use of the formula in part (a), we will reduce the value of x + y + z until it is one of the
solutions in Case 1 or Case 2.

13.2.22. Assume xm + 1 = yn, with x, y,m, m positive integers and m,n ≥ 2. Note that rad(xm · 1 · yn) =
rad(xy) ≤ xy ≤ max(x2, y2). Then by the abc conjecture, we have xm < yn = max(xn, 1, yn) <

K(ε)max(x2, y2)1+ε. Therefore at least one of the inequalities xm < K(ε)x2(1+ε) and ym < K(ε)y2(1+ε)

must hold. Suppose the first one holds. Assume m ≥ 3 and set ε = 1/4. Then m− 2(1 + ε) = m− 5/2 ≥
m/6. The inequality becomes xm/6 ≤ xm−2(1+ε) < K(1/4), so that xm < K(1/4)6. Therefore there can
be only finitely many values of xm and hence of yn = xm + 1. Similarly, if the other inequality holds,
there are only finitely many solutions with n ≥ 3. Therefore, we have shown that, assuming the abc con-
jecture, there can be only finitely many solutions to the Catalan equation with m,n ≥ 3.
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13.2.23. Let ε > 0 be given then the abc Conjecture gives us max(|a|, |b|, |c|) ≤ K(ε)rad(abc)1+ε for integers
(a, b) = 1 and a+b = c. Set M = log K(ε)/ log 2+(3+3ε). Suppose x, y, z, a, b, c are positive integers with
(x, y) = 1 and xa+yb = cz , so that we have a solution to Beal’s equation. Assume min(a, b, c) > M . From
the abc Conjecture, and since rad(xaybyc) = rad(xyz), we have max(xa, yb, yc) ≤ K(ε)rad(xyz)1+ε ≤
(xyz)1+ε. If max(x, y, z) = x, then we would have xa ≤ K(ε)x3(1+ε). Taking log’s of both sides yields
a ≤ log K(ε)/ log x + (3 + 3ε) < log K(ε)/ log 2 + (3 + 3ε) = M , a contradiction. Similarly if the maxi-
mum is y or z. Therefore, if the abc Conjecture is true, there are no solutions to the Beal conjecture for
sufficiently large exponents.

13.2.24. a. Suppose d is a congruent number. Then there is a right triangle with rational legs a, b and rational
hypotenuse c, which has area d. Since the triangle is a right triangle, we have, by the Pythagorean
theorem, that a2 + b2 = c2. And since a and b are the legs of the triangle, its area is ab/2 = d. Hence
2d = ab as desired. Conversely, suppose there are rational integers a, b and c such that a2 + b2 = c2

and ab = 2d. Then by the Pythagorean theorem, a, b, c are the lengths of the sides of a right triangle,
with c as the hypotenuse. Its area is ab/2 = d, and so d is a congruent number.

b. By part (a), we note that (3/2)2 + (20/3)2 = (41/6)2 and that (3/2)(20/3) = 10 = 2 · 5, and so 5 is a
congruent number. Note that 32 + 42 = 52 and 3 · 4 = 2 · 6, and so 6 is a congruent number. Note
that (35/12)2 +(24/5)2 = (337/60)2 and (35/12)(24/5) = 2 ·7, and so 7 is a congruent number. Note
that 62 + 82 = 102 and 6 · 8 = 2 · 24, and so 24 is a congruent number. Note that 52 + 122 = 132 and
5 · 12 = 2 · 30 and so 30 is a congruent number.

13.2.25. a. If 1 is a congruent number, then there exist rational numbers r, s and t such that r2 + s2 = t2 and
rs/2 = 1. Let r = a/d, s = b/d and t = c/d, where a, b, c, and d are integers and d is the least com-
mon denominator of the rational numbers r, s and t. Then a2 + b2 = (rd)2 + (sd)2 = d2t2 = c2, so
(a, b, c) is a Pythagorean triple and represents a right triangle whose area is ab/2 = (rd)(sd)/2 =
(d2)(rs/2) = d2, a perfect square. Conversely, if there is a right triangle whose area is a perfect
square, d2, then it is represented by a Pythagorean triple (a, b, c), and a2 + b2 = c2. We can di-
vide through by d2 to get (a/d)2 + (b/d)2 = (c/d)2 and so this represents a right triangle with sides
(a/d, b/d, c/d) and area 1/2(a/d)(b/d) = (ab/2)(1/d2) = d2/d2 = 1.

b. Suppose 1 is a congruent number. Then by part (a), there exist integers a, b, c and d, such that a2 +
b2 = c2 and ab/2 = d2. If we add and subtract 4 times the second equation from the first we get
a2 + 2ab + b2 = (a + b)2 = c2 + (2d)2 and a2 − 2ab + b2 = (a− b)2 = c2 − (2d)2. Since the right hand
sides of both equations are squares, then so is their product, and we have (c2 + (2d)2)(c2− (2d)2) =
c4 − (2d)4 = (a + b)2(a − b)2, but this is a solution to x4 − y4 = z2, which contradicts Exercise 4.
Therefore 1 is not a congruent number.

13.2.26. a. If d = 1 or 2, then d/a = 1, so the equations in the preamble become x2 + 2ay2 + 8z2 = 1 and
x2 + 2ay2 + 32z2 = 1. If either y or z were nonzero, then the left hand sides of both of these equa-
tions would be greater than 1. Therefore, y = z = 0 and we have x2 = 1 in both equations. So the
only solutions to both equations are (±1, 0, 0) and we have n = m = 2.

b. If d = 3 or 10, then d/a = 3 or 5, which forces z = 0 in both equations. If d = 3, both equations
reduce to x2 + 2y2 = 3, which has solutions (±1,±1, 0) and so n = m = 4. If d = 10, both equations
reduce to x2 + 4y2 = 5 which has solutions (±1,±1, 0) and so n = m = 4.

c. If d = 11, the first equation becomes x2 +2y2 +8z2 = 11, so |z| < 2. If z = 0, we have x2 +2y2 = 11,
which has solutions (±3,±1, 0), which is 4 solutions. If z = ±1, we have x2 + 2y2 = 3, which has
solutions (±1,±1,±1) which gives us 8 more solutions for a total of n = 12. The second equation
becomes x2 + 2y2 + 322 = 11, which forces z = 0, and we have x2 + 2y2 = 11, which has solutions
(±3,±1, 0) for a total of m = 4 solutions.

d. If d = 34, the first equation becomes x2 + 4y2 + 8z2 = 17, so |z| < 2. If z = 1, we have x2 + 4y2 =
9 which gives us the 4 solutions (±3, 0,±1). If z = 0, we have x2 + 4y2 = 17, which gives us the 4
solutions (±1,±2, 0) for a total of n = 8 solutions. The second equation becomes x2 + 4y2 + 32z2 =
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17, which forces z = 0 and we have x2 + 4y2 = 17, giving us the m = 4 solutions (±1,±2).

e. If d ≡ 5 or 7 (mod 8) both equations reduce to x2 + 2y2 ≡ 5 or 7 (mod 8). If y is even, this im-
plies that 5 or 7 is a quadratic residue modulo 8, which is a contradiction. If y is odd, then 2y2 ≡ 2
(mod 8) and so x2 ≡ 3 or 5 (mod 8), which is also a contradiction. Therefore n = m = 0. If d ≡ 6
(mod 8), both equations reduce to x2 + 4y2 ≡ 3 or 7 (mod 8). If y is even, this implies that 3 or 7 is
a quadratic residue modulo 8, which is a contradiction. If y is odd then x2 ≡ 7 or 3 (mod 8), also a
contradiction. Therefore n = m = 0.

f. If d = 1 or 2, part (a) shows that 2m = 4 6= 2 = n, so 1 and 2 are not congruent numbers by Tun-
nell’s theorem. If d = 3 or 10, part (b) shows that 2m = 8 6= 4 = n, so 3 and 10 are not congruent
numbers. If d = 11, then part (c) shows that 2m = 8 6= 12 = n, so 11 is not a congruent number.

g. One solution is (24, 17/6, 145/6). Another is (15/2, 136/15, 353/30).

13.3. Sums of Squares
13.3.1. a. We compute 377 = 13 · 29 = (32 + 22)(52 + 22) = (3 · 5 + 2 · 2)2 + (3 · 2− 2 · 5)2 = 192 + 42.

b. We compute 650 = 13 · 50 = (32 + 22)(72 + 12) = (3 · 7 + 2 · 1)2 + (3 · 1− 2 · 7)2 = 232 + 112.

c. We compute 1450 = 29 · 50 = (52 + 22)(72 + 12) = (5 · 7 + 2 · 1)2 + (5 · 1− 2 · 7)2 = 372 + 92.

d. We compute 18850 = 377 · 50 = (192 + 42)(72 + 12) = (19 · 7 + 4 · 1)2 + (19 · 1− 4 · 7)2 = 1372 + 92.

13.3.2. The integers in parts a., g., and h. all have primes ≡ 3 (mod 4) appearing to an odd power in their
factorizations, and therefore can not be written as the sum of two squares.

13.3.3. a. We compute 34 = 52 + 32.

b. . We compute 90 = 3210 = 32(32 + 1) = 92 + 32.

c. We compute 100 = 102 + 02.

d. We compute 490 = 7210 = 72(32 + 1) = 212 + 72.

e. We compute 21658 = 72 · 2 · 13 · 17 = 72(12 + 12)(32 + 22)(42 + 12) = 72(12 + 12)((3 · 4 + 2 · 1)2 +
(3 ·1−2 ·4)2) = 72(12 +12)(142 +52) = 72((1 ·14+1 ·5)2 +(1 ·5−1 ·14)2) = 72(192 +92) = 1332 +632.

f. We compute 324608 = 210 · 317 = 322(142 + 112) = 4482 + 3522.

13.3.4. A square must be ≡ 1 or 0 (mod 4), so x2 − y2 ≡ ±1 or 0 (mod 4). Conversely, let n = 4mk, with 4 - k.
Then n = 4m ((k + 1)/2)2 − 4m ((k − 1)/2)2, which is the sum of two squares if m ≥ 1 or if k is odd.

13.3.5. a. We have 3 = 12 + 12 + 12.

b. We have 90 = 82 + 52 + 12.

c. We have 11 = 32 + 12 + 12.

d. We have 18 = 32 + 32 + 02.

e. There are no solutions since 23 ≡ 7 (mod 8). See Exercise 6.

f. There are no solutions since 28 = 4 · 7. See Exercise 7.
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13.3.6. Since x2 ≡ 0, 1, or 4 (mod 8), we have x2 + y2 + z2 ≡ 0, 1, 2, 3, 4, 5, or 6 (mod 8). So there are no solu-
tions to x2 + y2 + z2 ≡ 7 (mod 8).

13.3.7. Let n = x2 + y2 + z2 = 4m(8k + 7). If m = 0, see Exercise 6. If m ≥ 1, then n is even, so 0 or 2 of
x, y, z are odd. If 2 are odd, x2 + y2 + z2 ≡ 2 or 6 (mod 8), but then 4 - n, a contradiction, so all of x, y, z
are even. Then 4m−1(8k + 7) = (x

2 )2 + (y
2 )2 + ( z

2 )2 is the sum of 3 squares. Repeat until m = 0 and use
Exercise 6 to get a contradiction.

13.3.8. For a counterexample, we have 4 = 22 + 02 + 02, and 3 = 12 + 12 + 12, but 3 + 4 = 7, which is not the
sum of 3 squares.

13.3.9. a. We compute 105 = 7 · 15 = (22 + 12 + 12 + 12)(32 + 22 + 12 + 12) = (2 · 3 + 1 · 2 + 1 · 1 + 1 · 1)2 + (2 ·
2− 1 · 3 + 1 · 1− 1 · 1)2 + (2 · 1− 1 · 1− 1 · 3 + 1 · 2)2 + (2 · 1 + 1 · 1− 1 · 2− 1 · 3)2 = 102 + 12 + 02 + 22.

b. We compute 510 = 15 · 34 = (32 + 22 + 12 + 12)(42 + 42 + 12 + 12) = (3 · 4 + 2 · 4 + 1 · 1 + 1 · 1)2 + (3 ·
4− 2 · 4 + 1 · 1− 1 · 1)2 + (3 · 1− 2 · 1− 1 · 4 + 1 · 4)2 + (3 · 1 + 1 · 2− 1 · 4− 1 · 4)2 = 222 + 42 + 12 + 32.

c. We compute 238 = 7 · 34 = (22 + 12 + 12 + 12)(42 + 42 + 12 + 12) = (2 · 4 + 1 · 4 + 1 · 1 + 1 · 1)2 + (2 ·
4− 1 · 4 + 1 · 1− 1 · 1)2 + (2 · 1− 1 · 1− 1 · 4 + 1 · 4)2 + (2 · 1 + 1 · 1− 1 · 4− 1 · 4)2 = 142 + 42 + 12 + 52.

d. We compute 3570 = 15 · 238 = (32 +22 +12 +12)(142 +42 +12 +52) = (3 · 14+2 · 4+1 · 1+1 · 5)2 +
(3 ·4−2 ·14+1 ·5−1 ·1)2+(3 ·1−5 ·2−1 ·14+1 ·4)2+(3 ·5+2 ·1−1 ·4−1 ·14)2 = 562+122+172+12.

13.3.10. a. We have 6 = 22 + 12 + 12 + 02.

b. We have 12 = 22 + 22 + 22 + 02 = 32 + 12 + 12 + 12.

c. We have 21 = 42 + 22 + 12 + 02.

d. We have 89 = 92 + 22 + 22 + 02.

e. We have 99 = 92 + 42 + 12 + 12.

f. We have 555 = 15 · 37 = (32 + 22 + 12 + 12)(62 + 12 + 02 + 02) = (3 · 6 + 2 · 1 + 1 · 0 + 1 · 0)2 + (3 · 1−
2 · 6 + 1 · 0− 1 · 0)2 + (3 · 0− 2 · 0− 1 · 6 + 1 · 1)2 + (3 · 0 + 1 · 0− 1 · 1− 1 · 6)2 = 202 + 92 + 52 + 72.

13.3.11. Let m = n−169. Then m is the sum of four squares: m = x2+y2+z2+w2. If, say, x, y, z are 0, then n =
w2+169 = w2+102+82+22+12. If, say, x, y are 0, then n = z2+w2+169 = z2+w2+122+42+32. If, say,
x is 0, then n = y2 +z2 +w2 +169 = y2 +z2 +w2 +122 +52. If none are 0, then n = x2 +y2 +z2 +w2 +132.

13.3.12. From Exercise 11, we need only check n ≤ 169. Note that 50 = 72+12 = 52+42+32 = 42+42+32+32,
and 18 = 32 + 32 = 42 + 12 + 12 = 32 + 22 + 22 + 12. So if n− 50 or n− 18 is the sum of 1,2, or 3 squares,
then n is the sum of 5 squares. So we have eliminated the integers with n − 50 or n − 18 = 4m(8k + 7)
(see Exercise 7). This leaves only the integers 1, 2, . . . ,18, 25, 33, 41, 26, 49, 57, 65, 73, 78, 81, 89, 97, 105,
110, 113, 121, 129, 137, 142, 145, 153, 161, 169, which can be checked separately.

13.3.13. If k is odd, then 2k is not the sum of four positive squares. Suppose k ≥ 3, and 2k = x2 + y2 + z2 + w2.
Then either 0, 2 or 4 of the squares are odd. Modulo 8, we have 0 ≡ x2 + y2 + z2 + w2, and since an
odd square is congruent to 1 modulo 8, the only possibility is to have x, y, z, w all even. But then we can
divide by 4 to get 2k−2 = (x

2 )2 + (y
2 )2 + ( z

2 )2 + (w
2 )2. Either k − 2 ≥ 3 and we can repeat the argument,

or k − 2 = 1, in which case we have 2 equal to the sum of four positive squares, a contradiction.

13.3.14. There are [
√

p + 1] integers in the range 0 ≤ u ≤ [
√

p], so there are [
√

p + 1]2 >
√

p2 = p integers of
the form au − v, with u, v in this range. Since there are only p congruence classes, two of these must be
congruent modulo p, say, au1 − v1 ≡ au2 − v2 (mod p). Then a(u1 − v1) ≡ v1 − v2 (mod p). Let x =
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u1 − v1 and y = v1 − v2, then |x|, |y| < √
p as desired.

13.3.15. If p = 2 the theorem is obvious. Else, p = 4k + 1, whence −1 is a quadratic residue modulo p, say
a2 ≡ −1 (mod p). Let x and y be as in Thue’s Lemma. Then x2 < p and y2 < p and −x2 ≡ (ax)2 ≡
y2 (mod p). Thus p | x2 + y2 < 2p; therefore p = x2 + y2 as desired.

13.3.16. Since 33 = 27 > 23, only 03, 13, and 23 can appear in the sum, and 23 can appear at most twice. There-
fore the smallest possibility is 23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13; nine cubes.

13.3.17. The left sum runs over every pair of integers i < j, for 1 ≤ i < j ≤ 4, so there are six terms. Each
integer subscript 1, 2, 3, and 4 appears in exactly three pairs, so

∑

1≤i<j≤4

[(xi + xj)4 + (xi − xj)4] =
∑

1≤i<j≤4

(2x4
i + 12x2

i x
2
j + 2x4

j )

=
4∑

k=1

6x4
k +

∑

1≤i<j≤4

12x2
i x

2
j = 6

(
4∑

k=1

x2
k

)2

.

13.3.18. If n is a positive integer, then n =
∑4

k=1 x2
k, for some xk’s. From Exercise 17,

6n2 = 6

(
4∑

k=1

x2
k

)2

=
∑

1≤i<j≤4

[(xi + xj)4 + (xi − xj)4].

Since there are 6 terms in the last sum, it represents the sum of twelve 4th powers.

13.3.19. If m is positive, then m =
∑4

k=1 x2
k, for some xk’s. Then 6m = 6

∑4
k=1 x2

k =
∑4

k=1 6x2
k. Each term of

the last sum is the sum of twelve fourth powers by Exercise 18. Therefore 6m is the sum of forty-eight
fourth powers.

13.3.20. Check 81 ≡ 3, 16 ≡ 4, 17 ≡ 5 (mod 6). Also, 0 = 04, 1 = 14, 2 = 14 + 14, 81 = 34, 16 = 24, and 17 =
24 + 14. If n > 81, then write n = 6m + k where k = 0, 1, 2, 81, 16, or 17. From Exercise 19, 6m is the sum
of forty-eight 4th powers, and each k-value is the sum of two 4th powers, so n = 6m + k is the sum of
fifty 4th powers.

13.3.21. For n = 1, 2, . . . , 50, n =
∑n

1 14. For n = 51, 52, . . . , 81, n − 48 = n − 3(24) =
∑n−48

1 14, so n =
24 + 24 + 24 +

∑n−48
1 14 is the sum of (n − 45) 4th powers, and n = 45 ≤ 36 ≤ 50. This result, coupled

with the result from Exercise 20, shows that all positive integers can be written as the sum of 50 or fewer
4th powers. That is, g(4) ≤ 50.

13.3.22. The cubic residues modulo 9 are 0, 1, and −1. Therefore, the only possible residues for the sum of
three cubes modulo 9 are ±3, ±2, ±1, and 0, which excludes ±4 (mod 9).

13.3.23. The only quartic residues modulo 16 are 0 and 1. Therefore, the sum of fewer than 15 fourth powers
must have a least nonnegative residue between 0 and 14 (mod 16), which excludes any integer congru-
ent to 15 (mod 16).

13.3.24. Suppose that n = 31 · 16m, with m ≥ 1, is the sum of 15 fourth powers, say n =
∑15

i=1 x4
i . If an xi is

even then x4
i ≡ 0 (mod 16), and if an xi is odd, then x4

i ≡ 1 (mod 16), so the least nonnegative residue
of

∑15
i=1 x4

i counts the number of odd xi’s. But n ≡ 0 (mod 16), so there are no odd numbers among
the xi’s. Then n/16 = 31 · 16m−1 =

∑15
i=1(xi/2)4 is also the sum of 15 fourth powers. By the method of

descent, this implies that 31 is the sum of 15 fourth powers, which is a contradiction.

13.4. Pell’s Equation
13.4.1. a. Clearly |x| ≤ 2. Checking all possibilities gives (±2, 0) and (±1,±1) for solutions.
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b. Clearly |x| < 3. Checking all possibilities gives no solution.

c. Clearly |x| < 4, |y| ≤ 2. Checking all possibilities gives the solutions (±1,±2).

13.4.2. a. We have x2−y2 = (x−y)(x+y) = 8 = 1 ·8 = 2 ·4. The system x−y = 1; x+y = 8 has no integer so-
lution. The system x−y = 2; x+y = 4 has the solution x = 3, y = 1. Then the solutions are (±3,±1).

b. We have x2 − 4y2 = (x − 2y)(x + 2y) = 40 = 40 · 1 = 2 · 20 = 4 · 10 = 4 · 8. The system x − 2y =
1; x + 2y = 40 has no solution. The system x − 2y = 2; x + 2y = 20 has no solution. The system
x− 2y = 4;x + 2y = 10 has no solution. The system x− 2y = 5; x + 2y = 40 has no solution. There-
fore the equation has no solution.

c. We have 4x2 − 9y2 = (2x − 3y)(2x + 3y) = 100 = 1 · 100 = 2 · 50 = 4 · 25 = 5 · 20 = 10 · 10.
Then2x − 3y = 1; 2x + 3y = 100 has no solution, but 2x − 3y = 2; 2x + 3y = 50 has solution x =
13, y = 8. Also 2x − 3y = 4; 2x + 3y = 25 has no solution, and 2x − 3y = 5; 2x + 3y = 20 has no
solution, but 2x − 3y = 10; 2x + 3y = 10 has solution x = 5, y = 0. Therefore all the solutions are
given by (±13,±8) and (±5, 0).

13.4.3. We have
√

31 = [5; 1, 1, 3, 5, 3, 1, 1, 10], which has period 8. The first few convergents are 5/1, 6/1,
11/2, 39/7, . . . . For part (a), there are solutions by Theorem 13.11. For part (b), there are no solutions
by Theorem 13.11. Trying the convergents p/q in the equation with x = p, y = q gives us the values
−6, 5,−3, 2, . . . , so we have solutions for parts (c), (d), and (e). Then for part (f), reduce modulo 4 to get
x2 + y2 ≡ 3 (mod 4) which has no solution.

13.4.4. a. We have
√

29 = [5; 2, 1, 1, 2, 10] which has period 5. Theorem 13.11 gives the first solution as p4 =
70, q4 = 13.

b. Using the continued fraction expansion from part (a), Theorem 13.11 gives the first solution as p9 =
9801, q9 = 1820.

13.4.5. We have
√

37 = [6; 12] of period 1. Theorem 13.11 gives the first 3 solutions as x = 73, y = 12; x =
10657, y = 1752; x = 1555849, y = 255780.

13.4.6. By Theorem 13.11 there is a solution if and only if the period of the continued fraction for
√

d has odd
period. Table E.5 in the text gives us that only (a), (b), (e), (g), and (h) have odd period. The rest have no
solution.

13.4.7. We have x1 = 1766319049, y1 = 226153980. We apply Theorem 13.12 to get x2 + y2

√
61 = (x1 +

y1

√
61)2, which gives x2 = 6239765965720528801, y2 = 798920165762330040. We used MAPLE to do

these calculations.

13.4.8. The last paragraph of the proof to Theorem 12.15 shows that |pk −
√

dqk| < 1/qk+1 < 1/qk. Hence we
have |p2

k − dq2
k| = |pk −

√
dqk| · |pk +

√
dqk| < 1/qk|pk −

√
dqk + 2

√
dqk| ≤ 1/qk(|pk −

√
dqk|+ 2

√
dqk) <

1/qk(1 + 2
√

d) ≤ 1 + 2
√

d, as desired.

13.4.9. Reduce modulo p to get x2 ≡ −1 (mod p). Since −1 is a quadratic nonresidue modulo p if p = 4k + 3,
there is no solution.

13.4.10. a. We evaluate (Xr± dY s)2 − d(Xs± Y r)2 = X2r2 ± 2XY drs + d2Y 2 − dX2s2 ∓ 2dXY sr− dY 2r2 =
X2(r2 − ds2) + dY 2(ds2 − r2) = X2 − dY 2 = n.

b. Theorem 13.12 gives infinitely many solutions to x2− dy2 = 1. If there is one solution to x2− dy2 =
n, then the construction in part (a) gives infinitely many.

13.4.11. Following the hint, we solve a2 − 2b2 = ±1. By Theorem 13.10, we find that every convergent pk/qk

of
√

2 is a solution. Note that p1 = 0, p1 = 3, pk = 2pk−1 + 2k−2, q0 = 1, q1 = 1, and qk = 2qk−1 + qk−2.
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Then solving s − t = a, t = b yields s = a + b = pk + qk and t = qk, whence x = p2
k + 2pkq + k and y =

2pkqk + 2q2
k. The first few solutions are p0 = 1, q0 = 1 corresponding to x = 12 + 2 · 1 · 1 = 3 and y =

2 · 1 · 1 + 2 · 12 = 4; p1 = 3, q1 = 2 corresponding to x = 32 + 2 · 3 · 2 = 21 and y = 2 · 3 · 2 + 2 · 22 = 20;
p2 = 7, q2 = 5 corresponding to x = 72 + 2 · 7 · 5 = 119 and y = 2 · 7 · 5 + 2 · 52 = 120; p3 = 17, q3 = 12
corresponding to x = 172 + 2 · 17 · 12 = 697 and y = 2 · 17 · 12 + 2 · 122 = 696.

13.4.12. Since x4 = 2y4 +1, x must be odd. So x2−1 ≡ 0 (mod 4), x2 +1 ≡ 2 (mod 4), and gcd((x2−1)/4, (x2−
1)/2) = 1. Then (y2/2)2 = (x4 − 1)/8 = ((x2 − 1)/4)((x2 − 1)/2). Since these last two factors are rela-
tively prime, we must have that x2 − 1 is a perfect square. Hence x = ±1 which gives y = 0 as the only
solutions.

13.4.13. Suppose there is a solution (x, y). Then x must be odd. Note that (x2 +1)2 = x4 +2x2 +1 = 2y2 +2x2

and (x2 − 1)2 = x4 − 2x2 + 1 = 2y2 − 2x2. Multiplying these two equations together yields (x4 − 1)2 =
4(y4−x4), or since x4 ≡ 1 (mod 4), ((x4−1)/2)2 = y4−x4. But this is a violation of Exercise 4 in Section
13.2.

13.4.14. Making the appropriate substitutions, we have x2−2y2 = (2n+1)2−8m2 = (2n+1)2−8n(n+1)/2 =
4n2+4n+1−4n2−4n = 1 as desired. We must have |x| ≥ 3, and we find that x = 3, y = 1 is a solution, so
this is the smallest positive solution. By Theorem 13.12, all positive solutions are given by xk + yk

√
8 =

(x1 + y1

√
8)k, and we find that the smallest 5 solutions. First, (x, y) = (3, 1) which corresponds to n =

1, m = 1, and we check that t1 = 1 = m2. Second, (x, y) = (17, 6) which gives (n,m) = (8, 6) and t8 =
8(8 + 1)/2 = 36 = 62. Third, (x, y) = (99, 35) which gives (n,m) = (49, 35), and t49 = 49(49 + 1)/2 =
1225 = 352. Fourth, (x, y) = (577, 204) which gives (n, m) = (228, 204) and t577 = 577(577 + 1)/2 =
41616 = 2042. Fifth, (x, y) = (3363, 1189) which give (n,m) = (1681, 1189) and t1681 = 1681(1681 + 1) =
1413721 = 11892.





CHAPTER 14

The Gaussian Integers

14.1. Gaussian Integers and Gaussian Primes
14.1.1. a. First, (2 + i)(2 + i) = 4 + 2i + 2i + i2 = 4 + 4i − 1 = 3 + 4i. Then we have (2 + i)2(3 + i) =

(3 + 4i)(3 + i) = 9 + 12i + 3i + 4i2 = 9 + 15i− 4 = 5 + 15i.

b. First, (2 − 3i)(2 − 3i) = 4 − 6i − 6i + 9i2 = 4 − 12i − 9 = −5 − 12i. Then we have (2 − 3i)3 =
(−5− 12i)(2− 3i) = −10− 24i + 15i + 36i2 = −10− 9i− 36 = −46− 9i.

c. First, (−i+3)(−i+3) = i2− 3i− 3i+9 = −1− 6i+9 = 8− 6i. Next, −i(−i+3) = i2− 3i = −1− 3i.
Finally, we have−i(−i+3)3 = (8−6i)(−1−3i) = −8+6i−24i+18i2 = −8−18i−18 = −26−18i.

14.1.2. a. First we compute (−1+i)(1+i) = −1+i−i+i2 = −2. Then we have (−1+i)3(1+i)3 = (−2)3 = −8.

b. First, (3 − i)(3 − i) = 9 − 6i + i2 = 8 − 6i, so that (3 + 2i)(3 − i)2 = (3 + 2i)(8 − 6i) = 24 + 16i −
18i− 12i2 = 36− 2i.

c. By the Binomial Theorem, we have (5 − i)3 = 53 − 3 · 52i + 3 · 5i2 − i3 = 125 − 75i − 15 + i =
110− 74i. Also (2+ i)(2+ i) = 4+4i+ i2 = 3+4i. Therefore, (2+ i)2(5− i)3 = (3+4i)(110− 74i) =
330 + 440i− 222i− 296i2 = 626 + 218i.

14.1.3. a. We evaluate the fraction
β

α
=

5 + 5i

2− i
=

(5 + 5i)(2 + i)
(2− i)(2 + i)

=
5 + 15i

5
= 1 + 3i, which is a Gaussian in-

teger. Therefore, α divides β, since α(1 + 3i) = β.

b. We evaluate the fraction
8

1− i
=

8(1 + i)
(1− i)(1 + i)

=
8 + i

2
= 4 + 4i, which is a Gaussian integer. There-

fore 8 = (1− i)(4 + 4i) and so α divides β.

c. Since N(α) = N(5) = 25 and N(β) = N(2 + 3i) = 4 + 9 = 13, we observe that 25 - 13. Therefore, α
can not divide β.

d. We evaluate the fraction
26

3 + 2i
=

26(3− 2i)
(3 + 2i)(3− 2i)

=
78− 52i

13
= 6− 4i, which is a Gaussian inte-

ger. Therefore, α, divides β.

14.1.4. a. Since N(α) = N(3) = 9 and N(β) = N(4 + 7i) = 16 + 49 = 65, we observe that 9 - 65, and so α can
not divide β.

b. We evaluate the fraction
15

2 + i
=

15(2− i)
(2 + i)(2− i)

=
30− 15i

5
= 6− 3i, which is a Gaussian integer.

Therefore, α divides β.

c. We evaluate the fraction
30 + 6i

5 + 3i
= 6

(5 + i)(5− 3i)
(5 + 3i)(5− 3i)

= 6
28− 10i

34
, which is not a Gaussian integer.

Therefore, α does not divide β.

215
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d. We evaluate the fraction
274

11 + 4i
=

274(11− 4i)
(11 + 4i)(11− 4i)

=
274(11− 4i)

137
= 2(11− 4i) = 22− 8i, which

is a Gaussian integer. Therefore, α divides β.

14.1.5. Since a Gaussian integer must be of the form
a + bi with a and b rational integers, then for a
Gaussian integer α to be divisible by 4+3i, we
must have α = (4 + 3i)(a + bi) = (4a − 3b) +
(4b + 3a)i and this gives us a formula for all
Gaussian integers divisible by 4 + 3i in terms
of rational integers a and b. To the right is a
display of the pattern of this set in the plane.

-
2
0

-
1
0

1
0

2
0

-
2
0 0

2
0

1
0

0
-
1
0

14.1.6. Since a Gaussian integer must be of the form
a + bi with a and b rational integers, then for a
Gaussian integer α to be divisible by 4 − i, we
must have α = (4− i)(a+ bi) = (4a+ b)+(4b−
a)i and this gives us a formula for all Gaussian
integers divisible by 4 − i in terms of rational
integers a and b. To the right is a display of the
pattern of this set in the plane.

–10

–5

5

10

–10 –5 5 10

14.1.7. Since α|β and β|γ, there exist Gaussian integers µ and ν such that µα = β and νβ = γ. Since the prod-
uct of Gaussian integers is again a Gaussian integer, we have that νµ is also a Gaussian integer. Then
γ = νβ = νµα and so α|γ.

14.1.8. Since γ | α and γ | β there exist Gaussian integers ρ and σ such that α = ργ and β = σγ. Then we
have µα + νβ = µργ + νσγ = (µρ + νσ)γ. Since (µρ + νσ) is a Gaussian integer, we have γ | (µα + νβ).

14.1.9. Consider the equation x5 = x or x5 − x = 0. The left side factors over the Gaussian integers as x(x−
1)(x + 1)(x− i)(x + i) = 0, so the solutions of the equation are 0, 1,−1, i, and −i. Since this includes all
of the units for the Gaussian integers, this proves the result.

14.1.10. If α is an associate of α = a + bi then we must have α = εα where ε is a unit, so there are 4 cases to
consider. If ε = 1, we have a − bi = a + bi and so b = 0 and α = a is a rational integer. If ε = −1, we
have a − bi = −a − bi and so a = 0 and α = bi is a pure imaginary number. If ε = i, we have a − bi =
i(a+ bi) = −b+ai from which we deduce a = −b, so α is of the form a−ai = a(1− i). If ε = −i, we have
a− bi = −i(a + bi) = b− ai from which we deduce a = b, so α is of the form a + ai = a(1 + i). Therefore
if α is an associate of its conjugate it must be of the one of the forms a, ai, a(1− i), a(1 + i), where a is a
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rational integer.

14.1.11. Since α|β and β|α, there exist Gaussian integers µ and ν such that αµ = β and βν = α. Then α = αµν.
Taking norms of both sides yields N(α) = N(αµν) = N(α)N(µν) by Theorem 14.1. So that N(µ)N(ν) =
1. Since µ and ν are Gaussian integers their norms must be nonnegative rational integers. Therefore
N(µ) = N(ν) = 1, and so µ and ν are units, and hence, α and β are associates.

14.1.12. Since α | β, there exists a Gaussian integer γ such that αγ = β. From Theorem 14.1 (ii) we have
N(β) = N(αγ) = N(α)N(γ), which shows that N(α) | N(β).

14.1.13. Note that N(1+2i) = N(2+ i) = 5, so the condition on norms holds, but (1+2i)/(2+ i) = 4/5+3/5i,
so this is a counterexample.

14.1.14. Since α | β, there exists a Gaussian integer γ such that β = αγ. Taking conjugates of this equation, we
get β = αγ = α γ, which shows that α | β.

14.1.15. First we show existence. If a > 0 and b ≥ 0 we’re done. If a ≤ 0 and b > 0 then we multiply by −i to
get −iα = b − ai = c + di which has c > 0 and d ≥ 0. If a < 0 and b ≤ 0 then we multiply by −1 to get
−α = −a− bi = c + di which has c > 0 and d ≥ 0. If a ≥ 0 and b < 0 then we multiply by i to get iα =
−b + ai = c + di which has c > 0 and d ≥ 0. (We have covered the quadrants in the plane in counter-
clockwise order.) Having found the associate c + di in the first quadrant, we observe that it is unique,
since if we multiply by any unit other than one we get, respectively −c− di, which has −c < 0, −d + ci,
which has −d ≤ 0, or d− ci, which has −c < 0.

14.1.16. a. First we divide α = 14 + 17i by β = 2 + 3i to get α/β = 79/13 − 8/13i. Rounding to the nearest
rational integer we get γ = [79/13 + 1/2] + [−8/13 + 1/2]i = 6− i. Then we compute ρ = α− βγ =
(14+17i)−(2+3i)(6−i) = −1+i. Finally, we note that N(ρ) = (−1)2+12 = 2 < N(β) = 22+32 = 13.

b. We have α/β = (7 − 19i)/(3 − 4i) = 97/25 − 29/25i. Rounding to the nearest integers in each part
yields γ = 4− i. Then we compute ρ = α− βγ = (7− 19i)− (3− 4i)(4− i) = −1. Finally, we note
that N(ρ) = (−1)2 = 1 < N(β) = 32 + 42 = 25.

c. We have α/β = 33/(5 + i) = 165/26 − 33/26i. Rounding to the nearest integer in each part yields
γ = 6− i. Then we compute ρ = α− βγ = 33− (5 + i)(6− i) = 2− i. Finally, we note that N(ρ) =
22 + (−1)2 = 5 < N(β) = 52 + 12 = 26.

14.1.17. a. We have α/β = (24− 9i)/(3 + 3i) = 5/2− 11/2i. Rounding to the nearest integer in each part, and
going up in each case, since we have half integers, yields γ = 3− 5i. Then ρ = α− βγ = −3i. Then
N(ρ) = 32 + 02 = 9 < N(β) = 32 + 32 = 18.

b. We have α/β = (18 + 15i)/(3 + 4i) = 114/25− 27/25i. Rounding to the nearest integer in each part
yields γ = 5 − i. Then we compute ρ = α − βγ = −1 − 2i, so that N(ρ) = (−1)2 + (−2)2 = 5 <
N(β) = 25.

c. We have α/β = 87i/(11− 2i) = −174/125 + 957/125i. Rounding to the nearest integer in each part
yields γ = −1 + 8i. Then we compute ρ = α− βγ = −5− 3i, so that N(ρ) = 52 + 32 = 34 < N(β) =
112 + 22 = 125.

14.1.18. a. We have α/β = (14 + 17i)/(2 + 3i) = 79/13 − 8/13i. Instead of rounding −8/13 to the nearest in-
teger, we choose to round it to 0 which yields γ = 6. Then we compute ρ = α − βγ = (14 + 17i) −
(2 + 3i)(6) = 2− i. Finally, we note that N(ρ) = 22 + (−1)2 = 5 < N(β) = 22 + 32 = 13.

b. We have α/β = (7−19i)/(3−4i) = 97/25−29/25i. Instead of rounding 97/25 to the nearest integer,
we round it to 3, which yields γ = 3− i. Then we compute ρ = α−βγ = (7−19i)− (3−4i)(3− i) =
2− 4i. Finally, we note that N(ρ) = 22 + (−4)2 = 20 < N(β) = 32 + 42 = 25.
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c. We have α/β = 33/(5 + i) = 165/26− 33/26i. Instead of rounding 165/26 to the nearest integer, we
round it to 7, which yields γ = 7− i. Then we compute ρ = α− βγ = 33− (5 + i)(7− i) = −3− 2i.
Finally, we note that N(ρ) = (−3)2 + (−2)2 = 13 < N(β) = 52 + 12 = 26.

14.1.19. a. We have α/β = (24 − 9i)/(3 + 3i) = 5/2 − 11/2i. Instead of rounding up in each part, we round
5/2 down to 2, which yields γ = 2− 5i. Then ρ = α− βγ = 3. Then N(ρ) = 32 + 02 = 9 < N(β) =
32 + 32 = 18.

b. We have α/β = (18 + 15i)/(3 + 4i) = 114/25 − 27/25i. Instead of rounding 114/25 to the nearest
integer, we round it down to 4, which yields γ = 4 − i. Then we compute ρ = α − βγ = 2 + 2i, so
that N(ρ) = 22 + 22 = 8 < N(β) = 25.

c. We have α/β = 87i/(11 − 2i) = −174/125 + 957/125i. Instead of rounding 957/125 to the nearest
integer, we round it down to 7, which yields γ = −1 + 7i. Then we compute ρ = α− βγ = −3 + 8i,
so that N(ρ) = (−3)2 + 82 = 73 < N(β) = 112 + 22 = 125.

14.1.20. Suppose that α/β = x + yi. Since β - α we know that x + yi is not a Gaussian integer, therefore it
lies in the interior of a unit square with vertices Gaussian integers. (One of these vertices is the Gauss-
ian integer s + ti in the proof of Theorem 14.6.) The diagonals of this square divide it into 4 triangular
regions and x + yi must lie in one of these regions. If it lies on the boundary between regions, then we
may choose either region. Having determined the triangular region in which x + yi lies, we see that
two of the vertices of the triangle are Gaussian lattice points, call them γ1 and γ2. Note that circles of ra-
dius 1 centered at these lattice points contain the entire triangle. Therefore the distance from the lattice
points to x + yi is less than 1. Define ρ1 = α − βγ1. Then N(ρ1) = N(α − βγ1) = N((α/β − γ1)β) =
N(x + yi− γ1)N(β). Since N(x + yi− γ1) is just the distance from γ1 to x + iy, we know it is less than 1,
so we have the last expression < N(β) as desired. If we define ρ2 = α−βγ2, the same calculation holds,
giving us two pairs of Gaussian integers meeting the conditions.

14.1.21. If β|α then there is only one pair γ = α/β and ρ = 0. If not, then the complex number α/β can be
plotted in the complex plane and lies in a unit square whose vertices are lattice points. If α = βγ + ρ,
then α/β − γ = ρ/β. Then taking absolute values, we see that |α/β − γ| = |ρ/β| < 1. We conclude that
the possible values for γ are those Gaussian integers inside a unit circle centered at α/β, each of which
generates a unique ρ.

14.1.22. Suppose α = r + si is an algebraic integer. Then it is a root of a monic polynomial f(x) with integer
coefficients. We may assume f(x) has smallest positive degree of all such polynomials. If f(x) = x + b,
then f(α) = r + si + b so that s = 0 and r = b, which are both integers. So assume that deg(f) ≥ 2. Note
that f(x) is necessarily irreducible over the integers, since if f(x) = g(x)h(x) is a nontrivial factorization
of f , then g(α)h(α) = 0 and so α satisfies one of g or h which contradicts the minimality of f .

Note that α is a root of g(x) = (x − α)(x − α) = (x2 − 2rx + r2 + s2). If we divide f(x) by g(x) we
get f(x) = q(x)g(x) + r(x), with deg(r) < deg(g) = 2 or r(x) = 0. Then we have f(α) = q(α)g(α) + r(α),
so that r(α) = 0. But α can not be the root of a polynomial of degree 1 or 0, so r(x) = 0 and we have
f(x) = q(x)g(x), where q(x) and g(x) have rational coefficients. We can factor out any common factors
of the coefficients of q and g and write f(x) = (a/b)q1(x)g1(x), where q1 and g1 are primitive integer
polynomials and (a, b) = 1. But by Gauss’ Lemma, (see the solution to Exercise 43 part (a) in Section
2) q1g1 is primitive, so no prime factor of b can divide all of the coefficients. Therefore b = 1, and since
f(x) is monic, we have a = 1. Further, since f is irreducible, we must have q1 = 1 and so f(x) = g(x) =
x2 − 2rx + r2 + s2 and we know that 2r = b and r2 + s2 = c for some integers b and c. Then r = b/2 and
s2 = (4c− b2)/4 for some integers b and c. So s = e/2 for some integer e. Substituting these expressions
in for r and s, we have (b/2)2 +(e/2)2 = c, or, upon multiplication by 4, b2 + e2 = 4c ≡ 0 (mod 4) which
has solutions only when b and e are even. Therefore r and s are rational integers.

14.1.23. If a and b are both even then the Gaussian integer is divisible by 2. Since (1 + i)(1 − i) = 2, then
1 + i is a divisor of 2 which is in turn a divisor of a + bi. If a and b are both odd we may write a + bi =
(1 + i) + (a− 1) + (b− 1)i, and a− 1 and b− 1 are both even. Since both of theses Gaussian integers are
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multiples of 1+ i, so is there sum. If a is odd and b is even, then a−1+ bi is a multiple of 1+ i and hence
(a + bi) − (a − 1 + bi) = 1 is a multiple of 1 + i if a + bi is, a contradiction. A similar argument shows
that if a is even and b is odd then 1 + i does not divide a + bi.

14.1.24. If π = a + bi is a Gaussian prime, then N(π) = a2 + b2. There are no solutions to a2 + b2 ≡ 3 (mod 4)
and the only solutions to a2 + b2 ≡ 0 (mod 4) require both a and b to be even, in which case 2 | π and
since 2 is not a Gaussian prime, this can not be the case. Therefore the only possibilities are that N(π) ≡
1 or 2 (mod 4). Then note that N(1 + i) = 12 + 12 ≡ 2 (mod 4) and N(1 + 2i) = 12 + 22 ≡ 1 (mod 4).
Since 1 + i and 1 + 2i are Gaussian primes, this shows that both cases can happen.

14.1.25. Let α = a + bi, and suppose α2 + 1 is a Gaussian prime. Since we can factor α2 + 1 = (α + i)(α− i) =
(a + (b + 1)i)(a + (b − 1)i), we must have one of these factors a unit. One way is for b = 0, so that a =
0 and then the first factor is i. But then the second factor is −i and α2 + 1 = 0 which is not prime. The
only other way is for b = ±1, which forces a = ±1 and leads to α2 + 1 = ±1± 2i. Since N(±1± 2i) = 5
is prime, we know that ±1± 2i are Gaussian primes, and these four are the only ones of this form.

14.1.26. Suppose γ | (b + ai). Then γ | (b − ai), and hence γ divides its associate γ | i(b − ai) = a + bi. Since
a+bi is a Gaussian prime, γ is either an associate of a+bi or unit. Hence, γ is either an associate of b+ai
or a unit. Since γ was chosen as an arbitrary divisor of b + ai, this shows that b + ai is also prime.

14.1.27. Suppose 7 = (a + bi)(c + di) where a + bi and c + di are nonunit Gaussian integers. Taking norms of
both sides yields 49 = (a2 + b2)(c2 + d2). Since a + bi and c + di are not units, we have that the factors
on the right are not equal to 1, so we must have a2 + b2 = 7, a contradiction, since 7 is not the sum of 2
squares.

14.1.28. Suppose p ≡ 3 (mod 4) is a rational prime, and that p = (a+bi)(c+di) in the Gaussian integers, where
neither factor is a unit. Then using part ii of Theorem 14.1, we have p2 = N(p) = N(a + bi)N(c + di).
Since neither of these last factors is a unit, their norms can not be 1, so we must have N(a + bi) = a2 +
b2 = p ≡ 3 (mod 4), which is impossible. Therefore p has no such factorization, and is a Gaussian prime.

14.1.29. Since α in not a unit or a prime, it has a nontrivial factors α = βγ with β and γ nonunits, so that
1 < N(β) and 1 < N(γ). Then N(α) = N(β)N(γ). If N(β) >

√
N(α) then N(γ) = N(α)/N(β) <

N(α)/
√

N(α) =
√

N(α). So if β doesn’t satisfy the conditions, then γ does.

14.1.30. If α is a Gaussian integer which is not prime, then it has nontrivial divisors α = βγ where β and γ are
not units. Then N(α) = N(β)N(γ) where 1 < N(β) ≤ N(γ). Then N(β) ≤

√
N(α). So if π is a Gaussian

prime dividing β, then N(π) ≤ N(β) ≤
√

N(α). Therefore, we know that every composite Gaussian
integer α is divisible by a Gaussian prime π with N(π) ≤

√
N(α).

Observe that if π = a + bi is a Gaussian prime, then so are its associates and their conjugates. So it
suffices to find the primes in the 1/8 plane in the 1st Quadrant on or below the line y = x.

To find all Gaussian primes with norms less than a specified limit M , we plot the Gaussian integers
in the 1st Quadrant, on or below the line y = x, and inside the circle x2 + y2 = M , since these are the
Gaussian integers with norm less than M . Since 0, 1 and i are not primes, they are not considered. The
next closest Gaussian integer to the origin in the region is 1 + i, so it must be prime and we circle it. We
then cross out all other multiples of 1 + i in the region and note that they form a pattern of vertices of
squares. Since 1 + i is a multiple of its own conjugate, we are done with this step.

The next closest Gaussian integer to the origin which is not crossed out is 2 + i, so it is prime and we
circle it and cross out all other multiples. Again, the multiples form a pattern of vertices of squares, so
an easy way to determine the multiples is to see that 2 + i and 4 + 2i must from one side of a square.
Then 3− i and 5 must be the other two vertices. Since 5 and 4+2i are in the region, they are crossed out.
By repeating the pattern of this square throughout the region, we find all multiples of 2 + i. We must
also consider all multiples of its conjugate 2 − i, which forms a different lattice squares. We cross these
out also.

The next closest multiple to the origin which is not crossed out is 3, so it is prime and we circle it.
The square with vertices 0, 3, 3i, and 3 + 3i establishes the pattern to find all multiples of 3 and we cross
these out.
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We continue in this fashion until every Gaussian integer in our region of norm less than
√

M is either
circled or crossed out. Then all Gaussian integers in the region which are either circled or not crossed
out are Gaussian primes. We then take their associates and conjugates to get the complete set of all
Gaussian primes up to the specified norm of M .

14.1.31. Following the procedure in Exercise 30, we note that 1 + i is a Gaussian prime. Its multiples in the 1st
Quadrant on or below the line y = x are those Gaussian integers a + bi where a and b are both even or
both odd, so we cross these out. The closest integer to the origin not crossed out is 2 + i, so we circle it
and cross out its multiples. The new numbers crossed out with norm less than 10 are 5, 6 + 3i, 9 + 2i,
and 7 + 6i. We also cross out multiples of its conjugate 2 − i, which eliminates 4 + 3i, 8 + i and 7 + 4i.
The next closest integer not crossed out is 3 and the only multiple not crossed out is 9, which we cross
out. The next closest number to the origin which is not crossed out is 3 + 2i, but its norm is 13, which is
greater than

√
100 so we are done with the sieving process. This leaves the following numbers as Gauss-

ian primes with norm less than 100: 3, 7, 1 + i, 2 + i, 4 + i, 6 + i, 3 + 2i, 5 + 2i, 7 + 2i, 8 + 3i, 5 + 4i, 9 + 4i,
6 + 5i, and 8 + 5i, plus their conjugates and associates.

14.1.32.

–10

–5

5

10

–10 –5 5 10

14.1.33. a. Note that α− α = 0 = 0 · µ, so µ|α− α. Thus, α ≡ α (mod µ).

b. Since α ≡ β (mod µ), we have µ|α − β, so there exists a Gaussian integer γ such that µγ = α − β.
But then µ(−γ) = β − α, so µ|β − α. Therefore β ≡ α (mod µ).

c. Since α ≡ β (mod µ) and β ≡ γ (mod µ), there exist Gaussian integers δ and ε such that µδ = α−β
and µε = β − γ. Then α− γ = α− β + β − γ = µδ + µε = µ(δ + ε). Therefore α ≡ γ (mod µ).

14.1.34. a. Since α ≡ β (mod µ) and γ ≡ δ (mod µ), we have µ|(α−β) and µ|(γ−δ). Then µ| ((α− β) + (γ − δ)) =
((α + γ)− (β + δ)). Therefore, α + γ ≡ β + δ (mod µ).

b. Since α ≡ β (mod µ) and γ ≡ δ (mod µ), we have µ|(α−β) and µ|(γ−δ). Then µ| ((α− β)− (γ − δ)) =
((α− γ)− (β − δ)). Therefore, α− γ ≡ β − δ (mod µ).

c. Since α ≡ β (mod µ) and γ ≡ δ (mod µ), we have µ|(α − β) and µ|(γ − δ). Note that αγ − βδ =
αγ−αδ+αδ−βδ = α(γ−δ)+(α−β)δ, which is a linear combination of multiples of µ, so µ|αγ−βδ
and hence αγ ≡ βδ (mod µ).

14.1.35. If α = a1 + ib1 and β = a2 + ib2 let p = (a1 + b1)(a2 + b2). Then the real part of αβ is given by the two
multiplications R = a1a2 − b1b2 and the imaginary part is given by p−R which requires only one more
multiplication. The second way in the hint goes as follows. Let m1 = b2(a1 + b1), m2 = a2(a1 − b1), and
m3 = b1(a2 − b2). These are the three multiplications. Then the real part of αβ is given by m2 + m3 and



14.1. GAUSSIAN INTEGERS AND GAUSSIAN PRIMES 221

the imaginary part by m1 + m3.

14.1.36. Let z = a+ bi. We compute z−{z} = a+ bi−{a+ bi} = (a+ bi)− ({a}+{b}i) = (a−{a})+(b−{b})i.
Since {a} is the closest integer to a, we have a− {a} ≤ 1/2 and likewise b− {b} ≤ 1/2. Therefore N(z −
{z}) = (a−{a})2 +(b−{b})2 ≤ (1/2)2 +(1/2)2 = 1/2. Suppose γ = c+di is a Gaussian integer closer to
z but different from {z}. Then N(z− γ) = N((a + bi)− (c + di)) = N((a− c) + (b− d)i) = (a− c)2 + (b−
d)2 ≥ (a− {a})2 + (b− {b})2 since {a} and {b} are the integers nearest a and b. But this last expression
is N(z−{z}), so this shows that the distance from γ to z is at least as great as the distance from {z} to z.

14.1.37. a. We have G0 = 0 + i, G1 = 1 + i, G2 = 1 + 2i, G3 = 2 + 3i, G4 = 3 + 5i, G5 = 5 + 8i.
b. Using the definition of Gk and the properties of the Fibonacci sequence we have Gk = fk + ifk+1 =

(fk−1 + fk−2) + (fk + fk−1)i = (fk−1 + fki) + (fk−2 + fk−1i) = Gk−1 + Gk−2.

14.1.38. Note that N(Gk) = N(fk + ifk+1) = f2
k + f2

k+1. We seek to show that this last expression is equal
to f2k+1 for all nonnegative integers k. We proceed by induction on k. For k = 1 we have f3 = 1 =
f2
2 + f2

1 = 12 + 12. And when k = 2 we have f5 = 5 = 22 + 12 = f2
3 + f2

2 , so the basis steps hold for
mathematical induction. Now assume, for the strong form of induction, that the identity holds for all
values of k. Then f2k−3 = f2

k−1 + f2
k−2 and f2k−1 = f2

k + f2
k−1. Now we calculate f2k+1 = f2k + f2k−1 =

f2k−1 + f2k−2 + f2k−1 = 2f2k−1 + (f2k−1 − f2k−3) = 3f2k−1 − f2k−3. Now substituting in the induction
hypothesis, makes this last expression equal to 3(f2

k +f2
k−1)−f2

k−1−f2
k−2 = 3f2

k +2f2
k−2−(fk−fk−1)2 =

2f2
k + f2

k−1 +2fkfk−1 = 2f2
k +(fk+1− fk)2 +2fk(fk+1− fk) = f2

k+1 + f2
k , which completes the induction

step.

14.1.39. We proceed by induction. For the basis step note that G2G1 −G3G0 = (1 + 2i)(1 + i) − (2 + 3i)(i) =
2 + i, so the basis step holds. Now assume the identity holds for values less than n. We compute, using
the identity in Exercise 37, Gn+2Gn+1 − Gn+3Gn = (Gn+1 + Gn)Gn+1 − (Gn+2 + Gn+1)Gn = G2

n+1 −
Gn+2Gn = G2

n+1 − (Gn+1 + Gn)Gn = G2
n+1 −G2

n −Gn+1Gn = (Gn+1 + Gn)(Gn+1 −Gn)−Gn+1Gn =
Gn+2Gn−1 −Gn+1Gn = −(−1)n−1(2 + i) = (−1)n(2 + i), which completes the induction step.

14.1.40. Let β = −1 + i and note that N(β) = 2. Let α be a Gaussian integer. By Exercise 23, either α or α − 1
is divisible by 1 + i and hence by β, its associate. Let α0 = α. Then there exists a0 = 0 or 1 such that
β|(α0 − a0), so there exists a Gaussian integer α1 such that α1β = α0 − a0.

We seek to show that if |α0| ≥
√

6, then N(α1) < N(α0). If a0 = 0 then N(α1)N(β) = N(α1)2 =
N(α0), so that N(α1) < N(α0). If a0 = 1, then note that the lines y = x and y = (x + 1)/

√
2 intersect

when x =
√

2 + 1 <
√

6. By the Triangle Inequality we have |α1||β| = |α0 − 1| ≤ |α0| + 1, so |α1| ≤
(|α0|+ 1)/

√
2 < |α0| by our observation in the previous sentence and the assumption that |α0| ≥

√
6.

Given that |α0| ≥
√

6, we produce the equation

α1β = α0 − a0, a0 = 0 or 1.

We repeat the process on α1 to get

α2β = α2 − a2, a2 = 0 or 1.

And continue in this fashion generation a sequence of αj ’s such that N(α0) > N(α1) > N(α2) > · · · .
Since this is a decreasing series of positive integers, eventually the norms must decrease to be less than
6. There are 21 Gaussian integers with norm less than 6 and we need to deal with each of these cases,
to show that the process terminates with αn+1 = 0. If αk = 2 + i, then we note that αk = 3 + i − 1 =
(−1 + 2i)β − 1, so we take αk+1 = −1 + 2i and ak+1 = 1. Note that the norm did not decrease in this
step. But now αk+1 = 2i − 1 = (1 − i)β − 1, so we take αk+2 = 1 − i. Then αk+2 = −1β so αk+3 = −1
and we can take αk+4 = 0. This chain accounts for the Gaussian integers 2 + i,−1 + 2i, 1 − i, and −1.
The other 16 integers are dealt with similarly. So the above sequence of equations continues:

α3β = α2 − a2, a2 = 0 or 1.
...

αnβ = αn−1 − an−1, a0 = 0 or 1.
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αn+1 = 0.

Then we have α0 = α1β + a0 = (α2β + a1)β + a0 = α2β
2 + a1β + a0 = · · · = anβn + an−1β

n−1 + · · ·+
a1β + a0, as desired.

14.1.41. Since the coefficients of the polynomial are real, the other root is r−si, and over the complex numbers
the polynomial must factor as (z − (r + si))(z − (r − si)) = z2 − 2rz + r2 + s2. The z-coefficients, a =
2r and b = r2 + s2 are integers. Then r = a/2 and s2 = (4b − a2)/4, which shows that s = c/2 for some
integer c. Multiplying by 4 we have a2 + c2 ≡ 0 (mod 4) which can be true only if both a and c are even,
hence r and s are integers and r + si is a Gaussian integer.

14.1.42. From Exercise 23, we know that the Gaussian prime 1+ i divides a Gaussian integer c+ di if and only
if c and d have the same parity. If π = 1 + i, then the surrounding 4 Gaussian integers are 2 + i, i, 1 + 2i,
and 1, of which only 2 + i and 1 + 2i are prime. Similar arguments follow if π is one of the associates of
1 + i.

If π = a + bi is not an associate of 1 + i, then since it is prime, it is not divisible by 1 + i and so a and
b must have opposite parity. But then all of (a + 1) + bi, (a− 1) + bi, a + (b + 1)i, and a + (b− 1)i must
have real and imaginary parts of the same parity, and therefore are divisible by 1 + i. Since one of them
is prime, we conclude that one of them is an associate of 1 + i. Hence, π must be of one of the forms
±1± 2i or ±2± i.

14.1.43. Let β = 1 + 2i so that N(β) = 5. From the proof of the Division algorithm, we have for a Gaussian
integer α, that there exist Gaussian integers γ and ρ such that α = γβ + ρ with N(ρ) ≤ N(β)/2 = 5/2.
Therefore the only possible remainders upon division by 1 + 2i are 0, 1, i, 1 + i and their associates. Fur-
ther, if α = βγ + (1 + i) = β(γ + 1) + (1 + i) − (1 + 2i) = β(γ + 1) − i. So we may take the entire set
of remainders to be 0, 1,−1, i and −i. Consider dividing each of the Gaussian primes π1, . . . , π4, by β. If
any two left the same remainder ρ, then β divides the difference between the two primes. But all these
differences are either 2 or 1 ± i, which are not divisible by β. Further, since these are all prime, none of
the remainders are 0. Therefore, the remainders are exactly the set 1,−1, i and −i. Now divide a + bi by
β and let the remainder be ρ. If ρ is not zero, then it is one of 1,−1, i or −i. But then one of π1, . . . , π4

leaves the same remainder upon division by β, say πk. Then β divides πk − (a + bi) which is a unit, a
contradiction. Therefore ρ = 0. Therefore 1 + 2i divides a + bi. A similar argument shows that 1 − 2i
also divides a + bi. Therefore the product of these primes (1 − 2i)(1 + 2i) = 5 also divides a + bi, and
hence each of the components.

14.1.44. Let S = a + bi : a = 1, 2, . . . ,m, b = 1, 2 . . . , n and let P be the product of the elements of S. Then if
c + di ∈ S, we have (c + di)|(P + c + di), and so P + c + di is not a Gaussian prime. So the block of
Gaussian integers with diagonal running from P + 1 + i to P + m + ni contains no Gaussian primes.

14.1.45. Taking norms of the equation αβγ = 1 shows that all three numbers must be units in the Gaussian in-
tegers, which restricts our choices to 1,−1, i and −i. Choosing three of these in the equation α+β + γ =
1, we have the possible solutions, up to permutation, (1, 1,−1), (1, i,−i), but only the second solution
works in the first equation, leaving (1, i,−i) as the only solution.

14.1.46. Let π = a + bi. Note that (1 + i)|4. If N(π) 6= 2 then (1 + i) - π so by Exercise 23, a and b must have op-
posite parity. If π ≡ c + di (mod 4) then c and d must have opposite parity also, otherwise, π ≡ c + di ≡
0 (mod 1 + i) a contradiction. Further, we can subtract multiples of 4 and 4i from π so as to guarantee
that c and d are between 0 and 3, inclusive. If c + di = 1, then the associates of π are π ≡ 1 (mod 4),
iπ ≡ i (mod 4), −π ≡ −1 ≡ 3 (mod 4), and −iπ ≡ −i ≡ 3i (mod 4). We see that if π were congruent to
any of 1, i, 3, or 3i then exactly one of its associates would be congruent to 1 (mod 4). Similarly, if π ≡
c + di ≡ 3 + 2i (mod 4), then its associates are π ≡ 3 + 2i (mod 4), iπ ≡ −2 + 3i ≡ 2 + 3i (mod 4), −π ≡
−3 − 2i ≡ 1 + 2i (mod 4) and −iπ ≡ 2 − 3i ≡ 2 + i (mod 4). We see that if π were congruent to any of
3 + 2i, 2 + 3i, 1 + 2i, or 2 + i, then exactly one of its associates would be congruent to 3 + 2i. Since the 8
congruence classes represented are all of the classes relatively prime to 4, there are no other cases.
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14.2. Greatest Common Divisors and Unique Factorization
14.2.1. Certainly 1|π1 and 1|π2. Suppose δ|π1 and δ|π2 Since π1 and π2 are Gaussian primes, δ must be either

a unit or an associate of the primes. But since π1 and π2 are not associates, then they can not have an
associate in common, so δ is a unit and so δ|1. Therefore 1 satisfies the definition of a greatest common
divisor for π1 and π2.

14.2.2. Certainly 1|ε and 1|α. Suppose δ|ε and δ|α. Then there exists a Gaussian integer µ such that δµ = ε
and so N(δ)N(µ) = N(ε) = 1, since ε is a unit. But then N(δ) is a positive rational integer which divides
1, so N(δ) = 1 and therefore we know δ is a unit and we conclude that δ|1. Hence 1 is a greatest com-
mon divisor of ε and α.

14.2.3. Since γ is a greatest common divisor of α and β, we have γ|α and γ|β, so there exist Gaussian integers
µ and ν such that µγ = α and νγ = β. So that µγ = µ · γ = α and νγ = ν · γ = β so that γ is a common
divisor of α and β. Further if δ|α and δ|β then δ|α and δ|β and so δ|γ by the definition of greatest com-
mon divisor. But then δ|γ and δ = δ, which shows that γ is a greatest common divisor for α and β.

14.2.4. a. Let α1, α2, . . . , αn be Gaussian integers. A greatest common divisor of α1, α2, . . . , αn, is a Gaussian in-
teger γ with the two properties: (i) γ|αj for every j = 1, . . . , n and (ii) if δ|αj for every j = 1, . . . , n,
then δ|γ.

b. Let δ be a greatest common divisor of α, β, and γ as defined in part (a). Then δ|α and δ|β, so if σ is a
greatest common divisor of α and β then δ|σ. So δ is a common divisor of γ and σ. Let τ be another
common divisor of γ and σ. Then since σ divides α and β, so does τ . Therefore τ divides α, β, and
γ, and so must divide δ, by definition of greatest common divisor. This shows that δ is a greatest
common divisor of γ and σ also.

14.2.5. Let εγ, where ε is a unit, be an associate of γ. Since γ|α there is a Gaussian integer µ such that µγ =
α. Since ε is a unit, 1/ε is also a Gaussian integer. Then (1/ε)µ(εγ) = α, so εγ|α. Similarly, εγ|β. If δ|α
and δ|β then δ|γ by definition of greatest common divisor, so there exists a Gaussian integer ν such that
νδ = γ. Then ενδ = εγ, and since εν is a Gaussian integer, we have δ|εγ, so εγ satisfies the definition of a
greatest common divisor.

14.2.6. Let δ be a greatest common divisor of α and β. Say α = µδ and β = νδ. Then N(α) = N(µ)N(δ) and
N(β) = N(ν)N(δ). Since N(α) and N(β) are relatively prime, we must have N(δ) = 1, which shows
that δ must be a unit and therefore α and β are relatively prime Gaussian integers.

14.2.7. Good examples are the factors of rational primes which factor in the Gaussian integers, such as 13 =
(3− 2i)(3 + 2i). Then gcd(3 + 2i, 3− 2i) = 1, but N(3 + 2i) = N(3− 2i) = 13.

14.2.8. Since γ divides α and β, there exist Gaussian integers µ and ν such that α = µγ and β = νγ. Then
N(α) = N(µ)N(γ) and N(β) = N(ν)N(γ), so we see that N(γ) is a common divisor of N(α) and N(β).
Therefore N(γ) must divide (N(α), N(β)).

14.2.9. Since a and b are relatively prime rational integers, there exist rational integers m and n such that am+
bn = 1. Let δ be a greatest common divisor of the Gaussian integers a and b. Then δ divides am + bn =
1. Therefore δ is a unit in the Gaussian integers and hence a and b are relatively prime Gaussian integers.

14.2.10. Let the prime factorization of γ = π1π2 · · ·πk. Then the unique prime factorization of γn is γn =
πn

1 πn
2 · · ·πn

k = αβ. For each Gaussian prime πj , we have πj |αβ and so either πj |α or πj |β but not
both, since α and β are relatively prime. Therefore either πn

j |α or πn
j |β. So, after re-indexing if nec-

essary, there is an index r such that πn
1 · · ·πn

r |α and πn
r+1 · · ·πn

k |β. And since N(γ) = N(α)N(β) =
N(πn

1 · · ·πn
r )N(πn

r+1 · · ·πn
k ), we see that N(α) = N(πn

1 · · ·πn
r ), and so α and πn

1 · · ·πn
r are associates.

Therefore α = επn
1 · · ·πn

r = ε(π1π2 · · ·πr)n = εδn where epsilon is a unit.
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14.2.11. a. We have 44 + 18i = (12 − 16i)(1 + 2i) + 10i. Then 12 − 16i = (10i)(−2 − i) + (2 + 4i). Then 10i =
(2 + 4i)(2 + i) + 0. Since the last nonzero remainder is 2 + 4i, this is a greatest common divisor.

b. From the equations in part (a) we have 2 + 4i = (12 − 16i) − (10i)(−2 − i) = (12 − 16i) − ((44 +
18i)− (12− 16i)(1 + 2i))(−2− i) = (2 + i)(44 + 18i) + (1 + (1 + 2i)(−2− i))(12− 16i) = (2 + i)(44 +
18i) + (1− 5i)(12− 16i). So we take µ = 2 + i and ν = 1− 5i.

14.2.12. a. We have (2− 11i)/(7+8i) = −74/113− 93i/113 and the nearest Gaussian integer to this quotient is
−1− i. Then we compute (2− 11i)− (7 + 8i)(−1− i) = (1 + 4i) to get the remainder in the division
algorithm. Now we divide (7 + 8i)/(1 + 4i) = 39/17− 20i/17 the nearest integer to which is 2− i.
Then we compute (7 + 8i) − (1 + 4i)(2 − i) = (1 + i) to get the next remainder. Now we divide
(1+4i)/(1+ i) = 5/2+3i/2, the nearest integer (rounding up) to which is 3+2i. Then we compute
(1+4i)−(1+i)(3+2i) = −i which is a unit, so we deduce that 2−11i and 7+8i are relatively prime.

b. We start with the last equation in part (a) and replace every remainder with its equivalent expres-
sion as needed in the other equations given. −i = (1 + 4i) − (1 + i)(3 + 2i) = ((2 − 11i) − (7 +
8i)(−1 − i)) − ((7 + 8i) − (1 + 4i)(2 − i))(3 + 2i) = (2 − 11i) − (2 + i)(7 + 8i) + (8 + i)(1 + 4i) =
(2− 11i)− (2 + i)(7 + 8i) + (8 + i)((2− 11i)− (7 + 8i)(−1− i)) = (9 + i)(2− 11i) + (5 + 8i)(7 + 8i).
Now if we multiply through by i we have 1 = (−1 + 9i)(2 − 11i) + (−8 + 5i)(7 + 8i), so we may
take µ = −1 + 9i and ν = −8 + 5i.

14.2.13. We proceed by induction. We have G0 = i and G1 = 1+ i. Since G0 is a unit, these are relatively prime
and this completes the basis step. Assume we know that Gk and Gk−1 are relatively prime. Suppose
δ|Gk and δ|Gk+1. Then δ|(Gk+1 −Gk) = (Gk + Gk−1 −Gk) = Gk−1, so δ is a common divisor of Gk and
Gk−1 which are relatively prime. Hence δ|1 and so 1 is a greatest common divisor of Gk+1 and Gk.

14.2.14. It takes k divisions. We prove this by induction on k. Note that for k = 1, we have G2 = 1 · G2 + G0

and since G0 = 1, we know the greatest common divisor. Now suppose that it takes k divisions to find
(Gk+1, Gk). We perform the Euclidean algorithm on (Gk+2, Gk+1) to get Gk+2 = 1 · Gk+1 + Gk for the
first step. The second step is Gk+1 = Gk + Gk−1, but this is the first step for finding (Gk+1, Gk), which
takes k steps. Therefore finding (Gk+2, Gk+1) takes only one additional step, that is, k + 1 steps. This
completes the induction.

14.2.15. Let k be the smallest rational integer such that N(α) < 2k. Dividing β = ρ0 by α = ρ1 in the first step
of the Euclidean Algorithm gives us β = γ2α + ρ2 with N(ρ2) < N(α) < 2k−1. The next step of the Eu-
clidean Algorithm, gives us α = γ3ρ2 + ρ3 with N(ρ3) < N(ρ2) < 2k−2. Continuing with the algorithm
shows us that N(ρk) < 2k−(k−1) = 2, so that the Euclidean Algorithm must terminate in no more than
k = [log2 N(α)] + 1 steps. And thus we have k = O(log2(N(α)).

14.2.16. a. We compute N(9 + i) = 82 = 2 · 41. Since 1 + i and its associates have norm 2 and since 5± 4i and
their associates have norm 41, we try these and discover that 9 + i = −i(1 + i)(4 + 5i).

b. Since N(1 + i) = 2, we try factorizations using its associates and find 4 = −(1 + i)4.

c. We compute N(22 + 7i) = 533 = 13 · 41. Since N(2± 3i) = 13 and N(4± 5i) = 41, we try the asso-
ciates of these numbers and discover that 22 + 7i = −i(2 + 3i)(4 + 5i).

d. Note that 210 + 2100i = 210(1 + 10i) = 2 · 3 · 5 · 7(1 + 10i). Note that N(1 + 10i) = 101, which
is a rational prime, and so 1 + 10i is a Gaussian prime. Also, we know that 3 and 7 are Gaussian
primes. It remains to factor 2 and 5. We find that 210+2100i = −1(1+i)2(1+2i)(2+i)(3)(7)(1+10i).

14.2.17. a. We compute N(7 + 6i) = 85 = 5 · 17. Since 1 ± 2i and their associates have norm 5 and 1 ± 4i and
their associates have norm 17, we try these and discover that 7 + 6i = (−1)(1− 2i)(1− 4i).

b. We compute N(3 − 13i) = 178 = 2 · 89. Only 1 + i has norm 2 and it divides 3 − 13i only once,
leaving −5− 8i which has norm 89, which is a rational prime. Therefore 5 + 8i is a Gaussian prime
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and we have 3− 13i = (−1)(1 + i)(5 + 8i).

c. By Exercise 7 in Section 1, we know 7 is a Gaussian prime and since 4 = 22 = (i(1+i)2)2 = −(1+i)4,
we have 28 = (−1)(1 + i)4(7).

d. We have 400i = 16 · 25i = (i(1 + i)2)4(52)i = (1 + i)8((1 + 2i)(1− 2i))2i = i(1 + i)8(1 + 2i)2(1− 2i)2.

14.2.18. When k = 1 and 6 we have N(1+6i) = N(6+ i) = 37, which is prime, so 1+6i and 6+ i are Gaussian
primes. When k = 2 and 5 we have N(2 + 5i) = N(5 + 2i) = 29, which is prime, so 2 + 5i and 5 + 2i are
Gaussian primes. If k = 3 or 4 we have N(3 + 4i) = N(4 + 3i) = 25, so we seek factorizations involving
2± i and its associates. We find that 3+4i = (2+ i)2 and 4+3i = i(2− i)2. Finally, when k = 7, we have
k + (7− k)i = 7, which is a Gaussian prime.

14.2.19. a. We find that 10 = −i(1 + i)2(1 + 2i)(1− 2i), so a divisor of 10 must have one of the three Gaussian
primes to a power less than or equal to the power to which it appears in this factorization. So the
possible number of factors, ignoring associates is (2 + 1)(1 + 1)(1 + 1) = 12. Since there are 4 units,
when we count associates, there are a total of 4 · 12 = 48 divisors of 10.

b. We have 128 + 256i = i(1 + i)14(1 + 2i), so the number of divisors is 4(14 + 1)(1 + 1) = 120.
c. We have 27000 = i(1 + i)6(1 + 2i)3(1 − 2i)3(3)3, so the number of divisors is 4(6 + 1)(3 + 1)(3 +

1)(3 + 1) = 1792.
d. We have 5040 + 40320i = (1 + i)8(1 + 2i)(1 − 2i)2(3)2(7)(−3 + 2i), so the number of divisors is

4(8 + 1)(1 + 1)(2 + 1)(2 + 1)(1 + 1)(1 + 1) = 2592.

14.2.20. a. We find 198 = −i(1 + i)2(3)2(11). So a divisor of 198 must have one of these Gaussian primes to
a power less than or equal to the power to which it appears in this factorization. So the possible
number of factors, ignoring associates is (2+1)(2+1)(1+1) = 18. Since there are 4 units, when we
count associates, there are a total of 4 · 18 = 72 divisors of 198.

b. We have 128 + 256i = i(1 + i)14(1 + 2i), so the number of divisors is 4(14 + 1)(1 + 1) = 120.

c. We have 169000 = (1+ i)6(1+2i)3(2+ i)3(3+2i)2(2+3i)2, so the number of divisors is 4(6+1)(3+
1)(3 + 1)(2 + 1)(2 + 1) = 4032.

d. We have 4004 + 8008i = i(1 + i)4(1 + 2i)(3 + 2i)(2 + 3i)(7)(11), so the number of divisors is 4(4 +
1)(1 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) = 640.

14.2.21. Assume n and a + bi are relatively prime. Then there exist Gaussian integers µ and ν such that µn +
ν(a + bi) = 1. If we take conjugates of both sides and recall that the conjugate of a rational integer is
itself, we have µn + ν(a − bi) = 1, so n is also relatively prime to a − bi. Since a − bi is an associate of
b + ai (multiply by i), we have the result. The converse is true by symmetry.

14.2.22. Let α be a Gaussian integer with unique prime factorization, up to associates, α = ρ1ρ2 · · · ρt, given
by Theorem 14.10. By Exercise 15 in Section 14.1, each Gaussian prime ρk has exactly one associate πk =
rk + ski such that r > 0 and s ≥ 0. Let ρk = εkπk for k = 1, 2, . . . , t. Then α = ε1π1ε2π2 · · · εtπt =
(ε1 · · · εt)π1 · · ·πt. Let ε = ε1 · · · εt. Then ε is also a unit and we have α = επ1 · · ·πt, where each πk satis-
fies our criteria. After we gather like primes into powers, we have, after renumbering α = επek

k · · ·πes
s .

The uniqueness of this expression follows from the uniqueness of the factorization given by Theorem
14.10 and the uniqueness of the associate given by Exercise 15 in Section 14.1.

14.2.23. Suppose that π1, π2, . . . , πk are all of the Gaussian primes and form the Gaussian integer
Q = π1π2 · · ·πk + 1. From Theorem 14.10, we know that Q has a unique factorization into Gaussian
primes, and hence is divisible by some Gaussian prime ρ. Then ρ|Q and ρ|π1π2 · · ·πk, so ρ divides their
difference, which is 1, a contradiction, unless ρ is a prime different from π1, π2, . . . , πk, proving that we
did not have all the Gaussian primes.
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14.2.24. a. A Gaussian integer β is an inverse for α modulo µ if αβ ≡ 1 (mod µ).

b. If α and µ are relatively prime, then we can use the Euclidean algorithm to find Gaussian integers
β and γ such that αβ + µγ = 1. Then µγ = 1− αβ, so µ | 1− αβ. Therefore αβ ≡ 1 (mod µ) and so
β is an inverse for α modulo µ.

14.2.25. Since 2+3i and 1+2i are necessarily relatively prime, we perform the Euclidean algorithm to express
1 as a linear combination of the two numbers to get 1 = i(2 + 3i)− 2i(1 + 2i). Then we have that −2i is
an inverse for 1 + 2i (mod 2 + 3i).

14.2.26. We perform the Euclidean algorithm on 4 and 5 + 2i. We have 5 + 2i = 1(4) + (1 + 2i). Then 4 =
(1−2i)(1+2i)−1, so that 1 = (1−2i)(1+2i)−4 = (1−2i)((5+2i)−4)−4 = (1−2i)(5+2i)+(−2+2i)(4).
Then (−2 + 2i)4 ≡ 1 (mod 5 + 2i) and so −2 + 2i is an inverse for 4 modulo 5 + 2i.

14.2.27. Since α and µ are relatively prime, there exist Gaussian integers σ and τ such that σα + τµ = 1. If we
multiply through by β we get βσα + βτµ = β, so that we know α(βσ) ≡ β (mod µ) and thus x ≡ βσ
(mod µ) is the solution.

14.2.28. a. Using the Euclidean algorithm we have 4− i = (1− i)(2+ i)+1, so that 1 = (4− i)+ (−1+ i)(2+ i),
so that (2 + i)(−1 + i) ≡ 1 (mod 4 − i). Multiplying through by 3 gives us (2 + i)(−3 + 3i) ≡ 3
(mod 4− i) and so x ≡ −3 + 3i ≡ 1 + 2i (mod 4− i).

b. In Exercise 26 we found that−2+2i is an inverse for 4 modulo 5+2i. Therefore x ≡ (−2+2i)(−3+
4i) ≡ −2− 14i ≡ −1− 2i (mod 5 + 2i).

c. Since 3−2i = (1−i)2+1, we see that−1+i is an inverse for 2 modulo 3−2i. Then x ≡ (−1+i)(5) ≡
−5 + 5i ≡ 1 + i (mod 3− 2i).

14.2.29. a. From the Euclidean algorithm we get 1 = (−4)3 + (1)13. We multiply by (2 + i) to get 2 + i =
(−4)(2 + i)3 + 13(2 + i), so that we see x ≡ −8− 4i ≡ 5− 4i (mod 13) is the solution.

b. From the Euclidean algorithm we get 1 = (−1 − 2i)(5) + (2 + 2i)(4 + i). Then we must have x ≡
(−1− 2i)(3− 2i) ≡ −7− 4i ≡ 1− 2i (mod 4 + i).

c. From the Euclidean algorithm we get 1 = (1− i)(3+ i)+ i(2+3i). Then we must have x ≡ 4(1− i) ≡
3i (mod 2 + 3i).

14.2.30. a. Since 9 is an inverse for 5 modulo 11, we have x ≡ 9(2− 3i) ≡ −2(2− 3i) ≡ −4 + 6i (mod 11).

b. Using the Euclidean algorithm, we find 1 = (3 + 2i)(−1 − 2i) + (2i)4, so that 2i is an inverse for 4
modulo 3 + 2i. Then x ≡ (2i)(7 + i) ≡ −2 + 14i ≡ 1 + 3i (mod 3 + 2i).

c. We have 1 = (4 − 7i) + (1 + i)(2 + 5i), so 1 + i is an inverse for 2 + 5i modulo 4 − 7i. Then x ≡
(1 + i)3 ≡ 3 + 3i (mod 4− 7i).

14.2.31. Statement: Let µ1, µ2, . . . , µr be pairwise relatively prime Gaussian integers and let α1, α2, . . . , αr be
Gaussian integers. Then the system of congruences x ≡ αi (mod µi), i = 1, . . . , r has a unique solution
modulo M = µ1µ2 · · ·µr.

Proof: To construct a solution, for each k = 1, . . . , r, let Mk = M/µk. Then Mk and µk are relatively
prime, since µk is relatively prime to all of the factors of Mk. Then from Exercise 24, we know Mk has
an inverse λk modulo µk, so that Mkλk ≡ 1 (mod µk). Now let x = α1M1λ1 + · · · + αrMrλr. We will
show x is the solution to the system.

Since µk|Mj whenever j 6= k, we have αjMjλk ≡ 0 (mod µk) whenever j 6= k. Therefore x ≡
αkMkλk (mod µk) Also, since λk is an inverse for Mk modulo µk, we have x ≡ αk (mod µk) for every
k, as desired.
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Now suppose there is another solution y to the system. Then x ≡ αk ≡ y (mod µk) and so µk|(x− y)
for every k. Since the µk are pairwise relatively prime, no Gaussian prime appears in more than one of
their prime factorizations. Therefore, if a Gaussian prime power πe|(x− y) then it divides exactly one of
the µk’s. Therefore, the product M of the µk’s also divides x− y and so x ≡ y (mod M) showing that x
is unique modulo M .

14.2.32. Using Exercise 31, we let M = (2 + 3i)(1 + 4i) = −10 + 11i, so that M1 = 1 + 4i and M2 = 2 + 3i.
From the Euclidean algorithm, we have 1 = 2(1 + 4i) + (−2− i)(2 + 3i), so λ1 = 2 is an inverse for M1

modulo 2 + 3i and λ2 = (−2− i) is an inverse for M2 modulo 1 + 4i. Then the solution to the system is
x = 2(1 + 4i)2 + 3(2 + 3i)(−2− i) = 1− 8i (mod − 10 + 11i).

14.2.33. Using Exercise 31, we let M = (2 + 5i)(3 − 4i) = 26 + 7i, so that M1 = 3 − 4i and M2 = 2 + 5i. An
inverse for M1 modulo 2 + 5i is λ1 = −1 + 2i. An inverse for M2 modulo 3 − 4i is λ2 = −2. Then the
solution is x = (1 + 3i)(3− 4i)(−1 + 2i) + (2− i)(2 + 5i)(−2) = −43 + 9i ≡ 9 + 23i (mod 26 + 7i).

14.2.34. We seek a solution to the system of congruences x ≡ 1 (mod 11), x ≡ 2 (mod 4 + 3i), x ≡ 3 (mod 1 +
7i). Note that 4+3i = −i(1+2i)2 and 1+7i = −i(1+ i)(1+2i)2, so the moduli are not relatively prime.
Indeed, 1+7i = (1+ i)(4+3i), so if x is a solution to the system, then (1+7i) | (x−3). But then (4+3i) |
(x− 3), so x ≡ 3 (mod 4 + 3i), a contradiction. Therefore, there are no solutions to the system.

14.2.35. a. Using the construction in the solution to Exercise 37, we note that N(1 − i) = 2 and (1, 1) = 1 = d,
so that S = {0, 1} which is a complete residue system.

b. Using the construction in Exercise 37, we note that N(2) = 4 and (2, 0) = 2 = d, so that S =
{0, 1, i, 1 + i}, which is a complete residue system.

c. Using the construction in Exercise 37, we note that N(2 + 3i) = 13 and (2, 3) = 1 = d, so that S =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Reducing each of these modulo 2 + 3i gives us {0, 1, 2, 2i,−1 −
i,−i, 1− i,−1 + i, i, 1 + i,−2i,−2,−1} for a complete residue system.

14.2.36. a. Using the construction in Exercise 37, we note that N(1+2i) = 5 and (1, 2) = 1 = d, so S = {p+ qi |
0 ≤ p < 5, 0 ≤ q < 1} = {0, 1, 2, 3, 4}. Reducing each of these modulo 1+2i gives us {0, 1, i, 1+i, 2i}
for a complete residue system.

b. Using the construction in Exercise 37, we note that N(3) = 9, and (3, 0) = 3 = d, so S = {0, 1, 2, i, 1+
i, 2 + i, 2i, 1 + 2i, 2 + 2i}. Reducing each of these modulo 3 gives us {0, 1,−1, i, 1 + i,−1 + i,−i, 1−
i,−1− i} for a complete residue system.

c. Using the construction in Exercise 37, we note that N(4 + i) = 17 and (4, 1) = 1 = d, so that
S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. Reducing each of these modulo 4 + i gives us
{0, 1, 2,−1− i,−i, 1− i, 2− i,−1− 2i,−2i, 2i, 1 + 2i,−2 + i,−1 + i, i, 1 + i,−2,−1} for a complete
residue system.

14.2.37. Let α = a + bi and d = gcd(a, b). We assert that the set S = {p + qi|0 ≤ p < N(α)/d, 0 ≤ q < d} is a
complete residue system. Note that this represents a rectangle of lattice points in the plane. We create
two multiples of α. First, N(α)/d = α(α/d) is a real number and a multiple of α. Second, there exist
rational integers r and s such that ra + sb = d. So we have the multiple of α given by v = (s + ir)α =
(s + ir)(a + bi) = (as− br) + di. Now it is clear that any Gaussian integer is congruent modulo α to an
integer in the rectangle S, since first we can add or subtract multiples of v until the imaginary part is
between 0 and d− 1 and then add and subtract multiples of N(α)/d until the real part is between 0 and
N(α)/d − 1. It remains to show the elements of S are incongruent to each other modulo α. Suppose β
and γ are in S and congruent to each other modulo α. Then the imaginary part of β−γ must be divisible
by d, but since these must lie in the interval from 0 to d− 1, they must be equal. Therefore the difference
between β and γ is real and divisibly by α, hence by α and hence by αα/d = N(α)/d, which proves they
are equal. Since S has N(α) elements, we are done.
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14.2.38. a. From Exercise 37, we find a complete residue system modulo−1+3i to be S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Also, we have −1 + 3i = (1 + i)(1 + 2i) as a product of primes. Since 1 + i divides 2, we know that
no even number is relatively prime to −1 + 3i, so we remove those, which leaves us with the set
{1, 3, 5, 7, 9}. Factoring each of these into Gaussian primes gives us {1,−i, 2− i, i,−1} respectively.
Note that the 3rd element 2− i is an associate of 1 + 2i which divides −1 + 3i, so it is deleted also.
A reduced residue system, then, is {1,−i, i,−1}

b. From Exercise 37, we find a complete residue system modulo 2 to be S = {0, 1, i, 1 + i}. Since (1 +
i, 2) = 1 + i, and the other elements of S are units, a reduced residue system modulo 2 is {0, 1, i}.

c. From Exercise 37, we find a complete residue system modulo 5− i to be S = {0, 1, 2, . . . , 25}. Also,
we have 5 − i = (1 + i)(2 − 3i), and since 1 + i divides every even integer, we delete those. Re-
ducing the remaining (odd) integers modulo 5 − i gives us {1,−2 + i, i, 2 + i,−1 + 2i, 1 + 2i, 3 +
2i,−1− 2i, 1− 2i,−2i,−i, 2− i,−1}. The seventh entry is not relatively prime to 5 + i, so we delete
it. Since all the rest these have norm less than N(2− 3i) = 13, and since (2− 3i) is prime, we know
that these remaining integers are all relatively prime to 5 − i, and so a reduced residue system is
{1,−2 + i, i, 2 + i,−1 + 2i, 1 + 2i,−1− 2i, 1− 2i,−2i,−i, 2− i,−1}.

14.2.39. a. From Exercise 37, we find a complete residue system modulo 2+2i to be S = {0, i, 2i, 3i, 1, 1+ i, 1+
2i, 1+3i}. Also, we have 2+2i = −i(1+ i)3, so every element in S with the same parity in real and
imaginary parts is not relatively prime to 2 + 2i. Deleting these gives us {i, 3i, 1, 1 + 2i}. Reducing
modulo 2 + 2i gives us {i,−i, 1,−1} for a reduced residue system.

b. From Exercise 37, we find a complete residue system modulo 4 to be S = {0, i, 2i, 3i, 1, 1 + i, 1 +
2i, 1 + 3i, 2, 2 + i, 2 + 2i, 2 + 3i, 3, 3 + i, 3 + 2i, 3 + 3i}. Also, we have 4 = −(1 + i)4, so every element
in S with the same parity in real and imaginary parts is not relatively prime to 4. Deleting these
gives us {i, 3i, 1, 1 + 2i, 2 + i, 2 + 3i, 3, 3 + 2i}. Reducing modulo 4 gives us {i,−i, 1, 1 + 2i, 2 + i, 2−
i,−1,−1 + 2i} for a reduced residue system.

c. From Exercise 37, we find a complete residue system modulo 4+2i to be S = {0, i, 2i, 3i, 4i, 5i, 6i, 7i,
8i, 9i, 1, 1 + i, 1 + 2i, 1 + 3i, 1 + 4i, 1 + 5i, 1 + 6i, 1 + 7i, 1 + 8i, 1 + 9i}. Also, we have 4 + 2i = (1 +
i)2(1− 2i), so every element in S with the same parity in real and imaginary parts is not relatively
prime to 4 + 2i. Deleting these gives us {i, 3i, 5i, 7i, 9i, 1, 1 + 2i, 1 + 4i, 1 + 6i, 1 + 8i}. Reducing
modulo 4 + 2i gives us {i, 2 − i, 2 + i,−2 + i,−i, 1, 1 + 2i,−1 − 2i,−1,−1 + 2i}. Note that 2 + i
and −1 + 2i are associates of 1 − 2i which is a prime divisor of 4 + 2i, so we delete them, leaving
{i, 2− i,−2 + i,−i, 1, 1 + 2i,−1− 2i,−1} for a reduced residue system.

14.2.40. If π = p is a rational prime, then N(π) = p2 and d = (p, 0) = p in the solution to Exercise 37, so S =
{a + bi | 0 ≤ a < p, 0 ≤ b < p} is a complete residue system modulo π. Let a + bi ∈ S and suppose
p | a + bi. Then p = p | a − bi, so that p | (a + bi) + (a − bi) = 2a. Therefore p | a, and similarly p |
b. Since 0 ≤ a < p and 0 ≤ b < p, we must have a = b = 0 as the only multiple of π in S. Therefore a
reduced residue system has |S| − 1 = p2 − 1 = N(π)− 1 elements. If π is not a rational prime, then π =
p + qi where p and q are rational integers. Then N(π) = p2 + q2 and (p, q) = 1 = d in the construction
from Exercise 37, so a complete residue system modulo π is S = {a + bi | 0 ≤ a < p2 + q2, 0 ≤ b <
1} = {0, 1, 2, . . . , p2 + q2 − 1}. Suppose π divides an element a of S. Then π | a, so that p − qi | a. Since
(π, π) = 1, we must have ππ = p2 + q2 | a. But a < p2 + q2, so a = 0 is the only element of S not rela-
tively prime to π. Therefore there are |S|−1 = N(π)−1 elements in a reduced residue system modulo π.

14.2.41. From the properties of the norm function and Exercise 37, we know that there are N(πe) = N(π)e

residue classes modulo πe. Let π = r + si, and d = gcd(r, s). Also, by Exercise 37, a complete residue
system modulo πe is given by the rectangle S = {p + qi|0 ≤ p < N(πe)/d, 0 ≤ q < d}, while a complete
residue system modulo π is given by the rectangle T = {p + qi|0 ≤ p < N(π)/d, 0 ≤ q < d}. Note that in
T there is exactly one element not relatively prime to π, and that there are N(π)e−1 copies of T , congru-
ent modulo π, inside of S. Therefore, there are exactly N(π)e−1 elements in S not relatively prime to π.
Thus there are N(π)e −N(π)e−1 elements in a reduced residue system modulo πe.
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14.2.42. a. Suppose α = r + s
√−3 is an algebraic integer. Then it is a root of a monic polynomial f(x) with

integer coefficients. We may assume f(x) has smallest positive degree of all such polynomials. If
f(x) = x + b, then f(α) = r + s

√−3 + b so that s = 0 and r = b, which are both integers. So assume
that deg(f) ≥ 2. Note that f(x) is necessarily irreducible over the integers, since if f(x) = g(x)h(x)
is a nontrivial factorization of f , then g(α)h(α) = 0 and so α satisfies one of g or h which contradicts
the minimality of f .

Note that α is a root of g(x) = (x − α)(x − α) = (x2 − 2rx + r2 + 3s2). If we divide f(x) by
g(x) we get f(x) = q(x)g(x) + r(x), with deg(r) < deg(g) = 2 or r(x) = 0. Then we have f(α) =
q(α)g(α) + r(α), so that r(α) = 0. But α can not be the root of a polynomial of degree 1 or 0, so
r(x) = 0 and we have f(x) = q(x)g(x), where q(x) and g(x) have rational coefficients. We can fac-
tor out any common factors of the coefficients of q and g and write f(x) = (a/b)q1(x)g1(x), where
q1 and g1 are primitive integer polynomials and (a, b) = 1. But by Gauss’ Lemma, (see the solution
to Exercise 43 part (a)) q1g1 is primitive, so no prime factor of b can divide all of the coefficients.
Therefore b = 1, and since f(x) is monic, we have a = 1. Further, since f is irreducible, we must
have q1 = 1 and so f(x) = g(x) = x2 − 2rx + r2 + 3s2 and we know that 2r = b and r2 + 3s2 = c for
some integers b and c. Then r = b/2 and 3s2 = (4c− b2)/4 for some integers b and c. So s = e/2 for
some integer e. (5 can not appear in the denominator of s, else when we square it, the single factor
of 5 in the expression leaves a remaining factor in the denominator, which does not appear on the
right side of the equation.) We check that if n and m have opposite parity, then f(x) will not have
integer coefficients. Therefore n and m have the same parity and α must be of the form a + bω.

b. Let α = a + b
√−3 and β = c + d

√−3. Then α + β = (a + c) + (b + d)
√−3 and α− β = (a− c) + (b−

d)
√−3, and αβ = (ac− 3bd) + (ad + bc)

√−3. Since the rational integers are closed under addition,
subtraction and multiplication, all of the results are again of the form p + q

√−3 with p and q ratio-
nal integers.

c. First we check that ω2 = (1 − 2
√−3 − 3)/4 = (−1 − √−3)/2 = ω. Also note that −1 − ω = −1 −

(−1/2 +
√−3/2) = −1/2 −√−3/2 = ω2. By part (a), we have α = a + bω for some integers a and

b. Then α = a + bω = a + bω2 = a + b(−1− ω) = (a− b)− bω, which is an Eisenstein integer, since
a− 1 and b are rational integers.

d. Note that ω3 = 1 and recall from part (b) that ω = ω2 = −1 − ω. Then we compute αα = (a +
bω)(a + bω) = a2 + ab(ω + ω) + b2ωω = a2 + ab(ω + (−1− ω)) + b2ω · ω2 = a2 − ab + b2 = N(α).

e. First, we seek rational integers a and b such that 1 + 5ω = (1 + 2ω)(a + bω) = (a − 2b) + (2a − b)ω
where we have used the fact that ω2 = −1 − ω. Then we have a − 2b = 1 and 2a − b = 5. We
solve this system to discover that a = 3 and b = 1, which makes 3 + ω an Eisenstein integer and so
1 + 2ω divides 1 + 5ω. Next, we seek rational integers a and b such that 9 + 8ω = (3 + ω)(a + bω) =
(3a− b) + (a + 2b)ω, where we again used the fact that ω2 = −1− ω. Then we have 3a− b = 9 and
a + 2b = 8. Solving this system shows that b = −15/7 is forced, which makes a + bω not an Eisen-
stein integer, and so 3 + ω does not divide 9 + 8ω.

f. We check that for the norm defined in part (d), we have, for Eisenstein integers α and β, N(αβ) =
N(α)N(β). Let α = a + bω 6= 0. Then N(α) = a2 − ab + b2 = (a− b/2)2 + 3b2/4, which shows that
N(α) is non-negative. We conclude that if ε is a Eisenstein unit, then N(ε) = 1. If ε = e + fω, the
identity above gives us N(ε) = (e − f/2)2 + 3f2/4 = 1, so that |f | < 2 else N(ε) is too large. Then
(e− f/2)2 = 1− 3f2/4 ≤ 1, so |e| < 2 also. This gives us 9 possibilities as e, f = −1, 0, and 1. Note
that N(1− ω) = N(−1 + ω) = 3 and N(0 + 0ω) = 0, so none of these three are units. The other six
are 1,−1, ω,−ω, 1 + ω = −ω2, and −1− ω = ω2. The norms of all six of these are equal to 1, so they
are all units.

g. As in part (f), we check that, for an Eisenstein integer γ, if γ = αβ, then N(γ) = N(α)N(β), so if
N(γ) is a rational prime, then one of N(α), N(β) equals 1 and implies that one of α, β is a unit, and
hence γ is an Eisenstein prime. Note that N(1 + 2ω) = 1 − 2 + 22 = 3, which is a rational prime.
Therefore 1 + 2ω is an Eisenstein prime. Likewise N(3 − 2ω) = 32 − 3(−2) + 4 = 19 is a rational
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prime, and so 3− 2ω is an Eisenstein prime. Next, note that N(5 + 4ω) = 21 = 3 · 7, so we suspect
that 1+2ω might be a factor of 5+4ω. We consider (1+2ω)(a+ bω) = (a−2b)+(2a− b)ω = 5+4ω.
Then we must have a − 2b = 5 and 2a − b = 4 which implies a = 1 and b = −2. We check that
(1 + 2ω)(1 − 2ω) = 5 + 4ω, which is therefore not an Eisenstein prime. Next N(−7 − 2ω) = 39 =
3 · 13, so we suspect that 1 + 2ω is a factor. We consider (1 + 2ω)(a + bω) = (a − 2b) + (2a − b)ω =
−7 + −2ω. Then we must have a − 2b = −7 and 2a − b = −2 which implies a = 1 and b = 4. We
check that (1 + 2ω)(1 + 4ω) = −7− 2ω, which is therefore not an Eisenstein prime.

h. Note that α/β = αβ/ββ = r + sω, where, since ββ = N(β) is an integer, we know that r and s are
rational numbers. Then we can find integers m and n such that |r − m| ≤ 1/2 and |s − n| ≤ 1/2.
Set γ = m + nω and ρ = α − γβ. If ρ = 0 we are done. If not, note that N(ρ) = N(β(α/β − γ)) =
N(β)N(α/β − γ) = N(β)N((r −m) + (s − n)ω) = N(β)((r −m)2 − (r −m)(s − n) + (s − n)2) ≤
N(β)(1/4 + 1/4 + 1/4) = N(β)(3/4). Thus N(ρ) < N(β) as desired.

i. Theorem 14.9 holds for Eisenstein integers and follows from part (h). Likewise, the proofs of Lem-
mas 14.1 and 14.2 go through unchanged, except for noting that each Eisenstein prime πhas exactly
12 divisors, ±1,±ω,±ω2,±π,±πω and ±πω2. Then the proof of Theorem 14.10 goes through ver-
batim.

j. Since N(1 + 2ω) = 3, we suspect it might divide 6, and we find that 6 = −2(1 + 2ω)2. Since 2 and
1 + 2ω are primes (see part (g)), this is the prime factorization for 6. Since N(5 + 9ω) = 61, which
is a rational prime, we have, by the argument in part (g) that 5 + 9ω is an Eisenstein prime, so it is
already factored. Note that 114 = 6 ·19. Since N(3−2ω) = 19, we know it is prime. We try dividing
19 by 3 − 2ω and find 19 = (3 − 2ω)(5 + 2ω). And since N(5 + 2ω) = 19, which is prime, we have
the prime factorization for 19. Then from our work above, we have 114 = 6 · 19 = −2(1 + 2ω)2(3−
2ω)(5 + 2ω). Since 37 + 74ω = 37(1 + 2ω) we try to find an Eisenstein prime with norm 37. We find
N(3 + 7ω) = 37 and upon division, that 37 + 74ω = (1 + 2ω)(3 + 7ω)(−4− 7ω).

14.2.43. a. A polynomial is called primitive if the greatest common divisor of its coefficients is 1. We require
a result from algebra called Gauss’ Lemma, which states that the product of primitive polynomi-
als is primitive. To prove this, suppose f(x) = a0 + a1x + · · · + anxn and g(x) = b0 + b1x + · · · +
bmxm are primitive integer polynomials. Let p be any prime. Let aj be the first coefficient of f(x)
which p doesn’t divide. Likewise, let bk be the first coefficient of g(x) which p doesn’t divide. Then
f(x)g(x) = c0 + c1x + · · ·+ cj+k + · · ·+ cn+mxn+m, where cj+k = b0a

j+k + b1aj+k−1 + · · ·+ bkaj +
· · ·+ bj+ka0. Since every term is divisible by p except bkaj , we see that cj+k is not divisible by p. We
conclude that no prime can divide all the coefficients of f(x)g(x) and so it is primitive.

Now suppose α = r + s
√−5 is an algebraic integer. Then it is a root of a monic polynomial f(x)

with integer coefficients. We may assume f(x) has smallest positive degree of all such polynomi-
als. If f(x) = x + b, then f(α) = r + s

√−5 + b so that s = 0 and r = b, which are both integers. So
assume that deg(f) ≥ 2. Note that f(x) is necessarily irreducible over the integers, since if f(x) =
g(x)h(x) is a nontrivial factorization of f , then g(α)h(α) = 0 and so α satisfies one of g or h which
contradicts the minimality of f .

Note that α is a root of g(x) = (x−α)(x−α) = (x2−2rx+r2 +5s2). If we divide f(x) by g(x) we
get f(x) = q(x)g(x) + r(x), with deg(r) < deg(g) = 2 or r(x) = 0. Then we have f(α) = q(α)g(α) +
r(α), so that r(α) = 0. But α can not be the root of a polynomial of degree 1 or 0, so r(x) = 0 and
we have f(x) = q(x)g(x), where q(x) and g(x) have rational coefficients. We can factor out any
common factors of the coefficients of q and g and write f(x) = (a/b)q1(x)g1(x), where q1 and g1 are
primitive integer polynomials and (a, b) = 1. But by Gauss’ Lemma, q1g1 is primitive, so no prime
factor of b can divide all of the coefficients. Therefore b = 1, and since f(x) is monic, we have a = 1.
Further, since f is irreducible, we must have q1 = 1 and so f(x) = g(x) = x2−2rx+r2 +5s2 and we
know that 2r and r2 + 5s2 are integers. Then r = b/2 and 5s2 = (4c− b2)/4 for some integers b and
c. So s = e/2 for some integer e. (5 can not appear in the denominator of s, else when we square
it, the single factor of 5 in the expression leaves a remaining factor in the denominator, which does
not appear on the right side of the equation.) Substituting these expressions in for r and s, we have
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(b/2)2 + 5(e/2)2 = c, or, upon multiplication by 4, b2 + 5e2 = 4c ≡ 0 (mod 4) which has solutions
only when b and e are even. Therefore r and s are rational integers.

b. Let α = a + b
√−5 and β = c + d

√−5. Then α + β = (a + c) + (b + d)
√−5 and α− β = (a− c) + (b−

d)
√−5, and αβ = (ac− 5bd) + (ad + bc)

√−5. Since the rational integers are closed under addition,
subtraction and multiplication, all of the results are again of the form p + q

√−5 with p and q ratio-
nal integers.

c. First we seek rational integers a and b such that (2+3
√−5)(a+ b

√−5) = −9+11
√−5. Multiplying

out the left side yields (2a− 15b) + (3a + 2b)
√−5 = −9 + 11

√−5. So we must have 2a− 15b = −9
and 3a+2b = 11. Solving this system of equations gives us a = 3 and b = 1. Since these are rational
integers, we have (2 + 3

√−5)(3 + 1
√−5) = −9 + 11

√−5.
Next, we seek rational integers a and b such that (1 + 4

√−5)(a + b
√−5) = (a − 20b) + (4a +

b)
√−5 = 8 + 13

√−5. We must have a − 20b = 8 and 4a + b = 13, but this system leads to b =
−19/81, which is not an integer, so we conclude that 1 + 4

√−5 does not divide 8 + 13
√−5.

d. Let α = a+b
√−5 and β = c+d

√−5. Then N(α)N(β) = (a2+5b2)(c2+5d2) = a2c2+5a2d2+5b2c2+
25b2d2. On the other hand, αβ = (ac − 5bd) + (ad + bc)

√−5 and N(ac − 5bd) + (ad + bc)
√−5) =

(ac− 5bd)2 +5(ad+ bc)2 = a2c2− 10acbd+25b2d2 +5(a2d2 +2adbc+ b2c2) = a2c2 +5a2d2 +5b2c2 +
25b2d2, which is equal to the expression above, proving the assertion.

e. If ε is a unit in Z[
√−5], then there exists an η such that εη = 1. From part (d) we have N(εη) =

N(ε)N(η) = N(1) = 1, so N(ε) = 1. Suppose ε = a + b
√−5, then N(ε) = a2 + 5b2 = 1, which shows

that b = 0, and hence a2 = 1, so that we know a = ±1. Therefore the only units are 1 and −1.

f. If an integer α in Z[
√−5] is not a unit and not prime, then it must have two non unit divisors β and

γ such that N(β)N(γ) = N(α). To see that 2 is prime, note that a divisor β = a + b
√−5 has norm

a2 + 5b2, while N(2) = 4, which forces b = 0. If β is not a unit, then a = ±2, but then this forces γ
to be a unit, hence 2 is prime. To see that 3 is prime, we seek divisors of N(3) = 9 among a2 + 5b2.
We see that b can be only 0 or ±1 or else the norm is too large. And if b = ±1, then the only possible
divisor is 9 itself, forcing the other divisor to be a unit. If b = 0 then a = ±3, and hence 3 is prime.
To see that 1±√−5 is prime, note that its norm is 6. A divisor a + bi can have b take on the values 0
and ±1 else the norm is too large. If b = 0, then a2|6 a contradiction, so b = ±1. But then (a2 + 5)|6
forcing a = ±1. But N(±1 ± √−5) = 6 so the other divisor is a unit, and so 1 ± √5 is also prime.
Note then that 2 · 3 = 6 and (1−√−5)(1 +

√−5) = 6, so that we do not have unique factorization
into primes in Z[

√−5].

g. Suppose γ and ρ exist. Note first that (7 − 2
√−5)/(1 +

√−5) = −1/2 − 3/2
√−5, so ρ 6= 0. Let

γ = a + b
√−5 and ρ = c + d

√−5. Then from 7 − 2
√−5 = (1 +

√−5)(a + b
√−5) + (c + d

√−5) =
(a− 5b + c) + (a + b + d)

√−5 we get 7 = a− 5b + c and −2 = a + b + d. If we subtract the second
equation from the first we have 9 = −6b + c− d or c− d = 6b + 9. Therefore, 3|c− d, and since ρ 6=
0, c− d 6= 0, so |c− d| ≥ 3. We consider N(ρ) = c2 + 5d2. If d = 0, then N(ρ) ≥ c2 ≥ 32 > 6. If d =
±1, then |c| ≥ 2 and N(ρ) = c2 + 5d2 ≥ 4 + 5 > 6. If |d| ≥ 2, then N(ρ) ≥ 5d2 ≥ 5 · 22 = 20 > 6, so
in every case the norm of ρ is greater than 6. So no such γ and ρ exist, and there is no analog for the
division algorithm in Z[

√−5].

h. Suppose µ = a + b
√−5 and ν = c + d

√−5 is a solution to the equation. Then 3(a + b
√−5) + (1 +√−5)(c + d

√−5) = (3a + c − 5d) + (3b + c + d)
√−5 = 1. So we must have 3a + c − 5d = 1 and

3b + c + d = 0. If we subtract the second equation from the first, we get 3a − 3b − 6d = 1 which
implies that 3|1, an absurdity. Therefore no such solution exists.
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14.3. Gaussian Integers and Sums of Squares
14.3.1. a. Since the prime factorization for 5 is 51 and 5 ≡ 1 (mod 4), we have, by Theorem 14.13, that the

number of ways to write 5 as the sum of two squares is 4(1 + 1) = 8.

b. The prime factorization of 20 is 225, and 5 ≡ 1 (mod 4). So by Theorem 14.13, the number of ways
to write 20 as the sum of two squares is 4(1 + 1) = 8.

c. We have 120 = 235 · 3, where 5 ≡ 1 (mod 4) but 3 ≡ 3 (mod 4). So by Theorem 14.3, there is no
way to write 120 as the sum of two squares.

d. We have 1000 = 2353, so the number of ways to write 1000 as the sum of two squares is 4(3+1) = 16.

14.3.2. a. We have 16 = 24, so ei = fi = 0 for all i. Then by Theorem 14.13, we see that there are 4 ways to
write 16 as the sum of two squares.

b. We have 99 = 3211, and 11 ≡ 3 (mod 4). Since 11 appears to an odd exponent, it is impossible to
write 99 as the sum of two squares.

c. We have 650 = 2 · 52 · 13, and 5 ≡ 13 ≡ 1 (mod 4), so there are 4(2 + 1)(1 + 1) = 24 ways to write
650 as the sum of 2 squares.

d. We have 1001000 = 23537 · 11 · 13. Since 7 ≡ 11 ≡ 3 (mod 4) and both primes occur to odd powers,
it is impossible to write 1001000 as the sum of two squares.

14.3.3. We first check that a greatest common divisor δ of α and β divides γ, otherwise no solution exists. If
a solution exists, we use the Euclidean algorithm and back substitution to express δ as a linear combi-
nation of α and β: αµ + βν = δ. Since δ divides γ there is a Gaussian integer η such that δη = γ. If we
multiply the last equation by η we have αµη + βνη = δη = γ, so we may take x0 = µη and y0 = νη as
a solution. The set of all solutions is given by x = x0 + βτ/δ, y = y0 − ατ/δ, where τ ranges over the
Gaussian integers.

14.3.4. a. We perform the Euclidean algorithm on 3 + 2i and 5 to get 3 + 2i = 5 + (−2 + 2i) and 5 = −(1 +
i)(−2 + 2i) + 1 and so we find that a greatest common divisor of 3 + 2i and 5 is 1, which divides
7i. Then using back-substitution, we have 1 = 5 + (1 + i)(−2 + 2i) = 5 + (1 + i)((3 + 2i) − 5) =
(3 + 2i)(1 + i)− 5(i). Multiplying through by 7i gives us 7i = (3 + 2i)(−7 + 7i)− 5(−7), so we can
take x0 = −7+7i and y0 = −7 as a solution to the equation. Then the set of all solutions is given by
x = (−7 + 7i) + 5τ , y = −7 − (3 + 2i)τ , where τ ranges over the Gaussian integers. Here we have
followed the method outlined in the solution to Exercise 3.

b. Note that (2 + i)(2− i) = 5, and so 2− i is a greatest common divisor of 5 and itself. But 2− i does
not divide 3, so there are no solutions to this equation.

14.3.5. a. We find that a greatest common divisor of 3 + 4i and 3 − i is 2 + i. Then we compute 7i/(2 + i) =
7/5 + 14/5i, which is not a Gaussian integer. Therefore there are no solutions to the diophantine
equation.

b. We find that a greatest common divisor of 7 + i and 7− i is 1 + i which does not divide 1. Therefore
the diophantine equation has no solutions.

14.3.6. a. First note that x and y must have opposite parity. If x is odd and y even, then we have x2 + 1 ≡
0 (mod 8), which has no solutions. Therefore x is even and y is odd. Let γ be a greatest common
divisor of x − i and x + i. Then γ | ((x + i) − (x − i)) = 2i, but the only prime divisors of 2i are
the associates of 1 + i, whose multiples are exactly those Gaussian integers in which the real and
imaginary parts have the same parity. Since x+ i and x− i are not of this form, we know γ is a unit,
and hence x + i and x− i are relatively prime.
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b. Since x + i and x − i are relatively prime and (x − i)(x + i) = x2 + 1 = y3, we can apply Exercise
10 of Section 14.2 and we have x + i = ηδ3 for some unit η and some Gaussian integer δ. Note that
13 = 1, (−1)3 = −1, i3 = −i and (−i)3 = i, so that every unit has a cube root in the Gaussian inte-
gers and we can write η = ε3 for some unit ε. So we have x + i = (εδ)3. Let εδ = r + si and write
x + i = (r + si)3 = r3 + 3r2si− 3rs2 − s3i. Equating real and imaginary parts give us x = r3 − 3rs2

and 1 = 3r2s− s3.

c. We have 1 = 3r2s−s3 = s(3r2−s2), so s | 1 and we know that s = ±1. If s = 1, we have 1 = 3r2−1
or 3r2 = 2, which is impossible. If s = −1, the equation reduces to 3r2 = 0, and so r = 0. Then
from the other equation we have x = r3−3rs2 = 0, which forces y = 1, and this is the only solution.

14.3.7. Suppose x, y, z is a primitive Pythagorean triple with y even, so that x and z are necessarily odd. Then
z2 = x2 + y2 = (x+ iy)(x− iy) in the Gaussian integers. If a rational prime p divides x+ iy, then it must
divide both x and y, which contradicts the fact that the triple is primitive. Therefore, the only Gaussian
primes which divide x + iy are of the form m + in with n 6= 0. Also, if 1 + i|x + iy, then we have the
conjugate relationship 1− i|x− iy, which implies that 2 = (1− i)(1 + i) divides z2, which is odd, a con-
tradiction. Therefore we conclude that 1 + i does not divide x + iy, and hence neither does 2. Suppose
δ is a common divisor of x + iy and x − iy. Then δ divides the sum 2x and the difference 2iy. Since we
know that 2 is not a common factor, δ must divide both x and y, which we know are relatively prime.
Hence δ is a unit and x + iy and x− iy are also relatively prime. Then we know that every prime which
divides x + iy is of the form π = u + iv and so π = u − iv divides x − iy. Since their product equals
a square, each factor is a square. Thus x + iy = (m + in)2 and x − iy = (m − in)2 for some Gaussian
integer m + in and its conjugate. But then x + iy = m2 − n2 + 2mni so x = m2 − n2 and y = 2mn. And
z2 = (m + ni)2(m− ni)2 = (m2 + n2)2, so z = m2 + n2. Further, if m and n were both odd or both even,
we would have z even, a contradiction, so we may conclude that m and n have opposite parity. Finally,
having found m and n which work, if m < n we can multiply by i and reverse their roles to get m > n.
The converse is exactly as in Section 13.1.

14.3.8. If p is a prime of the form 4k + 3 which appears in the factorization of z to an odd power, then it also
appears in the factorization of z3 to an odd power. Therefore z3 can be written as a sum of two squares if
and only if z can. Suppose z satisfies the hypotheses of Theorem 14.13 so it can be written as z = a2 + b2.
Then z = (a+bi)(a−bi) and z3 = (a+bi)3(a−bi)3. Likewise z3 satisfies the hypotheses of Theorem 14.13
and so it can be written as z3 = x2 + y2 = (x+ yi)(x− yi). Since (a+ bi)3 = (a3−3ab2)+ (3a2b− b3)i, we
can set x = a3 − 3ab2 and y = 3a2b− b3, so that z = a2 + b2. This investigation shows that if we choose
any integers a and b, then a solution of the diophantine equation is given by the last three equations.
Further, by our construction, all solutions must arise in this fashion.

14.3.9. By Lemma 14.3, there is a unique rational prime p such that π|p. Let α = a + bi and consider 3 cases.
Case 1: If p = 2, then π is an associate of 1 + i and N(π)− 1 = 1. Since there are only two congruence

classes modulo 1 + i and since α and 1 + i are relatively prime, we have αN(π)−1 = α ≡ 1 (mod 1 + i).
Case 2: If p ≡ 3 (mod 4), then π = p and N(π) − 1 = p2 − 1. Also (−i)p = −i. By the Binomial

theorem, we have αp = (a + bi)p ≡ ap + (bi)p ≡ −ibp ≡ a − bi ≡ α (mod p), using Fermat’s little
theorem. Similarly αp ≡ α (mod p), so that αp2 ≡ αp ≡ α (mod p) and since p = π and α and π are
relatively prime, we have αN(π)−1 ≡ 1 (mod p).

Case 3: If p ≡ 1 (mod 4), then ππ = p, ip = i, and N(π) − 1 = p − 1. By the Binomial theorem, we
have αp = (a + bi)p ≡ ap + (bi)p ≡ a + bi ≡ α (mod p), using Fermat’s little theorem. Cancelling an α

gives us αp−1 ≡ 1 (mod p), and since π|p we have αN(π)−1 ≡ 1 (mod π), which concludes the proof.

14.3.10. Let r = φ(γ) and {α1, α2, . . . , αr} be a reduced residue system modulo γ. We assert that the set
{αα1, αα2, . . . , ααr} is also a reduced residue system modulo γ. To see this, first note that since both
α and αk are relatively prime to γ, for any k, so is ααk. Second, suppose ααj ≡ ααk (mod γ) for
some j and k. By Exercise 24 of Section 14.2, α must have an inverse modulo γ, and we have αk ≡
αj (mod γ), which shows that αj = αk. This proves our assertion. Then we must have α1α2 · · ·αr ≡
(αα1)(αα2) · · · (ααr) ≡ αr(α1α2 · · ·αr) (mod γ). Since each αk has an inverse modulo γ, we can cancel
them, and we are left with αr ≡ 1 (mod γ), which is the result.
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14.3.11. Let π be a Gaussian prime. If α2 ≡ 1 (mod π), then π|α2 − 1 = (α − 1)(α + 1), so that either α ≡
1 or α ≡ −1 (mod π). Therefore only 1 and −1 can be their own inverses modulo π. Now let α1 =
1, α2, . . . , αr−1, αr = −1 be a reduced residue system modulo π. For each αk, k = 2, 3, . . . , r − 1, there
is a multiplicative inverse modulo π α′k such that αkα′k ≡ 1 (mod π). If we group all such pairs in the re-
duced residue system together, then the product is easy to evaluate: α1α2 · · ·αr =
1(α2α

′
2)(α3α

′
3) · · · (αr−1)(α′r−1)(−1) ≡ −1 (mod π), which proves the theorem.

14.3.12. a. Suppose that 2 = αβ is a nontrivial factorization in the Eisenstein integers. Then we have 4 =
N(2) = N(α)N(β), and since neither factor is a unit, we must have N(α) = 2. Let α = a + bω, so
that N(a + bω) = a2 − ab + b2 = 2. We can complete the square in a in this last equation to get
(a− b/2)2 + 3b2/4 = 2, from which we see that if |b| ≥ 2, then the left side of the equation is at least
3. Therefore b = 1 or 0. If b = 1, we can solve the equation for a and we get a = (1±√5)/2, which
is not a rational integer. Therefore b = 0 and N(α) = N(a) = a2 = 2. But there are no solutions to
this last equation, and we conclude that 2 is an Eisenstein prime.

b. Let p be a rational prime with p ≡ 2 (mod 3), and suppose p = πρ is a nontrivial factorization in
the Eisenstein integers. Then we have p2 = N(p) = N(π)N(ρ), and since neither factor is a unit, we
conclude that N(π) = p. Let π = a + bω, so that N(a + bω) = a2 − ab + b2 = p. If a ≡ −b (mod 3),
then this equation becomes p = a2 − ab + b2 ≡ a2 + a2 + a2 ≡ 3a2 ≡ 0 (mod 3), a contradiction,
since 3 - p. Therefore a + b 6≡ 0 (mod 3) and so a + b has an inverse modulo 3. Then we can write
p ≡ a2−ab+ b2 ≡ (a+ b)−1(a+ b)(a2−ab+ b2) ≡ (a3 + b3)(a+ b)−1 ≡ (a+ b)(a+ b)−1 ≡ 1 (mod 3),
where we have used Fermat’s little theorem to write a3 + b3 ≡ a + b (mod 3). But this contradicts
the fact that p ≡ 2 (mod 3), and so we conclude that p is an Eisenstein prime.

c. Note that if a rational prime p divides an Eisenstein integer a+ bω, then we have p(c+ dω) = a+ bω
for some integers c and d. This implies that a = pc and b = pd. That is, if a rational prime divides
an Eisenstein integer, then it divides the respective parts. Since p odd and of the form 3k + 1, we
know that p ≡ 1 (mod 6) and then from Exercise 3 in Section 11.2, we see that −3 is a quadratic
residue modulo p. So there is a rational integer u such that p | u2 + 3 = (u − √−3)(u +

√−3) =
(u − 1 − 2ω)(u + 1 + 2ω). If p were an Eisenstein prime, then p would have to divide one of these
factors, and hence, by our comment above, p would have to divide 2, which it can not. Therefore p
is not an Eisenstein prime, and some Eisenstein integer c + dω divides p nontrivially. Then N(c +
dω) | N(p) = p2, and since the division is nontrivial, we must have N(c + dω) = c2 − cd + d2 = p.
We note that p = N(c + dω) = (c + dω)(c + dω2), which gives us a factorization for p. It remains
to check that these factors are not associates. If they were associates, then when we divide one by
the other, we would get a unit. But (c + dω)/(c + dω2) = (c + dω)(c + dω)/((c + dω)(c + dω2)) =
(c2 − d2 + (2cd − d2)ω)/p, so that p | c2 − d2 and so c ≡ ±d mod p. But also p | 2cd − d2, so 0 ≡
2cd− d2 ≡ ±2d2 − d2 mod p, from which we conclude p | d and so p | c. But then p = N(c + dω) =
N(p(a + bω)) = p2N(a + bω) > p, a contradiction. Therefore c + dω and c + dω2 are not associates.



APPENDIX A

Axioms for the Set of Integers

A.0.1. a. By the commutative law, a(b + c) = (b + c)a. Now, using the distributive law, a(b + c) = (b + c)a =
ba + ca = ab + ac.

b. By the distributive law, (a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b) = a2 + ab + ba + b2. By the
law of commutativity, this is equal to a2 + 2ab + b2.

c. From the commutative law of addition, a + (b + c) = a + (c + b). This is equal to (a + c) + b by
associativity. With a final application of commutativity, we see that a + (b + c) = (c + a) + b.

d. Using the definition of subtraction and additive commutativity, (b− a) + (c− b) + (a− c) = (−a +
b) + (−b + c) + (−c + a). By associativity, this is equal to −a + (b− b) + (c− c) + a. Using the defi-
nition of an additive inverse, this is 0.

A.0.2. a. We have (−1)a + 1a = (−1 + 1)a = 0 = −a + a = −a + 1a. Now cancel the 1a’s from the beginning
and end of this equation.

b. Note that a(−b) + ab = a(−b + b) = 0 = (ab)− (ab). Now cancel the ab’s.

c. Using part (b), (−a)(−b) + (−a)b = −a(−b + b) = 0 = ab + (−a)b. Now cancel the (−a)b’s.

d. We compute −(a + b) = −1(a + b) = (a + b)(−1) = a(−1) + b(−1) = −1a− 1b = (−a) + (−b).

A.0.3. By the definition of the inverse of an element, 0 + (−0) = 0. But since 0 is an identity element, we
have 0 + (−0) = −0. It follows that −0 = 0.

A.0.4. Suppose that ab = 0. Suppose further that b 6= 0. We also have 0b = 0 by Example 1.1. Hence ab = 0b.
By the cancellation law it follows that a = 0. Hence either a = 0 or b = 0.

A.0.5. Let x be a positive integer. Since x = x−0 is positive, x > 0. Now let x > 0. Then x−0 = x is positive.

A.0.6. a. We have (b + c)− (a + c) = b− a, which is positive since a < b. Therefore, a + c < b + c.

b. If a = 0, the a2 = 0. If a > 0, then a2 > 0 by the closure of the positive integers. If a < 0, then by
the trichotomy law, −a is a positive integer. Thus a2 = (−a)(−a) > 0 by the closure of the positive
integers.

c. We have ac − bc = (a − b)c. By part (a) of Exercise 2, (a − b)c is positive since both a − b and c are
negative. Thus, bc < ac.

d. By part (b), c2 > 0. Thus c3 < 0 since 0− c3 = (−c)c2 is positive.

A.0.7. We have a − c = a + (−b + b) − c = (a − b) + (b − c), which is positive from our hypothesis and the
closure of the positive integers.

A.0.8. Suppose that there are positive integers less than 1. By the well ordering property there is a least such
integer, say a. Since a < 1 and a > 0, Example 1.2 shows that a2 = aa < 1a = a. Since a2 > 0, it follows

235



236 A. AXIOMS FOR THE SET OF INTEGERS

that a2 is a positive integer less than a, which is a contradiction.



APPENDIX B

Binomial Coefficients

B.0.1. a. We have
(
100
0

)
= 100!/(0!100!) = 1.

b. We have
(
50
1

)
= 50!/(1!49!) = 50.

c. We have
(
20
3

)
= 20!/(3!17!) = 1140.

d. We have
(
11
5

)
= 11!/(5!6!) = 462.

e. We have
(
10
7

)
= 10!/(7!3!) = 120.

f. We have
(
70
70

)
= 70!/(70!0!) = 1.

B.0.2. We have
(
9
3

)
= 84,

(
9
4

)
= 126,

(
10
4

)
= 210, and 84 + 126 = 210.

B.0.3. a. We compute (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

b. We compute (x+y)10 = x10 +10x9y +45x8y2 +120x7y3 +210x6y4 +252x5y5 +210x4y6 +120x3y7 +
45x2y8 + 10xy9 + y10.

c. We compute (m− n)7 = m7 − 7m6n + 21m5n2 − 35m4n3 + 35m3n4 − 21m2n5 + 7mn6 − n7.

d. We compute (2a + 3b)4 = 16a4 + 96a3b + 216a2b2 + 216ab3 + 81b4.

e. We compute (3x− 4y)5 = 243x5 − 1620x4y + 4320x3y2 − 5760x2y3 + 3840xy4 − 1024y5.

f. We compute (5x + 7)8 = 390625x8 + 4375000x7 + 21437500x6 + 60025000x5 + 105043750x4 +
117649000x3 + 82354300x2 + 32941720x + 5764801.

B.0.4. The coefficient of x99y101 in (2x + 3y)200 is
(
200
99

)
2993101 = 200!

99!101!2
993101.

B.0.5. On the one hand, [1+(−1)]n = 0n = 0. On the other hand, by the binomial theorem,
∑n

k=0(−1)k
(
n
k

)
=

(1 + (−1))n.

B.0.6. We have
∑n

k=0

(
n
k

)
= 2n and

∑n
k=0(−1)k

(
n
k

)
= 0. Adding these two equations gives 2

((
n
0

)
+

(
n
2

)
+

(
n
4

)
+ · · · ) =

2n. Hence
(
n
0

)
+

(
n
2

)
+

(
n
4

)
+ · · · = 2n−1. It follows immediately that

(
n
1

)
+

(
n
3

)
+

(
n
5

)
+ · · · = 2n−1.

B.0.7. We have
(
n
r

)(
r
k

)
= n!/(r!(n−r)!)·r!/(k!(r−k)!) = n!(n−k)!/(k!(n−k)!(n−r)!(n−k−n+r)!) =

(
n
k

)(
n−k
n−r

)
.

B.0.8. When n = [m/2],
(
m
n

)
is at a maximum. To see this, consider the ratio

(
m
k

)
/
(

m
k−1

)
= (m!/(k!(m −

k)!))/(m!/((k−1)!(m−k+1)!)) = (m−k+1)/k. Therefore,
(
m
k

) ≥ (
m

k−1

)
if and only if m−k+1 ≥ k, that

is if n ≤ (m + 1)/2 = [m/2]. Thus, the value of
(
m
n

)
increases as n increases to [m/2], and then decreases.

B.0.9. We use Exercise 44 in Section 1.3. α2 = α+1 and β2 = β+1, since they are roots of x2−x−1 = 0. Then
we have f2n = (α2n− β2n)/

√
5 = (1/

√
5)((α + 1)n− (β + 1)n) = (1/

√
5)

(∑n
j=0

(
n
j

)
αj −∑n

j=0

(
n
j

)
βj

)
=

(1/
√

5)
∑n

j=0

(
n
j

)
(αj − βj) =

∑n
j=1

(
n
j

)
fj since the first term is zero in the second to last sum.
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B.0.10. We proceed by induction. When k = 1, this is clear. For the inductive step, we assume that
(
x
k

)
=

x!/(k!(x−k)!). Then
(

x
k+1

)
= (x−k)/(k+1)

(
x
k

)
= (x−k)/(k+1)·x!/(k!(x−k)!) = x!/((k+1)!(x−k−1)!).

B.0.11. Using Exercise 10,
(

x
n

)
+

(
x

n+1

)
= x!/(n!(x−n)!) + x!/((n + 1)!(x−n− 1)!) = (x!(n + 1))/((n + 1)!(x−

n)!)+(x!(x−n))/((n+1)!(x−n)!) = (x!(x−n+n+1))/((n+1)!(x−n)!) = (x+1)!/((n+1)!(x−n)!) =
(

x+1
n+1

)
.

B.0.12. An extremely short combinatorial proof of the binomial theorem can be given. The coefficient of
xkyn−k in (x + y)n is the number of ways to choose x k times from the n factors (x + y), and conse-
quently, y n−k times. This equals the number of subsets with k elements of a set with n elements. (Here
the elements in the subsets are the terms where x is chosen, and the n elements are the n terms.) Hence
the coefficient of xkyn−k is

(
n
k

)
. It follows that (x + y)n =

∑n
k=0

(
n
k

)
xkyn−k.

B.0.13. Let S be a set of n copies of x + y. Consider the coefficient of xkyn−k in the expansion of (x + y)n.
Choosing the x from each element of a k−element subset of S, we notice that the coefficient of xkyn−k

is the number of k−element subset of S,
(
n
k

)
.

B.0.14. The number of elements that have either property P1 or property P2 is n(P1) + n(P2)− n(P1P2) since
an element with one, but not both, of these properties, is counted once by the sum n(P1)+n(P2) but not
by the term n(P1P2) and an element with both of these properties is counted twice by the sum n(P1) +
n(P2), and the overcount is removed since it is counted once again by n(P1P2). Hence the number of
elements possessing neither property is n− [n(P1) + n(P2)− n(P1P2)].

B.0.15. By counting elements with exactly 0, 1, 2, and 3 properties, we see that only elements with 0 proper-
ties are counted in n− [n(P1) + n(P2) + n(P3)] + [n(P1, P2) + n(P1, P3) + n(P2, P3)]− [n(P1, P2, P3)], and
those only once.

B.0.16. The hint follows from Exercise 12. Using this, if k ≥ 1, then an element with k properties isn’t counted.
If k = 0, then it is clearly counted once.

B.0.17. A term of the sum is of the form axk1
1 xk2

2 · · ·xkm
m where k1 + k2 + · · ·+ km = n and a = n!

k1!k2!···km! .

B.0.18. Using the formula from Exercise 17 we have x7+7 x6 y+21 x5 y2+35 x4 y3+35 x3 y4+21 x2 y5+7 x y6+
y7 + 7 x6 z + 42 x5 y z + 105 x4 y2 z + 140 x3 y3 z + 105 x2 y4 z + 42 x y5 z + 7 y6 z + 21 x5 z2 + 105 x4 y z2 +
210 x3 y2 z2 + 210 x2 y3 z2 + 105 x y4 z2 + 21 y5 z2 + 35 x4 z3 + 140 x3 y z3 + 210 x2 y2 z3 + 140 x y3 z3 +
35 y4 z3 +35 x3 z4 +105 x2 y z4 +105 x y2 z4 +35 y3 z4 +21 x2 z5 +42 x y z5 +21 y2 z5 +7 x z6 +7 y z6 + z7

B.0.19. From Exercise 17 it follows that the coefficient is 12!
3!4!5!2

3(−34)55 = 27720·8·81·3125 = 56, 133, 000, 000.
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